Advertisement

Regional Environmental Change

, Volume 19, Issue 2, pp 339–348 | Cite as

Weather conditions and chlorophyll concentrations determine long-term macrophyte community dynamics of Lake Bohinj (Slovenia)

  • Mateja Germ
  • Špela Remec-Rekar
  • Alenka GaberščikEmail author
Original Article

Abstract

Lake Bohinj is a Long-term Ecological Research (LTER) site. This contribution discusses the environmental factors that define the macrophyte community of Lake Bohinj and explains the observed long-term trends in the species present and their abundance and depth distributions from 1996 to 2016. These macrophyte parameters are related to water quality parameters (i.e. total nitrogen and phosphorus, chlorophyll a, water transparency) and meteorological parameters (i.e. precipitation rate, monthly temperature, hours of solar radiation and frequency of storm events per month). We determined 10 submerged macrophyte species, with the stonewort Chara aspera and Eurasian watermilfoil Myriophyllum spicatum prevailing. The variability in the chemical parameters of the water in Lake Bohinj over the study period was low, while the regional air temperatures in the peak season were increasing (R2 = 0.56). Cumulative macrophyte abundance revealed a decreasing trend in the studied period, while the maximal depth distribution was less affected. Cumulative macrophyte abundance was positively related to total nitrogen (r = 0.67) and maximal chlorophyll a concentrations (r = 0.59), while negatively to total phosphorus (r = − 0.56) and minimal transparency (r = 0.63). Redundancy correspondence analysis (RDA) run with the water quality parameters revealed the importance of the maximal chlorophyll a concentrations in the lake water, which explained 54% of variability in the species composition and abundance, followed by total nitrogen that explained additional 10%. Regarding their maximum depth distribution, only 22% of its variability was explained by maximal chlorophyll a concentrations. RDA run with the meteorological data showed the importance of temperature in July in explaining the variability of the species present and their abundance and depth distribution. The study revealed differences in macrophyte community structure during the experimental period, even though during the monitoring period, annual averages of water quality parameters had never exceeded the values, indicating oligotrophic conditions according to the criteria of Organisation for Economic Co-operation and Development. This study points out the importance of macrophytes for assessing the ecological status of lakes and a need for detailed survey of direct disturbances into the lake littoral.

Keywords

Macrophytes Species dynamics Depth distribution Water quality parameters Meteorological parameters Lake LTER 

Notes

Acknowledgements

The authors are grateful to Christopher Berrie for revision of the English writing. The authors gratefully acknowledge the financial support from the Slovenian Research Agency through core research funding “Biology of Plants” (P1-0212) and by the Environmental Agency of Slovenia through the monitoring programme. The authors also thank to Urška Kuhar and Dragan Abram for field assistance.

References

  1. Adams MS, Titus J, McCraken M (1974) Depth distribution of photosynthetic activity in a Myriophyllum spicatum community in Lake Wingra. Limnol Oceanogr 19(3):377–389.  https://doi.org/10.4319/lo.1974.19.3.0377 CrossRefGoogle Scholar
  2. Alahuhta J, Kanninen A, Vuori KM (2012) Response of macrophyte communities and status metrics to natural gradients and land use in boreal lakes. Aquat Bot 103:106–114.  https://doi.org/10.1016/j.aquabot.2012.07.003 CrossRefGoogle Scholar
  3. Baattrup-Pedersen A, Riis T (1999) Macrophyte diversity and composition in relation to substratum characteristics in regulated and unregulated Danish streams. Freshw Biol 42:375–385.  https://doi.org/10.1046/j.1365-2427.1999.444487.x CrossRefGoogle Scholar
  4. Barko JW, Adams MS, Clesceri NL (1986) Environmental factors and their consideration in the management of submersed aquatic vegetation: a review. J Aquat Plant Manag 24:1−10Google Scholar
  5. Barko JW, Gunnison D, Carpenter SR (1991) Sediment interactions with submersed macrophyte growth and community dynamics. Aquat Bot 41:41–65.  https://doi.org/10.1016/0304-3770(91)90038-7 CrossRefGoogle Scholar
  6. Blindow I, Hargeby A, Andersson G (2002) Seasonal changes of mechanisms maintaining clear water in a shallow lake with abundant Chara vegetation. Aquat Bot 72:315–334.  https://doi.org/10.1016/S0304-3770(01)00208-X CrossRefGoogle Scholar
  7. Brodersen KE, Hammer KL, Schrameyer V, Floytrup A, Rasheed MA, Ralph PJ, Kühl M, Pedersen O (2017) Sediment resuspension and deposition on seagrass leaves impedes internal plant aeration and promotes phytotoxic H2S intrusion. Front Plant Sci 8:657.  https://doi.org/10.3389/fpls.2017.00657 CrossRefGoogle Scholar
  8. Casper SJ, Krausch HD (1980) Suüsswasserflora von Mitteleuropa. Pteridophyta und Antophyta. VEB G, Fischer Verlag, JenaGoogle Scholar
  9. Canfield Jr DE, Shireman JV, Colle DE, Haller WT, Watkins CE II, Maceina MJ (1984) Prediction of chlorophyll a concentrations in Florida lakes: importance of aquatic macrophytes. Can J Fish Aquat Sci 41(3):497–501.  https://doi.org/10.1139/f84-059 CrossRefGoogle Scholar
  10. Canfield DE, Langeland KA, Linda SB, Haller WT (1985) Relations between water transparency and maximum depth of macrophyte colonization in lakes. J Aquat Plant Manage 23:25–28Google Scholar
  11. Capers RS, Selsky R, Bugbee GJ (2010) The relative importance of local conditions and regional processes in structuring aquatic plant communities. Freshw Biol 55:952–966.  https://doi.org/10.1111/j.1365-2427.2009.02328.x CrossRefGoogle Scholar
  12. Carbiener R, Trémolières M, Mercier JL, Ortscheit A (1990) Aquatic macrophyte communities as bioindicators of eutrophication in calcareous oligosaprobe stream waters (Upper Rhine plain, Alsace). Vegetation 86:71–88. doi: http://www.jstor.org/stable/20038571
  13. Coops H (2002) Ecology of charophytes: an introduction. Aquat Bot 72:205–208CrossRefGoogle Scholar
  14. Council of the European Communities (2000) Directive 2000/60/EC of the European Parliament and of the council establishing a framework for the community action in the field of water policy. Off J Eur Commun L327:1–73Google Scholar
  15. de Luis M, Čufar K, Di Filippo A, Novak K, Papadopoulos A, Piovesan G, Rathgeber CBK, Raventós J, Saz MA, Smith KT (2013) Plasticity in dendroclimatic response across the distribution range of Aleppo Pine (Pinus halepensis). PLoS One 8(12):e83550.  https://doi.org/10.1371/journal.pone.0083550 CrossRefGoogle Scholar
  16. Deaver E, Moore MT, Cooper CM, Knight SS (2005) Efficiency of three aquatic macrophytes in mitigating nutrient run-off. Int J Ecol Environ Sci 31:1–7Google Scholar
  17. Dhir B (2015) Status of aquatic macrophytes in changing climate: a perspective. J Environ Sci Technol 8(4):139–148.  https://doi.org/10.3923/jest.2015.139.148 CrossRefGoogle Scholar
  18. Du W, Li Z, Zhang Z, Jin Q, Chen X, Jiang S (2017) Composition and biomass of aquatic vegetation in the Poyang Lake. China Hindawi Sci 2017:1–10.  https://doi.org/10.1155/2017/8742480 Google Scholar
  19. Dokulil MT (2014) Environmental impacts of tourism on lakes. In: Ansari AA, Gill SS (eds) Eutrophication: causes, consequences and control. Springer Science Business Media, Dordrecht, pp 81–88.  https://doi.org/10.1007/978-94-007-7814-6_7 CrossRefGoogle Scholar
  20. Ebke KP, Felten C, Dören L (2013) Impact of heterophylly on the sensitivity of Myriophyllum aquaticum biotests. Sci Eur 25:6.  https://doi.org/10.1186/2190-4715-25-6 CrossRefGoogle Scholar
  21. Enciklopedija Slovenije (1987) Mladinska knjiga, LjubljanaGoogle Scholar
  22. Faria AE, Palma-Silva C, Trindade Trindade CR, Marques Furlanetto L (2014) Field evidence of the influence of aquatic macrophytes on water quality in a shallow eutrophic lake over a 13-year period. Acta Limnol Bras 26(2):176–185.  https://doi.org/10.1590/S2179-975X2014000200008 CrossRefGoogle Scholar
  23. Feldmann T, Nõges P (2007) Factors controlling macrophyte distribution in large shallow Lake Võrtsjärv. Aquatic Bot 87(1):15–21.  https://doi.org/10.1016/j.aquabot.2007.01.004 CrossRefGoogle Scholar
  24. Folke C, Carpenter S, Walker B, Scheffer M, Elmqvist T, Gunderson L, Holling C (2004) Regime shifts, resilience, and biodiversity in ecosystem management. Annu Rev Ecol Evol Syst 35:557–581.  https://doi.org/10.1146/annurev.ecolsys.35.021103.105711 CrossRefGoogle Scholar
  25. Franklin P, Dunbar M, Whitehead P (2008) Flow controls on lowland river macrophytes: a review. Sci Total Environ 400:369–378.  https://doi.org/10.1016/j.scitotenv.2008.06.018 CrossRefGoogle Scholar
  26. Gacia E, Ballesteros E, Camarero L, Delgado O, Palau A, Riera JL, Catalan J (1994) Macrophytes from lakes in the eastern Pyrenees: community composition and ordination in relation to environmental factors. Freshw Biol 32:73–81.  https://doi.org/10.1111/j.1365-2427.1994.tb00867.x CrossRefGoogle Scholar
  27. Haslam SM (1987) River plants of Western Europe. The macrophytic vegetation of watercourses of the European Economic Community. Cambridge University Press, Cambridge, New York, New Rochelle, Melbourne, SydneyGoogle Scholar
  28. Haase P, Tonkin JD, Stoll S, Burkhard B, Frenzel M, Geijzendorffer IR, Häuser C, Klotz S, Kühn I, McDowell WH, Mirtl M, Müller F, Musche M, Penner J, Zacharias S, Schmeller DS (2018) The next generation of site-based long-term ecological monitoring: linking essential biodiversity variables and ecosystem integrity. Sci Tot Environ 613–614:1376–1384.  https://doi.org/10.1016/j.scitotenv.2017.08.111 CrossRefGoogle Scholar
  29. Hu L, Hu W, Deng J, Li Q, Gao F, Zhu J, Han T (2010) Nutrient removal in wetlands with different macrophyte structures in eastern Lake Taihu, China. Ecol Eng 36:1725–1732.  https://doi.org/10.1016/j.ecoleng.2010.07.020 CrossRefGoogle Scholar
  30. Hu Z, Guo L, Liu T, Chuai X, Chen Q, Shi F, Jiang L Yang L (2014) Uniformisation of phytoplankton chlorophyll a and macrophyte biomass to characterise the potential trophic state of shallow lakes. Ecol Indic 37A:1–9.  https://doi.org/10.1016/j.ecolind.2013.10.007 CrossRefGoogle Scholar
  31. Hutchinson GE (1975) A treatise on limnology. Volume III. Limnological botany. John Wiley Sons Inc, New York, London, Sydney, TorontoGoogle Scholar
  32. Kissoon TT, Jacob DL, Hanson MA, Herwig BR, Bowe SE, Otte ML (2013) Macrophytes in shallow lakes: relationships with water, sediment and watershed characteristics. Aquat Bot 109:39–48.  https://doi.org/10.1016/j.aquabot.2013.04.001 CrossRefGoogle Scholar
  33. Kohler A, Janauer GA (1995) Zur Methodik der Untersuchung von aquatischen Makrophyten in Flie_gewassern. In: Steinberg C, Bernhardt H, Klapper H (eds) Handbuch Angewandte Limnologie. Ecomed Verlag, Landsberg am Lech, pp 3–22Google Scholar
  34. Kosten S, Jeppesen E, Huszar VLM, Mazzeo N, Van Nes EH, Peeters ETHM, Scheffer M (2011) Ambiguous climate impacts on competition between submerged macrophytes and phytoplankton in shallow lakes. Freshw Biol 56:1540–1553.  https://doi.org/10.1111/j.1365-2427.2011.02593.x CrossRefGoogle Scholar
  35. Kovtun-Kante A, Torn K, Kotta J (2014) In situ production of charophyte communities under reduced light conditions in a brackishwater ecosystem. Eston J Ecol 63(1):28–38.  https://doi.org/10.3176/eco.2014.1.03 CrossRefGoogle Scholar
  36. Larcher W (2003) Physiological plant ecology, 4th edn. Springer-Verlag, BerlinCrossRefGoogle Scholar
  37. Lepš J, Šmilauer P (2003) Multivariate analysis of ecological data using CANOCO. Cambridge University Press, CambridgeGoogle Scholar
  38. May L, Carvalho L (2010) Maximum growing depth of macrophytes in loch Leven, Scotland, United Kingdom, in relation to historical changes in estimated phosphorus loading. Hydrobiologia 646:123–131.  https://doi.org/10.1007/s10750-010-0176-0 CrossRefGoogle Scholar
  39. Martinčič A, Wraber T, Jogan N, Ravnik V, Podobnik A, Turk B, Vreš B (1999) Mala flora Slovenije. Ključ za določanje praprotnic in semenk. Tehniška založba Slovenije, LjubljanaGoogle Scholar
  40. Melzer A (1999) Aquatic macrophytes as tools for lake management. Hydrobiologia 395(396):181–190CrossRefGoogle Scholar
  41. Mingming H, Huaidong Z, Yuchun W, Yingcai W, Zhen W, Weiju W, Gaofeng Z, Yao C, Yongding L (2014) Ecological characteristics of plankton and aquatic vegetation in Lake Qiluhu. Water Sci Technol 69(8):1620–1625.  https://doi.org/10.2166/wst.2014.043 CrossRefGoogle Scholar
  42. Molnar FM, Rothe P, Forstner U, Štern J, Ogorelec B, Šercelj A, Culiberg M (1978) Lakes Bled and Bohinj—origin, composition, and pollution of recent sediments. Geologija (Ljubljana) 21:93–164Google Scholar
  43. Mirtl M, Borer E T, Djukic I, Forsius M, Haubold H, Hugo W, Jourdan J, Lindenmayer D, McDowell WH, Muraoka H, Orenstein DE, Pauw JC, Peterseil J, Shibata H, Wohner C, Yuk X, Haase P (2018) Genesis, goals and achievements of long-term ecological research at the global scale: a critical review of ILTER and future directions. Sci Tot Environ 626, 1439–1462. Doi:  https://doi.org/10.1016/j.scitotenv.2017.12.001
  44. Nichols D, Keeney DR (1976) Nitrogen nutrition of Myriophyllum spicatum: uptake and translocation of 15N by shoots and roots. Freshwater Biol 6(2):145–154 2006.  https://doi.org/10.1111/j.1365-2427.1976.tb01598.x CrossRefGoogle Scholar
  45. Pall K, Moser V (2009) Austrian index macrophytes (AIM-Module 1) for lakes: a water framework directive compliant assessment system for lakes using aquatic macrophytes. Hydrobiologia 633:83–104.  https://doi.org/10.1007/s10750-009-9871-0 CrossRefGoogle Scholar
  46. Poikane S, Portielje R, van den Berg M, Phillips G, Brucet S, Carvalho L, Mischke U, Ott I, Soszka H, Van Wichelen J (2014) Defining ecologically relevant water quality targets for lakes in Europe. J Appl Ecol 51:592–602.  https://doi.org/10.1111/1365-2664.12228 CrossRefGoogle Scholar
  47. Preston CD (1995) Pondweeds of Great Britain and Ireland. Botanical Society of the British Isles, LondonGoogle Scholar
  48. Remec-Rekar Š, Bat M (2003) Jezera. In: Bat M (ed) Vodno bogastvo Slovenije. Ministrstvo za okolje, prostor in energijo, Agencija republike Slovenije za okolje, LjubljanaGoogle Scholar
  49. Robionek A, Banaś K, Chmara R, Szmeja J (2015) The avoidance strategy of environmental constraints by an aquatic plant Potamogeton alpinus in running waters. Ecol Evol 5(16):3327–3337.  https://doi.org/10.1002/ece3.1598 CrossRefGoogle Scholar
  50. Schallenberg M, Sorrell B (2009) Regime shifts between clear and turbid water in New Zealand lakes: environmental correlates and implications for management and restoration. New Zeal J Mar Fresh 43(3):701–712.  https://doi.org/10.1080/00288330909510035 CrossRefGoogle Scholar
  51. Scheffer M, Hosper SH, Meijer M-L, Moss B, Jeppesen E (1993) Alternative equilibria in shallow lakes. Trends Ecol Evol 8:275–279.  https://doi.org/10.1016/0169-5347(93)90254-M CrossRefGoogle Scholar
  52. Soana E, Naldi M, Bartoli M (2012) Effects of increasing organic matter loads on pore water features of vegetated (Vallisneria spiralis L.) and plant-free sediments. Ecol Eng 47:141–145.  https://doi.org/10.1016/j.ecoleng.2012.06.016 CrossRefGoogle Scholar
  53. Šraj-Kržič N, Germ M, Urbanc-Berčič O, Kuhar U, Janauer GA, Gaberščik A (2006) The quality of the aquatic environment and macrophytes of karstic watercourses. Plant Ecol 192:107–118.  https://doi.org/10.1007/s11258-006-9230-4 Google Scholar
  54. Takeda F, Nakano K, Aikawa Y, Nishimura O, Shimada Y, Fukuro S, Tanaka H, Hayashi N, Inamori Y (2014) Effect of Potamogeton pusillus on water quality and plankton community. J Water Environ Technol 12(4):333–345.  https://doi.org/10.2965/jwet.2014.333 CrossRefGoogle Scholar
  55. ter Braak CJF, Šmilauer P (2002) CANOCO reference manual and CanoDraw for Windows user’s guide: Software for Canonical Community Ordination (version 4.5). www.canoco.com, Ithaca, NY
  56. Torn K, Martin G (2004) Environmental factors affecting the distribution of charophyte pecies in Estonian coastal waters, Baltic Sea. Proc Estonian Acad Sci Biol Ecol 53(4):251–259Google Scholar
  57. Vreča P, Stalikas C, Muri G, Daskalou V, Kanduč T, Leis A (2008) C and N elemental and stable isotopic signatures in sedimentary organic matter from Lake Pamvotis (Greece) and The Lake Bohinj (Slovenia) C in N elementna in izotopska sestava sedimentirane organske snovi iz jezera Pamvotis (Grčija) in Bohinjskega jezera (Slovenija). Geologija 51:65–70.  https://doi.org/10.5474/geologija.2008.007 CrossRefGoogle Scholar
  58. Vrhovšek D, Blaženčić J, Urbanc-Berčič O, Kosi G, Bricelj M, Brancelj A, Povž M, Remec-Rekar Š, Dobravec J, Ferjančič A, Luznar D (1991) Ocenitev stanja in spremljanje procesa evtrofizacije v Bohinjskem jezeru 1986-1990Google Scholar
  59. Wang J, Song Y, Zheng J, Cao Y (2016) Effect of sediment deposition on turion sprouting and early growth of Potamogeton crispus L. J Freshw Ecol 31(2):261–269.  https://doi.org/10.1080/02705060.2015.1110063 CrossRefGoogle Scholar
  60. Zelnik I, Potisek M, Gaberščik A (2012) Environmental conditions and macrophytes of karst ponds. Pol J Environ Stud 21:1911–1920Google Scholar
  61. Zhao D, Lv M, Jiang H, Cai Y, Xu D, An S (2013) Spatio-temporal variability of aquatic vegetation in Taihu Lake over the past 30 years. PLoS One 8(6):e66365.  https://doi.org/10.1371/journal.pone.0066365 CrossRefGoogle Scholar
  62. Zhou Y, Zhou X, Han R, Xu X, Wang G, Liu X, Bi F, Feng D (2017) Reproduction capacity of Potamogeton crispus fragments and its role in water purification and algae inhibition in eutrophic lakes. Sci Total Environ (Amsterdam) 580:1421–1428.  https://doi.org/10.1016/j.scitotenv.2016.12.108 CrossRefGoogle Scholar
  63. Zorn M (2010) Bohinjsko jezero. DEDI - digitalna enciklopedija naravne in kulturne dediščine na Slovenskem. doi: http://www.dedi.si/dediscina/382-bohinjsko-jezero

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Biology, Biotechnical FacultyUniversity of LjubljanaLjubljanaSlovenia
  2. 2.Environmental Agency of SloveniaLjubljanaSlovenia

Personalised recommendations