Assessment of the potential implications of a 1.5 °C versus higher global temperature rise for the Afobaka hydropower scheme in Suriname

  • Peter Donk
  • Els Van Uytven
  • Patrick Willems
  • Michael A. Taylor
Original Article

Abstract

The long-term sustainability of proposed or existing hydropower schemes strongly depends on the availability of water resources. Under climate change, long-term water resource availability in the Caribbean is highly uncertain. This study presents an approach for assessing future climate impacts on regional hydropower potential premised on the use of hydrological models and projections from the latest generation of climate models. When the methodology is applied to the Afobaka hydropower scheme in Suriname, the results indicate significant changes in, both, water resources availability and hydropower potential with increasing global temperatures. A decrease of approximately 40% is projected by the end of the century for global temperature increase in the range of 1.5 °C above pre-industrial levels. Under a “business as usual” greenhouse gas emissions pathway, which would lead to global temperatures significantly above 1.5 °C, the impact is more severe, with a projected decrease of up to 80% (65 MW) of the firm power capacity (80 MW) by the end of the century.

Keywords

Hydropower Climate change Climate modeling Statistical downscaling CMIP5 Suriname 

Notes

Acknowledgements

The authors acknowledge the World Climate Research Programme’s Working Group on Coupled Modeling, which is responsible for CMIP, and thank the climate modeling groups (listed in Table 1) for producing and making available their model output. For CMIP, the U.S. Department of Energy’s Program for Climate Model Diagnosis and Inter comparison provides coordinating support and led development of software infrastructure in partnership with the Global Organization for Earth System Science Portals. Gratitude is expressed to the Caribbean Development Bank and Pilot Project for Climate Resilience (PPCR) for enabling the participation of the authors in the Caribbean 1.5 project. Gratitude is also expressed to the local institutions from Suriname, who made the necessary GIS, hydro-meteorological, and hydraulic data available, namely the Anton de Kom University of Suriname, CELOS-NARENA, and the Ministry of Natural Resources. Els Van Uytven obtained a scholarship from the Fund for Scientific Research (FWO)—Flanders and gratefully acknowledges this financial support.

Funding information

Els Van Uytven obtained a scholarship from the Fund for Scientific Research (FWO)—Flanders and gratefully acknowledges this financial support.

Supplementary material

10113_2018_1339_MOESM1_ESM.pdf (1.6 mb)
ESM 1 (PDF 1646 kb)

References

  1. Benjamin L, Thomas A (2016) 1.5 to stay alive?: AOSIS and the long term temperature goal in the Paris Agreement. IUCN Acad Environ law e-J 7:122–129 http://www.iucnael.org/en/e-journal Google Scholar
  2. Berga L (2013) Floods and Climate Change in Europe. Proceedings, HYDRO 2013: Promoting the Versatile Role of Hydro 7–9 October 2013, Innsbruck, Austria. http://www.hydropower-dams.com/proceedings-overview.php?c_id=164
  3. Boehlert B, Strzepek KM, Gebretsadik Y, Swanson R, McCluskey A, Neumann JE, McFarland J, Martinich J (2016) Climate change impacts and greenhouse gas mitigation effects on U.S. hydropower generation. Appl Energy 183:511–519.  https://doi.org/10.1016/j.apenergy.2016.09.054 CrossRefGoogle Scholar
  4. Bulu A (2017) Hydroelectric Power Plants - Lecture notes IV - Chapter 4. Istanbul Technical University, College of Civil Engineering. http://web.itu.edu.tr/~bulu/hyroelectic_power_uk.htm; http://web.itu.edu.tr/~bulu/hyroelectic_power_files/lecture_notes_04.pdf. Accessed July 2017
  5. Chow VT, Maidment DR, Mays LW (1988) Applied hydrology. McGraw-Hill Book Company, New York 572pGoogle Scholar
  6. Clarke RT (2008a) A critique of present procedures used to compare performance of rainfall-runoff models. J Hydrol 352:379–387.  https://doi.org/10.1016/j.jhydrol.2008.01.026 CrossRefGoogle Scholar
  7. Clarke RT (2008b) Issues of experimental design for comparing the performance of hydrologic models. Water Resour Res 44:105–114.  https://doi.org/10.1029/2007WR005927 CrossRefGoogle Scholar
  8. Collins MR, Knutti J, Arblaster JL, Dufresne T, Fichefet P, Friedlingstein X, Gao WJ, Gutowski T, Johns G, Krinner M, Shongwe C, Tebaldi AJ, Weaver and M. Wehner (2013) Long-term Climate Change: Projections, Commitments and Irreversibility. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker,T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USAGoogle Scholar
  9. Dawson R (2011) How significant is a boxplot outlier? J Stat Educ 19(2):1–13.  https://doi.org/10.1080/10691898.2011.11889610 CrossRefGoogle Scholar
  10. Donk P, Willems P, Nurmohamed R (2013) Modeling the impact of Climate Change on the Hydropower potential of the Kabalebo river basin in Suriname. Proceedings, HYDRO 2013: Promoting the versatile role of hydro, 7–9 October, 2013, Innsbruck, Austria. http://www.hydropower-dams.com/proceedings-overview.php?c_id=164
  11. Han D, Bray M (2006) Automated Thiessen polygon generation. Water Resour Res 42:W11502.  https://doi.org/10.1029/2005WR004365 CrossRefGoogle Scholar
  12. Hosseinzadehtalaei P, Tabari H, Willems P (2016) Quantification of uncertainty in reference evapotranspiration climate change signals in Belgium. Hydrol Res 48(4):nh2016243.  https://doi.org/10.2166/nh.2016.243 Google Scholar
  13. Hamududu B, Killingtveit A (2012) Assessing climate change impacts on global hydropower. Energies 5:305–322.  https://doi.org/10.3390/en5020305 CrossRefGoogle Scholar
  14. Kopytkovskiy M, Geza M, McCray JE (2015) Climate-change impacts on water resources and hydropower potential in the Upper Colorado River Basin. J Hydrol: Reg Stud 3:473–493.  https://doi.org/10.1016/j.ejrh.2015.02.014 Google Scholar
  15. McSweeney CF, Jones RG (2016) How representative is the spread of climate projections from the 5 CMIP5 GCMs used in ISI-MIP? Clim Serv 1:24–29.  https://doi.org/10.1016/j.cliser.2016.02.001 CrossRefGoogle Scholar
  16. Meinshausen M, Smith SJ, Calvin K, Daniel JS, Kainuma MLT, Lamarque J-F, Matsumoto K, Montzka SA, Raper SCB, Riahi K, Thomson AM, Velders GJM, Van Vuuren DP (2011) The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Clim Chang 109:213–241.  https://doi.org/10.1007/s10584-011-0156-z CrossRefGoogle Scholar
  17. Moss RH, Edmonds JA, Hibbard KA, Manning MR, Rose SK, Van Vuuren DP, Carter TR, Emori S, Kainuma M, Kram T, Meehl GA, Mitchell JFB, Nakicenovic N, Riahi K, Smith SJ, Stouffer RJ, Thomson AM, Weyant JP, Wilbanks TJ (2010) The next generation of scenarios for climate change research and assessment. Nature 463:747–756.  https://doi.org/10.1038/nature08823 CrossRefGoogle Scholar
  18. Nakicenovic N, Alcamo J, Davis G, de Vries B, Fenhann J, Gaffin S, Gregory K, Grübler A, Jung TY, Kram T, La Rovere EL, Michaelis L, Mori S, Morita T, Pepper W, Pitcher H, Price L, Riahi K, Roehrl A, Rogner H-H, Sankovski A, Schlesinger M, Shukla P, Smith S, Swart R, van Rooijen S, Victor N, Dadi Z (2000) Emissions Scenarios - A Special Report of IPCC Working Group III. Intergovernmental Panel on Climate Change, Cambridge University Press, pp 570Google Scholar
  19. Ntegeka V, Willems P, Roulin E, Baguis P (2014) Developing tailored climate change scenarios for hydrological impact assessments. J Hydrol 508:307–321.  https://doi.org/10.1016/j.jhydrol.2013.11.001 CrossRefGoogle Scholar
  20. Nurmohamed R, Donk P (2017) The impact of climate change and climate variability on the agricultural sector in Nickerie district. J Agric Environ Sci 6(1):51–65.  https://doi.org/10.15640/jaes.v6n1a6 Google Scholar
  21. Nurmohamed R, Naipal S, De Smedt F (2007) Modeling hydrological response of the Upper Suriname river basin to climate change. J Spat Hydrol 7:1–22Google Scholar
  22. Raes D (2012) The ETo Calculator—evapotranspiration from a reference surface. Reference Manual Version 3.2, September 2012. FAO, ItalyGoogle Scholar
  23. Raje D, Mujumdar P (2010) Reservoir performance under uncertainty in hydrologic impacts of climate change. Adv Water Resourc 33:312–326.  https://doi.org/10.1016/j.advwatres.2009.12.008 CrossRefGoogle Scholar
  24. Reed SM, Koren V, Smith MB, Zhang Z, Moreda F, Seo D, DMIP Participants (2004) Overall distributed model Intercomparison project results. J Hydrol 298:27–60.  https://doi.org/10.1016/j.jhydrol.2004.03.031 CrossRefGoogle Scholar
  25. Refsgaard JC, Knudsen J (1996) Operational validation and intercomparison of different types of hydrological models. Water Resour Res 32:2189–2202.  https://doi.org/10.1029/96WR00896 CrossRefGoogle Scholar
  26. Refsgaard JC (1997) Parametrisation, calibration and validation of distributed hydrological models. J Hydrol 198:69–97.  https://doi.org/10.1016/S0022-1694(96)03329-X CrossRefGoogle Scholar
  27. Smith M (1992) CROPWAT—a computer program for irrigation planning and management. FAO Irrigation and Drainage Paper N°46. Rome, Italy, pp 126Google Scholar
  28. Smith MB, Seo D, Koren V, Reed SM, Zhang Z, Duan Q, Moreda F, Cong S (2004) The distributed model Intercomparison project (DMIP): motivation and experiment design. J Hydrol 298:4–26.  https://doi.org/10.1016/j.jhydrol.2004.03.040 CrossRefGoogle Scholar
  29. Tabari H, Taye MT, Willems P (2015) Water availability change in central Belgium for the late 21th century. Glob Planet Chang 131:115–112.  https://doi.org/10.1016/j.gloplacha.2015.05.012 CrossRefGoogle Scholar
  30. Taye MT, Ntegeka V, Ogiramoi NP, Willems P (2011) Assessment of climate change impact on hydrological extremes in two source regions of the Nile River Basin. Hydrol Earth Syst Sci 15:209–222.  https://doi.org/10.5194/hess-15-209-2011 CrossRefGoogle Scholar
  31. Taylor MA, Clarke L, Centella A, Bezanilla A, Stephenson TS, Jones JJ, Campbell JD, Vichot A, Charlery J (2018) Future Caribbean Climates in a World of Rising Temperatures: The 1.5 vs 2.0 Dilemma. JCLI 31:2907–2926.  https://doi.org/10.1175/JCLI-D-17-0074.1
  32. Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93:485–498.  https://doi.org/10.1175/BAMS-D-11-00094.1 CrossRefGoogle Scholar
  33. UNFCCC (2015) Adoption of the Paris Agreement. Proposal by the President (Draft Decision). United Nations Office, Geneva (Switzerland) 32pGoogle Scholar
  34. Van Els R (2012) De Puketi micro-waterkrachtcentrale in het binnenlandvan Suriname: implementatie, rehabilitatie en ervaringen. Acad J Suriname 3:276–291Google Scholar
  35. Van Vliet MTH, Wiberg D, Leduc S, Riahi K (2016) Power-generation system vulnerability and adaptation to changes in climate and water resources. Nat Clim Change 6:375–380.  https://doi.org/10.1038/NCLIMATE2903 CrossRefGoogle Scholar
  36. Van Vuuren DP, Edmonds JA, Kainuma M, Riahi K, Weyant JP (2011a) A special issue on the RCPs. Clim Chang 109:1–4.  https://doi.org/10.1007/s10584-011-0157-y CrossRefGoogle Scholar
  37. Van Vuuren DP, Edmonds JA, Kainuma M, Riahi K, Thomson AM, Hibbard K, Hurtt GC, Kram T, Krey V, Lamarque J-F, Masui T, Meinshausen M, Nakicenovic N, Smith SJ, Rose SK (2011b) The representative concentration pathways: an overview. Clim Chang 109:5–31.  https://doi.org/10.1007/s10584-011-0148-z CrossRefGoogle Scholar
  38. Willems P (2009) A time series tool to support the multi-criteria performance evaluation of rainfall-runoff models. Environ Model Softw 24:311–321.  https://doi.org/10.1016/j.envsoft.2008.09.005 CrossRefGoogle Scholar
  39. Willems P (2014a) Parsimonious rainfall-runoff model construction supported by time series processing and validation of hydrological extremes—part 1: step-wise model-structure identification and calibration approach. J Hydrol 510:578–590.  https://doi.org/10.1016/j.jhydrol.2014.01.017 CrossRefGoogle Scholar
  40. Willems P (2014b) Parsimonious rainfall-runoff model construction supported by time series processing and validation of hydrological extremes—part 2: intercomparison of models and calibration approaches. J Hydrol 510:591–609.  https://doi.org/10.1016/j.jhydrol.2014.01.028 CrossRefGoogle Scholar
  41. Willems P, Vrac M (2011) Statistical precipitation downscaling for small-scale hydrological impact investigations of climate change. J Hydrol 402:193–205.  https://doi.org/10.1016/j.jhydrol.2011.02.030 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.N.V. Energiebedrijven SurinameParamariboSuriname
  2. 2.Department of Civil Engineering, Hydraulics SectionKU LeuvenLeuvenBelgium
  3. 3.Department of PhysicsUniversity of the West IndiesMonaJamaica

Personalised recommendations