Regional Environmental Change

, Volume 18, Issue 7, pp 1957–1967 | Cite as

Economic water management decisions: trade-offs between conflicting objectives in the sub-middle region of the São Francisco watershed

  • Gerald Norbert Souza da Silva
  • Márcia Maria Guedes Alcoforado de Moraes
Original Article


Hydro-economic models can measure the economic effects of different reservoir operating rules, environmental restrictions, maintenance of ecosystems, technical constraints, institutional constraints, land use change, and climate change. To determine the optimal economic water allocation, for its main uses in the sub-middle of the São Francisco River Basin, a hydro-economic optimization model was developed and applied. Demand curves were used rather than fixed requirements for water resources. The results show that operation rules of reservoirs and institutional constraints, such as priorities for human consumption, have high impacts on costs and benefits of the principal economic uses in the study area. Especially, costs of environmental demands, like minimum ecological river flow, have high impacts on the water resource management. Scarcity costs of irrigation users associated with maintaining ecosystems and environmental constraints are particularly significant. The results from this study provide a better understanding of the water trade-offs for future policymaking and efficient water management. Policymaking for the water resources should consider the food-water-energy-environment nexus at a regional scale to minimize environmental and economic cost under water scarcity and land use change.


Hydro-economic model Water allocation Land use change Water resource management 



The authors would like to thank the INNOVATE project team and the Federal University of Pernambuco (UFPE) for the provided framework and contributions.

Funding information

Financial support for this research has been provided by CNPq (PhD scholarship and CTHidro project 35/2013). The authors are participants of the INNOVATE project, which was funded by BMBF in Germany and CNPq/CAPES in Brazil.

Supplementary material

10113_2018_1319_MOESM1_ESM.pdf (753 kb)
ESM 1 (PDF 753 kb)


  1. Alcoforado de Moraes MMG, Biewald A, Carneiro ACG, Souza da Silva GN, Popp A, Lotze-Campen H (2018) The impact of global changes on economic values of water for Public Irrigation Schemes at the São Francisco river basin in Brazil. Reg Environ Chang.
  2. Alcoforado de Moraes MMG, Cai X, Ringler C, Albuquerque BE, Vieira da Rocha SP, Amorim CA (2010) Joint water quantity-quality management in a biofuel production area—integrated economic-hydrologic modeling analysis. J Water Resour Plan Manag 136(4):502–511. CrossRefGoogle Scholar
  3. Alcoforado de Moraes MMG, Cirilo JA, Sampaio Y (2006) Integração dos Componentes Econômico e Hidrológico na Modelagem de Alocação Ótima de Água para Apoio a Gestão de Recursos: Uma Aplicação na bacia do Pirapama Revista Economia, vol 7, n° 2Google Scholar
  4. ANA (2011) Resolução 461. BrasiliaGoogle Scholar
  5. Arnold JG, Allen PM, Bernhardt G (1993) A comprehensive surface groundwater flow model. J Hydrol 142:47–69. CrossRefGoogle Scholar
  6. Biewald A, Lotze-Campen H, Schmitz C, Kölling K, Beck F The impact of future climate and socioeconomic changes on landuse in the catchment area of the Rio São Francisco. In: Proceedings INNOVATE Status Conference, Recife, 2014Google Scholar
  7. Booker JF, Michelsen AM, Howitt RE, Young RA (2012) Economics and the modeling of water resources and policies. Nat Resour Model J 25:168–218. CrossRefGoogle Scholar
  8. Brasil (1997) Lei N° 9.433, de 8 de Janeiro de 1997.Institui a Política Nacional de Recursos Hídricos, cria o Sistema Nacional de Gerenciamento de Recursos HídricosGoogle Scholar
  9. Brasil (2006) Decreto N° 5.995. BrasiliaGoogle Scholar
  10. Brasil (2013) Lei Federal N° 12.783, de 11 de janeiro de 2013. BrasiliaGoogle Scholar
  11. Brasil (2015) Lei federal N° 13.182, de 3 de novembro de 2015. BrasiliaGoogle Scholar
  12. Castro CNd(2011) Transposição do rio São Francisco: Análise de oportunidade do projeto. Rio de JaneiroGoogle Scholar
  13. CBHSF (2004) Plano Decenal de Recursos Hídricos da Bacia Hidrográfica do Rio São Francisco. CBHSF, São JoséGoogle Scholar
  14. EMPRAPA (2008) Solos do submédio do vale do São Francisco. Embrapa Semi-árido, Petrolina - PEGoogle Scholar
  15. Ferreira TVB (2014) Hidrogramas ambientais para o Baixo Rio São Francisco: avaliação de impactos sobre a geração hidrelétrica. Dissertation, UFRJ/COPPEGoogle Scholar
  16. Griffin RC (2006) Water resource economics: the analysis of scarcity, policies, and projects. MIT Press, CambridgeGoogle Scholar
  17. Harou JJ, Pulido-Velazquez M, Rosenberg DE, Medellín-Azuara J, Lund JR, Howitt RE (2009) Hydro-economic models: concepts, design, applications, and future prospects. J Hydrol 375:627–643. CrossRefGoogle Scholar
  18. Kahil MT, Dinar A, Albiac J (2016) Cooperative water management and ecosystem protection under scarcity and drought in arid and semiarid regions. Water Resour Econ 13:60–74. CrossRefGoogle Scholar
  19. Koch H, Liersch S, Azevedo JRGd, Silva ALC, Hattermann FF (2015a) Modelagem da disponibilidade e do manejo da água na bacia hidrográfica do rio São Francisco. Paper presented at the XXI SIMPOSIO BRASILIERO DE RECURSOS HIDRICOS, Brasília/Brazil,Google Scholar
  20. Koch H, Liersch S, Hattermann FF (2013) Integrating water resources management in eco-hydrological modelling. Water Sci Technol 67:1525–1533. CrossRefGoogle Scholar
  21. Koch H, Selge F, Azevedo JRGd, Silva GSd, Siegmund-Schultze M, Hattermann FF (2015b) Incluindo aspectos ecológicos na gestão de reservatórios: opções de gestão no Sub-médio e Baixo do rio São Francisco. Paper presented at the XXI SIMPOSIO BRASILIERO DE RECURSOS HIDRICOS, Brasília/Brazil,Google Scholar
  22. Krysanova V, Meiner A, Roosaare J, Vasilyev A (1989) Simulation modelling of the coastal waters pollution from agricultural watershed. Ecol Model 49:7–29. CrossRefGoogle Scholar
  23. Krysanova V, Müller-Wohlfeil DI, Becker A (1998) Development and test of a spatially distributed hydrological/water quality model for mesoscale watersheds. Ecol Model 106:261–289. CrossRefGoogle Scholar
  24. Krysanova V, Wechsung F, Arnold J, Srinivasan R, Williams J (2000) SWIM (soil and water integrated model) user manual. Potsdam Institute for Climate Impact Research, PotsdamGoogle Scholar
  25. Lipsey RG (1988) First principles of economics. Colin Harbury, OxfordGoogle Scholar
  26. Liu X, Chen X, Wang S (2008) Evaluating and predicting shadow prices of water resources in China and its nine major river basins. Water Resour Manag 23:1467–1478. CrossRefGoogle Scholar
  27. Lotze-Campen H, Muller C, Bondeau A, Rost S, Popp A, Lucht W (2008) Global food demand, productivity growth, and the scarcity of land and water resources: a spatially explicit mathematical programming approach. Agric Econ:325–338.
  28. Macian-Sorribes H, Pulido-Velazquez M, Tilmant A (2015) Definition of efficient scarcity-based water pricing policies through stochastic programming. Hydrol Earth Syst Sci 19:3925–3935. CrossRefGoogle Scholar
  29. Madec G, Imbard M (1996) A global ocean mesh to overcome the north pole singularity. Clim Dyn 12:381–388. CrossRefGoogle Scholar
  30. Maneta M, Torres MdO, Wallender W, Howitt R, Vosti S, Rodrigues L, Bassoi (2009) A spatially distributed hydro-economic model to assess the effects of drought on land use, farm profits, and agricultural employment. Water Resour Res, 45 doi:, 45
  31. Mayer A, Muñoz-Hernandez A (2009) Integrated water resources optimization models: an assessment of a multidisciplinary tool for sustainable water resources management strategies. Geography Compass 3:1176–1195. CrossRefGoogle Scholar
  32. Medeiros YDP, Freitas IMP, Stifelman GM, Freire RR, O’Keeffe J (2013) Social participation in the environmental flow assessment: the São Francisco River case study. Revista Eletrônica de Gestão e Tecnologias Ambientais:1Google Scholar
  33. Medellín-Azuara J, Harou J, Howitt RE (2010) Estimating economic value of agricultural water under changing conditions and the effects of spatial aggregation. Sci Total Environ 408:5639–5648. CrossRefGoogle Scholar
  34. MIN (2005) Plano Estratégico de Desenvolvimento Sustentável do Semi-Árido. MINISTÉRIO DA INTEGRAÇÃO NACIONAL, BrasiliaGoogle Scholar
  35. Min F, Hideaki S, Li C (2017) Environmental and economic risks assessment under climate changes for three land uses scenarios analysis across Teshio watershed, northernmost of Japan. Sci Total Environ 599–600:451–463. CrossRefGoogle Scholar
  36. Nakicenovic N, Swart R (2000) Special Report on Emissions Scenarios (SRES). Cambridge University Press, CambridgeGoogle Scholar
  37. ONS (2014) HydroData. BrasíliaGoogle Scholar
  38. Rosenthal RE (2012) GAMS user’s guide. GAMS Development Corporation, Washington, DCGoogle Scholar
  39. Siegmund-Schultze M (ed) (2017) Guidance manual—a compilation of actor-relevant content extracted from scientific results of the INNOVATE project. Universitätsverlag der TU Berlin, BerlinGoogle Scholar
  40. Souza da Silva GN, Alcoforado de Moraes M (2015) Curvas de demanda da irrigação difusa e abastecimento humano e a identificação da alocação econômica ótima no Sub-médio do rio São Francisco. ABRH, BrasiliaGoogle Scholar
  41. Souza da Silva GN, Figueiredo LE, Alcoforado de Moraes MMG (2015) Demand curves for water resources of the main water users in sub-middle São Francisco basin. Revista Brasileira de Ciências Ambientais:45–59.
  42. Torres MO, Maneta M, Howitt R, Vosti SA, Wallender WW, Bassoi LH, Rodrigues LN (2012) Economic impacts of regional water scarcity in the São Francisco River Basin, Brazil: an application of a linked hydro-economic model. Environ Dev Econ 17:227–248. CrossRefGoogle Scholar
  43. Varian HR (2006) Microeconomia: conceitos basicos. Elsevier, Rio de JaneiroGoogle Scholar
  44. Zeng XT, Fan YR, Huang GH, Chen HL, Li YP, Kong XM (2016) A simulation-based water-environment management model for regional sustainability in compound wetland ecosystem under multiple uncertainties. Ecol Model 334:60–77. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Civil Engineering DepartmentFederal University of PernambucoRecifeBrazil
  2. 2.João PessoaBrazil
  3. 3.Economics DepartmentFederal University of PernambucoRecifeBrazil

Personalised recommendations