Regional Environmental Change

, Volume 18, Issue 5, pp 1555–1567 | Cite as

Future forest landscapes of the Carpathians: vegetation and carbon dynamics under climate change

  • Ivan KruhlovEmail author
  • Dominik Thom
  • Oleh Chaskovskyy
  • William S. Keeton
  • Robert M. Scheller
Original Article


Climate change will alter forest ecosystems and their provisioning of services. Forests in the Carpathian Mountains store high amounts of carbon and provide livelihoods to local people; however, no study has yet assessed their future long-term dynamics under climate change. Therefore, we selected a representative area of 1340 km2 to investigate the effects of changing climate and disturbance regimes on (i) the spatial dynamics of the dominant tree species and forest types and (ii) the trajectories of the associated aboveground live carbon (ALC). We simulated 500 years of change under four Representative Concentration Pathway (RCP) scenarios, incorporating wind and bark beetle disturbances using the LANDIS-II forest change model. Our simulations revealed a lagged adaptation of the forest landscape to climate change. While Picea abies dominance declined in all scenarios, Carpinus betulus expanded at low elevations and Acer pseudoplatanus at mid-elevations. We also found a slow but continuous expansion of Quercus petraea and Q. robur at low elevations and of Fagus sylvatica at mid and high elevations. This change in species composition was accompanied by a significant reduction of ALC: on average over the simulation period, unmitigated climate change reduced ALC between − 2.1% (RCP2.6) and − 14.0% (RCP8.5), while disturbances caused an additional reduction of ALC between − 4.5% (RCP2.6) and − 6.6% (RCP8.5). Therefore, foresighted management strategies are needed to facilitate vegetation adaptation to climate change, with the goal of stabilizing carbon storage and maintaining economic value of future Carpathian forests.


Carpathian Mountains Forest landscape Climate change Forest disturbance Aboveground carbon LANDIS-II landscape change model Adaptation 



This paper is part of a larger project initiated by Garry Sotnik to introduce LANDIS-II to the Ukrainian Carpathians for the study of human adaptation to climate change. We are grateful to Garry Sotnik for organizing the team and raising funding for the Ukrainian team members. We would also like to thank two anonymous reviewers for very helpful remarks, which led to the significant improvement of this paper.

Supplementary material

10113_2018_1296_MOESM1_ESM.pdf (1.3 mb)
ESM 1 (PDF 1371 kb)


  1. Alder JR, Hostetler SW (2013) CMIP5 global climate change viewer. US Geological Survey. Accessed 8 July 2016
  2. Altenkirch W, Majunke C, Ohnesorge B (2002) Waldschutz auf ökologischer Grundlage. Ulmer, StuttgartGoogle Scholar
  3. Bastian O, Steinhardt U (2002) Development and perspectives of landscape ecology. Springer, Dordrecht. CrossRefGoogle Scholar
  4. Boden S, Kahle H-P, von Wilpert K, Spiecker H (2014) Resilience of Norway spruce (Picea abies (L.) Karst) growth to changing climatic conditions in Southwest Germany. Forest Ecol Manag 315:12–21. CrossRefGoogle Scholar
  5. Bonan GB (2008) Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320(5882):1444–1449. CrossRefGoogle Scholar
  6. Dale VH, Joyce LA, McNnulty S, Neilson RP, Ayres MP, Flannigan MD, Hanson PJ, Irland LC, Lugo AE, Peterson CJ, Simberloff D, Swanson FJ, Stocks BJ, Wotton MB (2001) Climate change and forest disturbances: climate change can affect forests by altering the frequency, intensity, duration, and timing of fire, drought, introduced species, insect and pathogen outbreaks, hurricanes, windstorms, ice storms, or landslides. Bioscience 51(9):723–734.[0723:CCAFD]2.0.CO;2Google Scholar
  7. Didion M, Kupferschmid AD, Lexer MJ, Rammer W, Seidl R, Bugmann H (2009) Potentials and limitations of using large-scale forest inventory data for evaluating forest succession models. Ecol Model 220(2):133–147. CrossRefGoogle Scholar
  8. Erb K-H (2004) Land use related changes in aboveground carbon stocks of Austria’s terrestrial ecosystems. Ecosystems 7(5):563–572. CrossRefGoogle Scholar
  9. Ge Z-M, Kellomäki S, Peltola H, Zhou X, Väisänen H, Strandman H (2013) Impacts of climate change on primary production and carbon sequestration of boreal Norway spruce forests: Finland as a model. Clim Chang 118(2):259–273. CrossRefGoogle Scholar
  10. Gratzer G, Keeton WS (2017) Mountain forests and sustainable development: the potential for achieving the United Nations’ 2030 Agenda. Mt Res Dev 37(3):246–253. CrossRefGoogle Scholar
  11. Griffiths P, Kuemmerle T, Baumann M, Radeloff VC, Abrudan IV, Lieskovsky J, Munteanu C, Ostapowicz K, Hostert P (2014) Forest disturbances, forest recovery, and changes in forest types across the Carpathian ecoregion from 1985 to 2010 based on Landsat image composites. Remote Sens Environ 151:72–88. CrossRefGoogle Scholar
  12. Hanewinkel M, Cullmann DA, Schelhaas M-J, Nabuurs G-J, Zimmermann NE (2013) Climate change may cause severe loss in the economic value of European forest land. Nature Clim Change 3(3):203–207. CrossRefGoogle Scholar
  13. Hickler T, Vohland K, Feehan J, Miller PA, Smith B, Costa L, Giesecke T, Fronzek S, Carter TR, Cramer W, Kühn I, Sykes MT (2012) Projecting the future distribution of European potential natural vegetation zones with a generalized, tree species-based dynamic vegetation model. Glob Ecol Biogeogr 21(1):50–63. CrossRefGoogle Scholar
  14. Hlásny T, Barcza Z, Barka I, Merganičová K, Sedmák R, Kern A, Pajtík J, Balázs B, Fabrika M, Churkina G (2014) Future carbon cycle in mountain spruce forests of Central Europe: modelling framework and ecological inferences. Forest Ecol Manag 328:55–68. CrossRefGoogle Scholar
  15. Hlásny T, Barka I, Kulla L, Bucha T, Sedmák R, Trombik J (2017) Sustainable forest management in a mountain region in the Central Western Carpathians, northeastern Slovakia: the role of climate change. Reg Environ Chang 17(1):65–77. CrossRefGoogle Scholar
  16. Hlásny T, Trombik J, Dobor L, Barcza Z, Barka I (2016) Future climate of the Carpathians: climate change hot-spots and implications for ecosystems. Reg Environ Chang 16(5):1495–1506. CrossRefGoogle Scholar
  17. Hobi ML, Commarmot B, Bugmann H (2015) Pattern and process in the largest primeval beech forest of Europe (Ukrainian Carpathians). J Veg Sci 26(2):323–336. CrossRefGoogle Scholar
  18. Jarvis A, Reuter HI, Nelson A, Guevara E (2008) Hole-filled SRTM for the globe Version 4, available from the CGIAR-CSI SRTM 90m Database. Accessed 12 September 2009
  19. Kautz M, Dworschak K, Gruppe A, Schopf R (2011) Quantifying spatio-temporal dispersion of bark beetle infestations in epidemic and non-epidemic conditions. Forest Ecol Manag 262(4):598–608. CrossRefGoogle Scholar
  20. Kautz M, Meddens AJH, Hall RJ, Arneth A (2017) Biotic disturbances in Northern Hemisphere forests—a synthesis of recent data, uncertainties and implications for forest monitoring and modelling. Glob Ecol Biogeogr 26(5):533–552. CrossRefGoogle Scholar
  21. Keeling HC, Phillips OL (2007) The global relationship between forest productivity and biomass. Glob Ecol Biogeogr 16(5):618–631. CrossRefGoogle Scholar
  22. Keeton WS, Franklin JF, Mote PW (2007) Climate variability, climate change, and western wildfire with implications for the suburban-wildland interface. In: Troy A, Kennedy R (eds) Living on the edge: economic, institutional and management perspectives on wildfire hazard in the urban interface. Elsevier, New York, pp 223–255. CrossRefGoogle Scholar
  23. Keeton WS, Chernyavskyy M, Gratzer G, Main-Knorn M, Shpylchak M, Bihun Y (2010) Structural characteristics and aboveground biomass of old-growth spruce–fir stands in the eastern Carpathian mountains, Ukraine. Plant Biosyst 144(1):148–159. CrossRefGoogle Scholar
  24. Keeton WS, Angelstam PK, Bihun Y, Chernyavdkyy M, Crow SM, Deyneka A, Elbakidze M, Farley J, Kovalyshyn V, Kruhlov I, Mahura B, Myklush S, Nunery JS, Soloviy I, Zahvoyska L (2013) Sustainable forest management alternatives for the Carpathian Mountains with a focus on Ukraine. In: Kozak J, Ostapowicz K, Bytnerowicz A, Wyżga B (eds) The Carpathians: integrating nature and society towards sustainability. Springer, Berlin/Heidelberg, pp 331–352. CrossRefGoogle Scholar
  25. Kerr G, Stokes V, Peace A, Jinks R (2015) Effects of provenance on the survival, growth and stem form of European silver fir (Abies alba Mill.) in Britain. Eur J For Res 134(2):349–363. CrossRefGoogle Scholar
  26. Landsberg JJ, Waring RH (1997) A generalised model of forest productivity using simplified concepts of radiation-use efficiency, carbon balance and partitioning. Forest Ecol Manag 95(3):209–228. CrossRefGoogle Scholar
  27. Liu Z, Wimberly MC (2016) Direct and indirect effects of climate change on projected future fire regimes in the western United States. Sci Total Environ 542(Pt A):65–75. CrossRefGoogle Scholar
  28. Loudermilk EL, Scheller RM, Weisberg PJ, Yang J, Dilts TE, Karam SL, Skinner C (2013) Carbon dynamics in the future forest: the importance of long-term successional legacy and climate–fire interactions. Glob Change Biol 19:3502–3515. CrossRefGoogle Scholar
  29. Maroschek M, Rammer W, Lexer MJ (2015) Using a novel assessment framework to evaluate protective functions and timber production in Austrian mountain forests under climate change. Reg Environ Chang 15(8):1543–1555. CrossRefGoogle Scholar
  30. Mikoláš M, Tejkal M, Kuemmerle T, Griffiths P, Svoboda M, Hlásny T, Leitão PJ, Morrissey RC (2017) Forest management impacts on capercaillie (Tetrao urogallus) habitat distribution and connectivity in the Carpathians. Landsc Ecol 32(1):163–179. CrossRefGoogle Scholar
  31. Mezei P, Grodzki W, Blaženec M, Jakuš R (2014) Factors influencing the wind–bark beetles’ disturbance system in the course of an Ips typographus outbreak in the Tatra Mountains. Forest Ecol Manag 312:67–77. CrossRefGoogle Scholar
  32. Moss R, Edmonds J, Hibbard K, Manning M, Rose S, Vuuren van D, Carter T, Emori S, Kainuma M, Kram T, Meehl G, Mitchell J, Nakicenovic N, Riahi K, Smith S, Stouffer R, Thomson A, Weyant J, Wilbanks T (2010) The next generation of scenarios for climate change research and assessment. Nature 463(7282):747–756. CrossRefGoogle Scholar
  33. Meier ES, Lischke H, Schmatz DR, Zimmermann NE (2012) Climate, competition and connectivity affect future migration and ranges of European trees. Glob Ecol Biogeogr 21(2):164–178. CrossRefGoogle Scholar
  34. Mladenoff DJ, He HS (1999) Design, behavior and applications of LANDIS, an object-oriented model of forest landscape disturbance and succession. In: Mladenoff DJ, Baker WL (eds) Spatial modeling of forest landscape change: approaches and applications. Cambridge University Press, Cambridge, pp 125–162Google Scholar
  35. Mráz P, Ronikier M (2016) Biogeography of the Carpathians: evolutionary and spatial facets of biodiversity. Biol J Linn Soc 119(3):528–559. CrossRefGoogle Scholar
  36. Naudts K, Chen Y, MJ MG, Ryder J, Valade A, Otto J, Luyssaert S (2016) Europe’s forest management did not mitigate climate warming. Science 351(6273):597–600. CrossRefGoogle Scholar
  37. Netherer S, Matthews B, Katzensteiner K, Blackwell E, Henschke P, Hietz P, Pennerstorfer J, Rosner S, Kikuta S, Schume H, Schopf A (2015) Do water-limiting conditions predispose Norway spruce to bark beetle attack? New Phytol 205(3):1128–1141. CrossRefGoogle Scholar
  38. Neumann M, Moreno A, Mues V, Härkönen S, Mura M, Bouriaud O, Lang M, Achten WMJ, Thivolle-Cazat A, Bronisz K, Merganič J, Decuyper M, Alberdi I, Astrup R, Mohren F, Hasenauer H (2016) Comparison of carbon estimation methods for European forests. Forest Ecol Manag 361:397–420. CrossRefGoogle Scholar
  39. Niinemets Ü, Valladares F (2006) Tolerance to shade, drought, and waterlogging of temperate Northern Hemisphere trees and shrubs. Ecol Monogr 76(4):521–547.[0521:TTSDAW]2.0.CO;2Google Scholar
  40. Pasztor F, Matulla C, Rammer W, Lexer MJ (2014) Drivers of the bark beetle disturbance regime in Alpine forests in Austria. Forest Ecol Manag 318:349–358. CrossRefGoogle Scholar
  41. Peichl M, Arain MA (2006) Above- and belowground ecosystem biomass and carbon pools in an age-sequence of temperate pine plantation forests. Agric For Meteorol 140(1-4):51–63. CrossRefGoogle Scholar
  42. Petritan AM, Nuske RS, Petritan IC, Tudose NC (2013) Gap disturbance patterns in an old-growth sessile oak (Quercus petraea L.)–European beech (Fagus sylvatica L.) forest remnant in the Carpathian Mountains, Romania. Forest Ecol Manag 308:67–75. CrossRefGoogle Scholar
  43. Prots B, Kagalo O (eds) (2012) Kataloh typiv oselyshch Ukrainskykh Karpat ta Zakarpatskoyi nyzovyny. Merkator, Lviv (In Ukrainian)Google Scholar
  44. R Development Core Team (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. Accessed 7 November 2017
  45. Scheller RM, Mladenoff DJ (2004) A forest growth and biomass module for a landscape simulation model, LANDIS: design, validation, and application. Ecol Model 180(1):211–229. CrossRefGoogle Scholar
  46. Scheller RM, Mladenoff DJ (2008) Simulated effects of climate change, fragmentation, and inter-specific competition on tree species migration in northern Wisconsin, USA. Clim Res 36:191–202. CrossRefGoogle Scholar
  47. Scheller RM, Domingo JB, Sturtevant BR, Williams JS, Rudy A, Gustafson EJ, Mladenoff DJ (2007) Design, development, and application of LANDIS-II, a spatial landscape simulation model with flexible temporal and spatial resolution. Ecol Model 201(3-4):409–419. CrossRefGoogle Scholar
  48. Schütt P, Schuck J, Stimm B (2007) Lexikon der Baum- und Straucharten. Nikol, HamburgGoogle Scholar
  49. Schwaab J, Bavay M, Davin E, Hagedorn F, Hüsler F, Lehning M, Schneebeli M, Thürig E, Bebi P (2015) Carbon storage versus albedo change: radiative forcing of forest expansion in temperate mountainous regions of Switzerland. Biogeosciences 12(2):467–487. CrossRefGoogle Scholar
  50. Shvidenko A, Buksha I, Krakovska S, Lakyda P (2017) Vulnerability of Ukrainian forests to climate change. Sustainability 9(7):1152. CrossRefGoogle Scholar
  51. Seidl R, Schelhaas M-J, Lexer MJ (2011) Unraveling the drivers of intensifying forest disturbance regimes in Europe. Glob Change Biology 17(9):2842–2852. CrossRefGoogle Scholar
  52. Seidl R, Schelhaas M-J, Rammer W, Verkerk PJ (2014) Increasing forest disturbances in Europe and their impact on carbon storage. Nat Clim Chang 4(9):806–810. CrossRefGoogle Scholar
  53. Seidl R, Rammer W (2017) Climate change amplifies the interactions between wind and bark beetle disturbances in forest landscapes. Landsc Ecol 32(7):1485–1498. CrossRefGoogle Scholar
  54. Sturtevant BR, Gustafson EJ, Li W, He HS (2004) Modeling biological disturbances in LANDIS: a module description and demonstration using spruce budworm. Ecol Model 180(1):153–174. CrossRefGoogle Scholar
  55. Svoboda M, Janda P, Bače R, Fraver S, Nagel TA, Rejzek J, Mikoláš M, Douda J, Boublík K, Šamonil P, Čada V, Trotsiuk V, Teodosiu M, Bouriaud O, Biriş AI, Sýkora O, Uzel P, Zelenka J, Sedlák V, Lehejček J (2014) Landscape-level variability in historical disturbance in primary Picea abies mountain forests of the Eastern Carpathians, Romania. J Veg Sci 25(2):386–401. CrossRefGoogle Scholar
  56. Thom D, Seidl R, Steyrer G, Krehan H, Formayer H (2013) Slow and fast drivers of the natural disturbance regime in Central European forest ecosystems. Forest Ecol Manag 307:293–302. CrossRefGoogle Scholar
  57. Thom D, Rammer W, Seidl R (2017a) Disturbances catalyze the adaptation of forest ecosystems to changing climate conditions. Glob Change Biol 23(1):269–282. CrossRefGoogle Scholar
  58. Thom D, Rammer W, Seidl R (2017b) The impact of future forest dynamics on climate: interactive effects of changing vegetation and disturbance regimes. Ecol Monogr 87(4):665–684. CrossRefGoogle Scholar
  59. Trotsiuk V, Hobi ML, Commarmot B (2012) Age structure and disturbance dynamics of the relic virgin beech forest Uholka (Ukrainian Carpathians). Forest Ecol Manag 265:181–190. CrossRefGoogle Scholar
  60. Ukrderzhlisproekt (2014) Ukrainske derzhavne proektne lisovporiadne vyrobnyche obyednannia VO “Ukrderzhlisproekt” (In Ukrainian). Accessed 14 June 2014
  61. Vittoz P, Engler R (2007) Seed dispersal distances: a typology based on dispersal modes and plant traits. Bot Helv 117(2):109–124. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Physical GeographyFranko National University of LvivLvivUkraine
  2. 2.University of Natural Resources and Life SciencesWienAustria
  3. 3.University of VermontBurlingtonUSA
  4. 4.National Forestry University of UkraineLvivUkraine
  5. 5.North Carolina State UniversityRaleighUSA

Personalised recommendations