Advertisement

Socio-environmental implications of process-based restoration strategies in large rivers: should we remove novel ecosystems along the Rhône (France)?

  • Maxine Thorel
  • Herve Piégay
  • Carole Barthelemy
  • Bianca Räpple
  • Charles-Robin Gruel
  • Pierre Marmonier
  • Thierry Winiarski
  • Jean-Philippe Bedell
  • Fanny Arnaud
  • Gwenaelle Roux
  • Jonh C Stella
  • Gabrielle Seignemartin
  • Alvaro Tena-Pagan
  • Vincent Wawrzyniak
  • Dad Roux-Michollet
  • Benjamin Oursel
  • Stéphanie Fayolle
  • Céline Bertrand
  • Evelyne Franquet
Original Article

Abstract

River restoration efforts require interdisciplinary approaches involving fluvial geomorphology, hydraulic engineering, ecology, sedimentology, chemistry, social geography, and sociology. We investigated the functioning of artificial structures called “Casiers Girardon” (groyne fields) in the Rhône River. We assessed potential benefits and risks linked to removing the Rhône groyne fields in a restoration context, with particular focus on the potential for increased bank erosion. Hydraulic, morphological, chemical, ecological, and social issues resulting from dismantlement were studied for terrestrialized and aquatic Casiers Girardon. Only 10% of Casiers Girardon have maintained their aquatic features, whereas most of the Casiers are terrestrialized. Our results help to confirm the effectiveness of restoration actions; however, they also indicate uncertainties and additional knowledge needs, especially in regard to potential incompatibilities between Casier restoration and conservation. Then, an interdisciplinary conceptual model was developed to identify interventions to be considered in Casiers Girardon, according to their terrestrialization rate and physiochemical characteristics (connectivity, amount of gravel vs. fine sediment, contamination level). This model synthetizes scientific results and expert judgment and provides management recommendations based on ecological and sociological expectations about the restoration of Casiers Girardon. The model highlights high heterogeneity in functioning and ecological potential between terrestrialized and aquatic Casiers. Dismantling of terrestrialized Casiers has strong potential to provide multiple benefits, whereas aquatic Casiers could be maintained as valuable backwaters. The managing guidelines for the Casiers Girardon of the Rhône River should be adapted according to local conditions, as well as expected benefits and needs, and conducted in co-ordination with all actors involved in and affected by the restoration.

Keywords

River restoration Risk analysis Infrastructure removal Interdisciplinary assessment 

Notes

Acknowledgements

The authors thank Agence de l’Eau Rhône-Méditerrannée & Corse and Compagnie Nationale du Rhône (CNR) for their financial support and collaboration. We also thank Groupe de Recherche Rhône Alpes sur les Infrastructures et l’Eau (GRAIE) and Zone Atelier Bassin du Rhône (ZABR), and in particular, Anne Clemens. Thanks to Antonin Vienney, Lucille Priour, Patrick Modrak, Oriane Villet and Cécile Claret for their support on field work and sample analysis.

Funding information

This work was funded by the Labex DRIIHM, French programme “Investissements d’Avenir” (ANR-11-LABX-0010) which is managed by the ANR, within the Observatoire Hommes-Milieux Vallée du Rhône (OHM VR).

References

  1. Amoros C, Bornette G (2002) Connectivity and biocomplexity in waterbodies of riverine floodplains. Freshw Biol 47:761–776.  https://doi.org/10.1046/j.1365-2427.2002.00905.x CrossRefGoogle Scholar
  2. Arnaud F, Piégay H, Béal D, Collery P, Rollet AJ (2017) Monitoring gravel augmentation in a large regulated river and implications for process-based restoration. Earth Surf Process Landf 42:2147–2166.  https://doi.org/10.1002/esp.4161 CrossRefGoogle Scholar
  3. Ashmore P (2015) Towards a sociogeomorphology of rivers. Geomorphology 251:149–156.  https://doi.org/10.1016/j.geomorph.2015.02.020 CrossRefGoogle Scholar
  4. Babut M, Lopes C, Pradelle S, Persat H, Badot PM (2012) BSAFs for freshwater fish and derivation of a sediment quality guideline for PCBs in the Rhone basin, France. J. Soil Sediments 12:241–251.  https://doi.org/10.1007/s11368-011-0448-y CrossRefGoogle Scholar
  5. Barthélémy C, Souchon Y (2009) La restauration écologique du Rhône sous le double regard du sociologue et de l’écologue. Natures Sci Sociétés 17:113–121.  https://doi.org/10.1051/nss/2009025 CrossRefGoogle Scholar
  6. Barthélémy C, Armani G (2015) A comparison of social processes at three sites of the French Rhone River subjected to ecological restoration. Freshw Biol 60:1208–1220.  https://doi.org/10.1111/fwb.12531 CrossRefGoogle Scholar
  7. Besacier-Monbertrand AL, Paillex A, Castella E (2014) Short-term impacts of lateral hydrological connectivity restoration on aquatic macroinvertebrates. Riv Res Appl 30:557–570.  https://doi.org/10.1002/rra.2597 CrossRefGoogle Scholar
  8. Blair P, Buytaert W (2016) Socio-hydrological modelling: a review asking “why, what and how?”. Hydrol Earth Syst Sci 20:443–478.  https://doi.org/10.5194/hess-20-443-2016 CrossRefGoogle Scholar
  9. Bolland JD, Nunn AD, Lucas MC, Cowx IG (2012) The importance of variable lateral connectivity between artificial floodplain waterbodies and river channels. Riv Res Appl 28:1189–1199.  https://doi.org/10.1002/rra.1498 CrossRefGoogle Scholar
  10. Bravard JP (2010) Discontinuities in braided patterns: the River Rhône from Geneva to the Camargue delta before river training. Geomophology 117:219–233.  https://doi.org/10.1016/j.geomorph.2009.01.020 CrossRefGoogle Scholar
  11. Citterio A, Piégay H (2009) Overbank sedimentation rates in former channel lakes: characterization and control factors. Sedimentology 56:461–482.  https://doi.org/10.1111/j.1365-3091.2008.00979.x CrossRefGoogle Scholar
  12. Clarke SJ (2015) Conserving freshwater biodiversity: the value, status and management of high quality ditch systems. J Nat Cons 24:93–100.  https://doi.org/10.1016/j.jnc.2014.10.003 CrossRefGoogle Scholar
  13. Comby E, Le Lay YF, Piegay H (2014) How chemical pollution becomes a social problem. Risk communication and assessment through regional newspapers during the management of PCB pollutions of the Rhone River (France). Sci The Total Environ 482:100–115.  https://doi.org/10.1016/j.scitotenv2014.02.137 CrossRefGoogle Scholar
  14. Connell JH (1978) Diversity in tropical rainforests and coral reefs. Science 199:1302–1310CrossRefGoogle Scholar
  15. Cottet M, Rivière-Honegger A, Piégay H (2010) Mieux comprendre la perception des paysages de bras morts en vue d’une restauration écologique : quels sont les liens entre les qualités esthétique et écologique perçues par les acteurs? Norois 216:85–103. http://norois.revues.org/3408
  16. Cottet M. (2013) Caractériser les valeurs environnementales au cours du temps : une étape indispensable à la gestion des patrimoines naturels : Le cas de la restauration des bras morts de l’Ain et du Rhône, VertigO - la revue électronique en sciences de l'environnement. http:// vertigo.revues.org/13558. Accessed 30 May 2013
  17. Depret T, Riquier J, Piégay H (2017) Evolution of abandoned channels : insights on controlling factors in a multi-pressure river systems. Geomorpholy 294:99–118.  https://doi.org/10.1016/j.geomorph.2017.01.036 CrossRefGoogle Scholar
  18. Die Moran A, El Kadi AK, Mosselman E, Habersack H, Lebert F, Aelbrecht D, Laperrousaz E (2013) Physical model experiments for sediment supply to the old Rhine through induced bank erosion. Internat J Sed Res 28:431–447.  https://doi.org/10.1016/S1001-6279(14)60003-2 CrossRefGoogle Scholar
  19. Dufour S, Piegay H (2009) From the myth of a lost paradise to targeted river restoration: forget natural references and focus on human benefits. Riv Res Appl 25:568–581.  https://doi.org/10.1002/rra.1239 CrossRefGoogle Scholar
  20. Eick D, Thiel R (2013) Key environmental variables affecting the ichthyofaunal composition of groyne fields in the middle Elbe River, Germany. Limnologica 43:297–307.  https://doi.org/10.1016/j.limno.2013.01.001 CrossRefGoogle Scholar
  21. Florsheim JL, Mount JF, Chin A (2008) Bank erosion as a desirable attribute of rivers. Bioscience 58:519–529.  https://doi.org/10.1641/b580608 CrossRefGoogle Scholar
  22. Franquet E, Cellot B, Pont D, Bournaud M (1995) Environmental and macroinvertebrate dynamics in the lower rhone river and a lateral dike field—a study matching 2 functioning descriptors. Hydrobiologia 308:207–217.  https://doi.org/10.1007/bf00006872 CrossRefGoogle Scholar
  23. Garnier A, Barillier A (2015) The Kembs project: environmental integration of a large existing hydropower scheme. La Houille Blanche 4:21–28.  https://doi.org/10.1051/lhb/20150041 CrossRefGoogle Scholar
  24. Habersack H, Piégay H (2007) 27 River restoration in the Alps and their surroundings: past experience and future challenges. In: Rinaldi M, Habersack H, Piégay H (ed) Gravel Bed Rivers VI: From Process Understanding to the Restoration of Mountain Rivers 11: 703–735Google Scholar
  25. Hobbs RJ, Arico S, Aronson J, Baron JS, Bridgewater P, Cramer VA, Epstein PR, Ewel JJ, Klink CA, Lugo AE, Norton D, Ojima D, Richardson DM, Sanderson EW, Valladares F, Vila M, Zamora R, Zobel M (2006) Novel ecosystems: theoretical and management aspects of the new ecological world order. Glob Ecol Biogeogr 15:1–7.  https://doi.org/10.1111/j.1466-822x.2006.00212.x CrossRefGoogle Scholar
  26. Hohensinner S, Habersack H, Jungwirth M, Zauner G (2004) Reconstruction of the characteristics of a natural alluvial river-floodplain system and hydromorphological changes following human modifications: the Danube River (1812-1991). Riv Res Appl 20:25–41CrossRefGoogle Scholar
  27. Kloesch M, Liedermann M, Habersack H (2011) Riverbank erosion processes within a major bank restoration project. In: Habersack H, Schober B, Walling D (ed) International conference on the status and future of the world’s large rivers, april 11–14, 2011, Vienna, Austria, Abstract Book, 287Google Scholar
  28. Lamouroux N, Gore JA, Lepori F, Statzner B (2015) The ecological restoration of large rivers needs science-based, predictive tools meeting public expectations: an overview of the Rhone project. Freshw Biol 60:1069–1084.  https://doi.org/10.1111/fwb.12553 CrossRefGoogle Scholar
  29. Lamouroux N, Olivier JM (2015) Testing predictions of changes in fish abundance and community structure after flow restoration in four reaches of a large river (French Rhône). Freshw Biol 60:1118–1130.  https://doi.org/10.1111/fwb.12324 CrossRefGoogle Scholar
  30. Mika S, Hoyle J, Kyle G, Howell T, Wolfenden B, Ryder D, Keating D, Boulton A, Brierley G, Brooks AP, Fryirs K, Leishman M, Sanders M, Arthington A, Creese R, Dahm M, Miller C, Pusey B, Spink A (2010) Inside the “Black Box” of river restoration: using catchment history to identify disturbance and response mechanisms to set targets for process-based restoration. Ecol Soc 15(4):8CrossRefGoogle Scholar
  31. Morse NB, Pellissier PA, Cianciola EN, Brereton RL, Sullivan MM, Shonka NK, Wheeler TB, McDowell WH (2014) Novel ecosystems in the Anthropocene: a revision of the novel ecosystem concept for pragmatic applications. Ecol Soc 19:12.  https://doi.org/10.5751/es-06192-190212 CrossRefGoogle Scholar
  32. Mourier B, Desmet M, Van Metre PC, Mahler BJ, Perrodin Y, Roux G, Bedell JP, Lefèvre I, Babut M (2014) Historical records, sources, and spatial trends of PCBs along the Rhône River (France) Sci Total Environ 476–477:568–576. doi. https://doi.org/10.1016/j.scitotenv.2014.01.026
  33. Nicolas Y, Pont D (1997) Hydrosedimentary classification of natural and engineered backwaters of a large river, the lower Rhône: possible applications for the maintenance of high fish biodiversity. River Res Appl 13:417–431.  https://doi.org/10.1002/(SICI)1099-1646(199709/10)13:5<417::AID-RRR466>3.0.CO;2-E CrossRefGoogle Scholar
  34. Olivier JM, Dole-Olivier MJ, Amoros C, Carrel G, Malard F, Lamouroux N, Bravard JP (2009) Introduction to European rivers. In: Tockner K, Robinson CT, Uehlinger A (ed) Rivers of Europe, 1st edn, Academic Press, London, pp 1–22Google Scholar
  35. Opperman JJ, Galloway GE, Fargione J, Mount JF, Richter BD, Secchi S (2009) Sustainable floodplains through large-scale reconnection to rivers. Science 326:1487–1488.  https://doi.org/10.1126/science.1178256 CrossRefGoogle Scholar
  36. Paillex A, Doledec S, Castella E, Merigoux S (2009) Large river floodplain restoration: predicting species richness and trait responses to the restoration of hydrological connectivity. J Appl Ecol 46:250–258.  https://doi.org/10.1111/j.1365-2664.2008.01593.x CrossRefGoogle Scholar
  37. Paillex A, Dolédec S, Castella E, Mérigoux S, Aldridge DC (2013) Functional diversity in a large river floodplain: anticipating the response of native and alien macroinvertebrates to the restoration of hydrological connectivity. J Appl Ecol 50:97–106.  https://doi.org/10.1111/1365-2664.12018 CrossRefGoogle Scholar
  38. Piégay H, Hupp CR, Citterio A, Dufour S, Moulin B, Walling DE (2008) Spatial and temporal variability in sedimentation rates associated with cutoff channel infill deposits: Ain River, France. Water Resour Res 44:5.  https://doi.org/10.1029/2006WR005260 CrossRefGoogle Scholar
  39. Pont D, Piegay H, Farinetti A, Allain S, Landon N, Liebault F, Dumont B, Richard-Mazet A (2009) Conceptual framework and interdisciplinary approach for the sustainable management of gravel-bed rivers: the case of the Drôme River basin (SE France). Aq Sci 71:356–370.  https://doi.org/10.1007/s00027-009-9201-7 CrossRefGoogle Scholar
  40. Reckendorfer W, Baranyi C, Funk A, Schiemer F (2006) Floodplain restoration by reinforcing hydrological connectivity: expected effects on aquatic mollusc communities. J Appl Ecol 43:474–484.  https://doi.org/10.1111/j.1365-2664.2006.01155.x CrossRefGoogle Scholar
  41. Riquier J, Piégay H, Šulc Michalková M (2015) Hydromorphological conditions in eighteen restored floodplain channels of a large river : linking patterns to processes. Freshw Biol 60:1085–1103.  https://doi.org/10.1111/fwb.12411 CrossRefGoogle Scholar
  42. Rohde S, Schütz M, Kienast F, Englmaier P (2005) River widening: an approach to restoring riparian habitats and plant species. River Res Appl 21:1075–1094.  https://doi.org/10.1002/rra.870 CrossRefGoogle Scholar
  43. Stella JC, Hayden MK, Battles JJ, Piégay H, Dufour S, Fremier AK (2011) The role of abandoned channels as refugia for sustaining pioneer riparian forest ecosystems. Ecosystems 14:776–790.  https://doi.org/10.1007/s10021-011-9446-6 CrossRefGoogle Scholar
  44. Stella JC, Piégay H, Riddle JD, Gruel C, Räpple B (2015) Riparian forest impacts and dynamics on large rivers managed for multiple uses; insights from the Sacramento (California, USA) and Rhône (France). Proceedings of the Second Integrative Sciences and Sustainable Development of Rivers (IS Rivers) Conference, Lyon, France, 22–26 June 2015.Google Scholar
  45. Tockner K, Schiemer F, Ward JW (1998) Conservation by restoration: the management concept for a river-floodplain system on the Danube River in Austria. Aquatic Conserv: Mar Freshw Ecosyst 8:71–86CrossRefGoogle Scholar
  46. Van de Wolfshaar KE, Middelkoop H, Addink E, Winter HV, Nagelkerke LAJ (2011) Linking flow regime, floodplain lake connectivity and fish catch in a large river-floodplain system, the Volga-Akhtuba floodplain (Russian Federation). Ecosystems 14:920–934.  https://doi.org/10.1007/s10021-011-9457-3 CrossRefGoogle Scholar
  47. Ward JV, Stanford JA (1995) Ecological connectivity in alluvial river ecosystems and its disruption by flow regulation. Reg River 11:105–119.  https://doi.org/10.1002/rrr.3450110109 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Maxine Thorel
    • 1
  • Herve Piégay
    • 2
  • Carole Barthelemy
    • 3
  • Bianca Räpple
    • 2
  • Charles-Robin Gruel
    • 2
  • Pierre Marmonier
    • 4
  • Thierry Winiarski
    • 5
  • Jean-Philippe Bedell
    • 5
  • Fanny Arnaud
    • 2
  • Gwenaelle Roux
    • 6
  • Jonh C Stella
    • 7
  • Gabrielle Seignemartin
    • 2
  • Alvaro Tena-Pagan
    • 2
  • Vincent Wawrzyniak
    • 2
    • 8
  • Dad Roux-Michollet
    • 9
  • Benjamin Oursel
    • 10
  • Stéphanie Fayolle
    • 10
  • Céline Bertrand
    • 10
  • Evelyne Franquet
    • 1
  1. 1.Mediterranean Institute for Biodiversity and Ecology (IMBE)Aix Marseille Univ, CNRS, IRD, Avignon UnivMarseille Cedex 20France
  2. 2.UMR 5600 CNRS EVSUniv. of Lyon, ENS of LyonLyonFrance
  3. 3.IRD, LPEDAix Marseille UnivMarseilleFrance
  4. 4.UMR-CNRS 5023 Laboratoire d’Ecologie des Hydrosystèmes Naturels et Anthropisés (LEHNA)University Claude Bernard Lyon 1Villeurbanne, CedexFrance
  5. 5.UMR 5023 LEHNA, ENTPEUniv. of LyonVaulx-en-VelinFrance
  6. 6.éGéos SASULyonFrance
  7. 7.State University of New York College of Environmental Science and Forestry (SUNY-ESF)SyracuseUSA
  8. 8.ThéMA, CNRSUniversité Bourgogne Franche-ComtéBesançon CedexFrance
  9. 9.GRAIE, Campus LyonTech la DouaVilleurbanne CedexFrance
  10. 10.CNRS, IRD, IMBEAix Marseille Univ, Univ AvignonMarseilleFrance

Personalised recommendations