Advertisement

Rock glaciers as a water resource in a changing climate in the semiarid Chilean Andes

  • Nicole SchafferEmail author
  • Shelley MacDonell
  • Marion Réveillet
  • Eduardo Yáñez
  • Rémi Valois
Review

Abstract

Rock glaciers likely play an important hydrological role in the semiarid Andes (SA; 27°–35°S). They supplement streamflow when water is needed most, especially during dry years in the late summer months. Despite their assumed importance, there are no publications that quantify their hydrological contribution to streamflow in the SA of Chile, based on measurements of rock glacier ice loss or discharge. In this study, we assess the available information on the hydrological importance of rock glaciers in the SA and provide suggestions on how future research can address knowledge gaps. We conclude that there is insufficient data available to quantify the hydrological contribution of rock glaciers in the SA. Measurements of glacier discharge are limited to unpublished data sets from which only very limited conclusions can be drawn. There are no ice volume change measurements or proxies available for individual rock glaciers. Approximations of rock glacier ice volume, calculated from areal extent, thickness, and percentage of ice content are available, and these data provide an initial baseline for calculating ice volume change in the future. While these baseline data are very valuable, they represent rough estimates due to a scarcity of studies, especially on glacier thickness and percentage of ice content. With increased temperatures and a decrease in precipitation expected in the future, rock glaciers could become an increasingly critical water resource in this region, especially in the Elqui and Juncal catchments. Improved estimates of rock glacier discharge, water content, processes, and hydrology are required to model their future evolution and evaluate their contribution to water resources.

Keywords

Rock glacier Water resource Semiarid Andes Thickness Ice content Glacier area 

Notes

Acknowledgments

We thank Cristián Campos, Sebastián Vivero, Sébastien Monnier, and Rodrigo Ponce for their helpful discussions and/or assistance with this manuscript.

Funding information

This work was supported by CONICYT + Programa Regional + Fortalecimiento (R16A10003) and FIC-R (2016) Coquimbo (BIP: 40000343). Nicole Schaffer was supported by CONICYT + FONDECYT + Postdoctorado (3180417).

Supplementary material

10113_2018_1459_MOESM1_ESM.docx (1.5 mb)
ESM 1 (DOCX 1528 kb)

References

  1. Arenson LU, Springman SM (2005) Mathematical descriptions for the behaviour of ice-rich frozen soils at temperatures close to 0°C. Can Geotech J 42:431–442.  https://doi.org/10.1139/t04-109 CrossRefGoogle Scholar
  2. Arenson L, Hoelzle M, Springman S (2002) Borehole deformation measurements and internal structure of some rock glaciers in Switzerland. Permafr Periglac Process 13:117–135.  https://doi.org/10.1002/ppp.414 CrossRefGoogle Scholar
  3. Atwood DK, Meyer F, Arendt A (2010) Using L-band SAR coherence to delineate glacier extent. Can J Remote Sens 36(s1):S186–S195.  https://doi.org/10.5589/m10-014 CrossRefGoogle Scholar
  4. Ayala A, Pellicciotti F, Macdonell S, Mcphee J, Vivero S, Campos C, Egli P (2016) Modelling the hydrological response of debris-free and debris-covered glaciers to present climatic conditions in the semiarid Andes of central Chile. Hydrol Process 30:4036–4058.  https://doi.org/10.1002/hyp.10971 CrossRefGoogle Scholar
  5. Ayala A, Pellicciotti F, Peleg N, Burlando P (2017) Melt and surface sublimation across a glacier in a dry environment: distributed energy-balance modelling of Juncal Norte Glacier, Chile. J Glaciol 63(241):803–822.  https://doi.org/10.1017/jog.2017.46 CrossRefGoogle Scholar
  6. Azócar GF, Brenning A (2010) Hydrological and geomorphological significance of rock glaciers in the Dry Andes, Chile (27-33°S). Permafr Periglac Process 21(1):42–53.  https://doi.org/10.1002/ppp.669 CrossRefGoogle Scholar
  7. Azócar GF, Brenning A, Bodin X (2017) Permafrost distribution modelling in the semi-arid Chilean Andes. Cryosphere 11:877–890.  https://doi.org/10.5194/tc-11-877-2017 CrossRefGoogle Scholar
  8. Bajewsky I, Gardner JS (1989) Discharge and sediment-load characteristics of the Hilda rock-glacier stream, Canadian Rocky Mountains, Alberta. Phys Geogr 10(4):295–306.  https://doi.org/10.1080/02723646.1989.10642384 CrossRefGoogle Scholar
  9. Barcaza G, Nussbaumer SU, Tapia G, Valdés J, García J, Videla Y et al (2017) Glacier inventory and recent glacier variations in the Andes of Chile, South America. Ann Glaciol 58:166–180.  https://doi.org/10.1017/aog.2017.28 CrossRefGoogle Scholar
  10. Barnett TP, Adam JC, Lettenmaier DP (2005) Potential impacts of a warming climate on water availability in snow-dominated regions. Nature 438(7066):303–309.  https://doi.org/10.1038/nature04141 CrossRefGoogle Scholar
  11. Barsch D (1989) Origin and geoelectrical resistivity of rock glaciers in semiarid subtropical mountains (Andes of Mendoza, Argentina). Z Geomorphol 33(2):151–163Google Scholar
  12. Barsch D (1996) Rockglaciers. Springer-Verlag, BerlinCrossRefGoogle Scholar
  13. Beniston M (2003) Climatic change in mountain regions: a review of possible impacts. Climate Change 59:5–31.  https://doi.org/10.1023/A:1024458411589 CrossRefGoogle Scholar
  14. Berger J, Krainer K, Mostler W (2004) Dynamics of an active rock glacier (Ötztal Alps, Austria). Quat Res 62:233–242.  https://doi.org/10.1016/j.yqres.2004.07.002 CrossRefGoogle Scholar
  15. Berthling I (2011) Beyond confusion: rock glaciers as cryo-conditioned landforms. Geomorphology 131:98–106.  https://doi.org/10.1016/j.geomorph.2011.05.002 CrossRefGoogle Scholar
  16. Bodin X, Thibert E, Febre D, Ribolini A, Schoeneich P, Francou B et al (2009) Two decades of response (1986-2006) to climate by the Laurichard Rock Glacier, French Alps. Permafr Periglac Process 20:331–344.  https://doi.org/10.1002/ppp.665 CrossRefGoogle Scholar
  17. Bodin X, Rojas F, Brenning A (2010) Status and evolution of the cryosphere in the Andes of Santiago (Chile, 33.5oS). Geomorphology 118:453–464.  https://doi.org/10.1016/j.geomorph.2010.02.016 CrossRefGoogle Scholar
  18. Bown F, Rivera A, Acuña C (2008) Recent glaciers variations at the Aconcagua basin, central Chilean Andes. Ann Glaciol 48:43–48.  https://doi.org/10.3189/172756408784700572 CrossRefGoogle Scholar
  19. Bradley RS, Vuille M, Diaz HF, Vergara W (2006) Threats to water supplies in the tropical Andes. Science 312(5781):1755–1756.  https://doi.org/10.1126/science.1128087 CrossRefGoogle Scholar
  20. Brenning A (2003) La importancia de los glaciares de escombros en los sistemas geomorfológico e hidrológico de la Cordillera de Santiago—fundamentos y primeros resultados. Revista de Geografía Norte Grande 30:7–22Google Scholar
  21. Brenning A (2005a) Climatic and geomorphological controls of rock glaciers in the Andes of Central Chile: combining statistical modelling and field mapping. PhD Thesis, Humboldt University, Berlin, GermanyGoogle Scholar
  22. Brenning A (2005b) Geomorphological, hydrological and climatic significance of rock glaciers in the Andes of Central Chile (33-35°S). Permafr Periglac Process 16(3):231–240.  https://doi.org/10.1002/ppp.528 CrossRefGoogle Scholar
  23. Brenning A, Long S, Fieguth P (2012) Detecting rock glacier flow structures using Gabor filters and IKONOS imagery. Remote Sens Environ 125:227–237.  https://doi.org/10.1016/j.rse.2012.07.005 CrossRefGoogle Scholar
  24. Burger KC, Degenhardt JJ, Giardino JR (1999) Engineering geomorphology of rock glaciers. Geomorphology 31:93–132.  https://doi.org/10.1016/S0169-555X(99)00074-4 CrossRefGoogle Scholar
  25. CAZALAC (2013) Estudio para elaborar la estrategia regional de recursos hídricos por cuenca 2014–2030, region de Coquimbo. Centro Regional del Agua para Zonas Áridas y Semiáridas de América Latina y el Caribe.Google Scholar
  26. CEAZA (2012) Caracterización y monitoreo de glaciares rocosos en la cuenca del río Elqui, y balance de masa del Glaciar Tapado. Dirección General De Aguas (DGA), realizado por Centro De Estudios Avanzados en Zonas ÁridasGoogle Scholar
  27. CEAZA (2015) Modelación del balance de masa y descarga de agua en glaciares del Norte Chico y Chile Central. Dirección General De Aguas (DGA), realizado por Centro De Estudios Avanzados en Zonas ÁridasGoogle Scholar
  28. CECS (2009) Estrategia nacional de glaciares fundamentos, S.I.T. N°205. Dirección General de Aguas (DGA), Ministerio de Obras Publicos.Google Scholar
  29. Chen J, and Ohmura A (1990) Estimation of Alpine glacier water resources and their change since the 1870s. Hydrology in Mauntainous Regions. I-Hydrological Measurements; the Water Cycle. IAHS, Lausanne, pp 127–135Google Scholar
  30. CNID (2016) Ciencia e innovacion para los desafios del agua en Chile: estrategia nacional de investigación, desarrollo e inovación para la sostenibilidad de los recursos hídricos. Consejo Nacional de Innovación para el DesarolloGoogle Scholar
  31. Cogley JG, Hock R, Rasmussen LA, Arendt AA, Bauder A, Braithwaite RJ, et al (2011) Glossary of glacier mass balance and related terms. Paris: IHP-VII technical documents in hydrology no. 86, IACS contribution no. 2, UNESCO-IHPGoogle Scholar
  32. Collins M, Knutti R, Arblaster J, Dufresne J-L, Fichefet T, Friedlingstein P, et al (2013) Long-term climate change: projections, commitments and irreversibility. In: Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, NY, USA, pp. 1031: [Stocker, T.F., D. Qin, G.K. Plattner, M. Tignor, SK. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press.Google Scholar
  33. Corte A (1976) The hydrological significance of rock glaciers. J Glaciol 17(75):157–158CrossRefGoogle Scholar
  34. Croce FA, Milana JP (2002) Internal structure and behaviour of a rock glacier in the arid Andes of Argentina. Permafr Periglac Process 13:289–299.  https://doi.org/10.1002/ppp.431 CrossRefGoogle Scholar
  35. Degenhardt JJ, Giardino JR, Junck MB (2003) GPR survey of a lobate rock glacier in Yankee Boy Basin, Colorado, USA. Geol Soc Lond, Spec Publ 211:167–179.  https://doi.org/10.1144/GSL.SP.2001.211.01.14 CrossRefGoogle Scholar
  36. Dewayne CL, Green JR, Vogt S, Michel R, Cottrell G (1998) Isotopic composition of ice cores and meltwater from upper Fremont Glacier and Galena Creek rock glacier, Wyoming. Geogr Ann Ser A Phys Geogr 80:287–292.  https://doi.org/10.1111/j.0435-3676.1998.00044.x CrossRefGoogle Scholar
  37. DGA (2010) Dinámica de glaciares rocosos en el Chile semiárido. Dirección General de Aguas (DGA), Ministerio de Obras PublicosGoogle Scholar
  38. DGA (2016) Atlas del Agua, Chile 2016. Santiago, Chile: Dirección General de Aguas (DGA), Ministerio de Obras Publicos. Retrieved from http://www.dga.cl/atlasdelagua/Paginas/default.aspx (Accessed 1 Nov 2017)
  39. Escobar F, Aceituno P (1998) Influencia del fenómeno ENSO sobre la precipitación nival en el sector andino de Chile Central durante el invierno. Bulletin de l’Institute Français d’Études AndinesGoogle Scholar
  40. Favier V, Falvey M, Rabatel A, Praderio E, Lopez D (2009) Interpreting discrepancies between discharge and precipitation in high-altitude area of Chile’s Norte Chico region (26-32°S). Water Resour Res 45(2):1–20.  https://doi.org/10.1029/2008WR006802 CrossRefGoogle Scholar
  41. Fields S (2006) The price of gold in Chile. Environ Health Perspect 114(9):A536–A539CrossRefGoogle Scholar
  42. Francou B, Fabre D, Pouyaud B, Jomelli V, Arnaud Y (1999) Symptoms of degradation in a tropical rock glacier, Bolivian Andes. Permafr Periglac Process 10:91–100.  https://doi.org/10.1002/(SICI)1099-1530(199901/03)10:1<91::AID-PPP304>3.0.CO;2-B CrossRefGoogle Scholar
  43. Frey H, Paul F, Strozzi T (2012) Compilation of a glacier inventory for the western Himalayas from satellite data: methods, challenges, and results. Remote Sens Environ 124:832–843.  https://doi.org/10.1016/j.rse.2012.06.020 CrossRefGoogle Scholar
  44. García A, Ulloa C, Amigo G, Milana JP, Medina C (2017) An inventory of cryospheric landforms in the arid diagonal of South America (high Central Andes, Atacama region, Chile). Quat Int 438:4–19.  https://doi.org/10.1016/j.quaint.2017.04.033 CrossRefGoogle Scholar
  45. Gascoin S, Kinnard C, Ponce R, Lhermitte S, Macdonell S, Rabatel A (2011) Glacier contribution to streamflow in two headwaters of the Huasco River, Dry Andes of Chile. Cryosphere 5:1099–1113.  https://doi.org/10.5194/tc-5-1099-2011 CrossRefGoogle Scholar
  46. Gascoin S, Lhermitte S, Kinnard C, Borstel K, Liston GE (2013) Wind effects on snow cover in Pascua-Lama, Dry Andes of Chile. Adv Water Resour 55 ElsevierGoogle Scholar
  47. Geiger ST, Daniels JM, Miller SN, Nicholas JW (2014) Influence of rock glaciers on stream hydrology in the La Sal Mountains, Utah. Arct Antarct Alp Res 46(3):645–658.  https://doi.org/10.1657/1938-4246-46.3.645 CrossRefGoogle Scholar
  48. Geostudios (1998) Glaciares de roca en el area minaGoogle Scholar
  49. Geostudios (2008) Identificación de Glaciares de Roca, S.I.T. N°167. Dirección General de Aguas (DGA), Ministerio de Obras Publicos.Google Scholar
  50. Giardino JR, Vitek JD, DeMorett JL (1992) A model of water movement in rock glaciers and associated water characteristics. In Periglacial Geomorphology, Dixon JC, Abrahams AD (Eds.). John Wiley & Sons, Chichester, pp 159–184Google Scholar
  51. Ginot P, Kull C, Schotterer U, Schwikowski M, Gäggeler HW (2006) Glacier mass balance reconstruction by sublimation induced enrichment of chemical species on Cerro Tapado (Chilean Andes). Clim Past 2:21–30.  https://doi.org/10.5194/cp-2-21-2006 CrossRefGoogle Scholar
  52. GORECoquimbo (2013) Diagnóstico plan maestro para la gestión de recursos hídricos, Región de Coquimbo. Gobierno Regional de la Región de CoquimboGoogle Scholar
  53. GORECoquimbo (2015) Plan estratégico para enfrentar la escasez hídrica. Gobierno Regional de la Región de CoquimboGoogle Scholar
  54. Haeberli W, Hallet B, Arenson L, Elconin R, Humlum O, Kääb A et al (2006) Permafrost creep and rock glacier dynamics. Permafr Periglac Process 17:189–214.  https://doi.org/10.1002/ppp.561 CrossRefGoogle Scholar
  55. Harrington JS (2017) The hydrogeology of a rock glacier and its effect on stream temperature. MSc Thesis, University of Calgary, Calgary, CanadaGoogle Scholar
  56. Harrington JS, Mozil A, Hayashi M, Bentley LR (2018) Groundwater flow and storage processes in an inactive rock glacier. Hydrol Process 32(20):3070–3088. https://doi.org/10.1002/hyp.13248
  57. Hauck C, Isaksen K, Mühll DV, Sollid JL (2004) Geophysical surveys designed to delineate the altitudinal limit of mountain permafrost: an example from Jotunheimen, Norway. Permafr Periglac Process 15:191–205.  https://doi.org/10.1002/ppp.493 CrossRefGoogle Scholar
  58. Hausmann H, Krainer K, Brückl E, Mostler W (2007) Internal structure and ice content of Reichenkar rock glacier (Stubai Alps, Austria) assessed by geophysical investigations. Permafr Periglac Process 18:351–367.  https://doi.org/10.1002/ppp.601 CrossRefGoogle Scholar
  59. Hausmann, H., Krainer, K., Bruckl, E., & Ullrich, C. (2012). Internal structure, ice content and dynamics of Ölgrube and kaiserberg rock glaciers (Ötztal Alps, Austria) determined from geophysical surveys. Aust J Earth Sci 105:12–31Google Scholar
  60. Humlum O (1998) The climatic significance of rock glaciers. Perma 9:375–395Google Scholar
  61. Huss M, Bookhagen B, Huggel C, Jacobsen D, Bradley RS, Clague JJ et al (2017) Toward mountains without permanent snow and ice. Earth’s Future 5:418–435.  https://doi.org/10.1002/2016EF000514 CrossRefGoogle Scholar
  62. Janke JR, Bellisario AC, Ferrando FA (2015) Classification of debris-covered glaciers and rock glaciers in the Andes of central Chile. Geomorphology 241:98–121.  https://doi.org/10.1016/j.geomorph.2015.03.034 CrossRefGoogle Scholar
  63. Janke JR, Ng S, Bellisario A (2017) An inventory and estimate of water stored in firn fields, glaciers, debris-covered glaciers, and rock glaciers in the Aconcagua River Basin, Chile. Geomorphology 296:142–152.  https://doi.org/10.1016/j.geomorph.2017.09.002 CrossRefGoogle Scholar
  64. Jansson P, Hock R, Schneider T (2003) The concept of glacier storage: a review. J Hydrol 282:116–129.  https://doi.org/10.1016/S0022-1694(03)00258-0 CrossRefGoogle Scholar
  65. Kääb A, Vollmer M (2000) Surface geometry, thickness changes and flow fields on creeping mountain permafrost: automatic extraction by digital image analysis. Permafr Periglac Process 11:315–326CrossRefGoogle Scholar
  66. Kääb A, Kaufmann V, Ladstädter R, Eiken T (2003) Rock glacier dynamics: implications from high-resolution measurements of surface velocity fields. Permafrost 1:501–506Google Scholar
  67. Kääb A, Huggel C, Fischer L, Guex S, Paul F, Roer I et al (2005) Remote sensing of glacier- and permafrost-related hazards in high mountains: an overview. Nat Hazards Earth Syst Sci 5:527–554CrossRefGoogle Scholar
  68. Kääb A, Frauenfelder R, Roer I (2007) On the response of rockglacier creep to surface temperature increase. Glob Planet Chang 56:172–187.  https://doi.org/10.1016/j.gloplacha.2006.07.005 CrossRefGoogle Scholar
  69. Krainer K, Mostler W (2002) Hydrology of active rock glaciers: examples from the Austrian Alps. Arct Antarct Alp Res 34(2):142–149CrossRefGoogle Scholar
  70. Krainer K, Mostler W, Spötl C (2007) Discharge from active rock glaciers, Austrian Alps: a stable isotope approach. Aust J Earth Sci 100:102–112Google Scholar
  71. La Frenierre J, Mark BG (2014) A review of methods for estimating the contribution of glacial meltwater to total watershed discharge. Prog Phys Geogr 38(2):173–200.  https://doi.org/10.1177/0309133313516161 CrossRefGoogle Scholar
  72. Le Quesne C, Stahle DW, Cleaveland MK, Therrell MD, Aravena JC, Barichivich J (2006) Ancient Austrocedrus tree-ring chronologies used to reconstruct central Chile precipitation variability from A.D. 1200 to 2000. J Clim 19(22):5731–5744.  https://doi.org/10.1175/JCLI3935.1 CrossRefGoogle Scholar
  73. Lecomte KL, Milana JP, Formica SM, Depetris PJ (2008) Hydrochemical appraisal of ice- and rock-glacier meltwater in the hyperarid Agua Negra drainage basin, Andes of Argentina. Hydrol Process 22:2180–2195.  https://doi.org/10.1002/hyp.6816 CrossRefGoogle Scholar
  74. Leopold M, Williams MW, Caine N, Völkel J, Dethier D (2011) Internal structure of the Green Lake 5 rock glacier, Colorado Front Range, USA. Permafr Periglac Process 22(2):107–119.  https://doi.org/10.1002/ppp.706 CrossRefGoogle Scholar
  75. MacDonell S, Kinnard C, Mölg T, Nicholson L, Abermann J (2013) Meteorological drivers of ablation processes on a cold glacier in the semi-arid Andes of Chile. Cryosphere 7:1513–1526.  https://doi.org/10.5194/tc-7-1513-2013 CrossRefGoogle Scholar
  76. Maurer H, Hauck C (2007) Instruments and methods: geophysical imaging of alpine rock glaciers. J Glaciol 53(180):110–120.  https://doi.org/10.3189/172756507781833893 CrossRefGoogle Scholar
  77. Meza FJ, Vicuna S, Gironás J, Poblete D, Suárez F, Oertel M (2015) Water–food–energy nexus in Chile: the challenges due to global change in different regional contexts. Water Int.  https://doi.org/10.1080/02508060.2015.1087797
  78. Milana JP, Güell A (2008) Diferencias mecánicas e hídricas del permafrost en glaciares de rocas glacigénicos y criogénicos, obtenidas de datos sísmicos en el Tapado, Chile. Revista de La Asociacion Geologica Argentina 63(3):310–325Google Scholar
  79. Monnier S, Kinnard C (2013) Internal structure and composition of a rock glacier in the Andes (upper Choapa valley, Chile) using borehole information and ground-penetrating radar. Ann Glaciol 54(64):61–72.  https://doi.org/10.3189/2013AoG64A107 CrossRefGoogle Scholar
  80. Monnier S, Kinnard C (2015a) Internal structure and composition of a rock glacier in the Dry Andes, inferred from ground-penetrating radar data and its artefacts. Permafr Periglac Process 26:335–346.  https://doi.org/10.1002/ppp.1846 CrossRefGoogle Scholar
  81. Monnier S, Kinnard C (2015b) Reconsidering the glacier to rock glacier transformation problem: new insights from the central Andes of Chile. Geomorphology 238:47–55.  https://doi.org/10.1016/j.geomorph.2015.02.025 CrossRefGoogle Scholar
  82. Monnier S, Kinnard C (2016) Interrogating the time and processes of development of the Las Liebres rock glacier, central Chilean Andes, using a numerical flow model. Earth Surf Process Landf 41(13):1884–1893.  https://doi.org/10.1002/esp.3956 CrossRefGoogle Scholar
  83. Monnier S, Kinnard C (2017) Pluri-decadal (1955–2014) evolution of glacier–rock glacier transitional landforms in the central Andes of Chile (30–33° S). Earth Surf Dyn 5:493–509CrossRefGoogle Scholar
  84. Monnier S, Camerlynck C, Rejiba F, Kinnard C, Feuillet T, Dhemaied A (2011) Structure and genesis of the Thabor rock glacier (Northern French Alps) determined from morphological and ground-penetrating radar surveys. Geomorphology 134:269–279.  https://doi.org/10.1016/j.geomorph.2011.07.004 CrossRefGoogle Scholar
  85. Monnier S, Kinnard C, Surazakov A, Bossy W (2014) Geomorphology, internal structure, and successive development of a glacier foreland in the semiarid Chilean Andes (Cerro Tapado, upper Elqui Valley, 30o08’S, 69o55'W). Geomorphology 207:126–140.  https://doi.org/10.1016/j.geomorph.2013.10.031 CrossRefGoogle Scholar
  86. Moore PL (2014) Deformation of debris-ice mixtures. Rev Geophys 52:435–467.  https://doi.org/10.1002/2014RG000453 CrossRefGoogle Scholar
  87. MRI Working Group (2015) Elevation-dependent warming in mountain regions of the world. Nat Clim Chang 5:424–430.  https://doi.org/10.1038/nclimate2563 CrossRefGoogle Scholar
  88. Müller SW (1947) Permafrost or permanently frozen ground and related engineering problems. United States Engineers Office, Strategic Engineering Study. Spec Rep 62:136Google Scholar
  89. Müller J, Vieli A, Gärtner-Roer I (2016) Rock glaciers on the run—understanding rock glacier landform evolution and recent changes from numerical flow modeling. Cryosphere 10:2865–2886.  https://doi.org/10.5194/tc-10-2865-2016 CrossRefGoogle Scholar
  90. Musil M, Maurer H, Hollinger K, Green AG (2006) Internal structure of an alpine rock glacier based on crosshole georadar traveltimes and amplitudes. Geophys Prospect 54:273–285.  https://doi.org/10.1111/j.1365-2478.2006.00534.x CrossRefGoogle Scholar
  91. Nicholson L, Marín J, Lopez D, Rabatel A, Bown F, Rivera A (2009) Glacier inventory of the upper Huasco valley, Norte Chico, Chile: glacier characteristics, glacier change and comparison with central Chile. Ann Glaciol 50(53):111–118.  https://doi.org/10.3189/172756410790595787 CrossRefGoogle Scholar
  92. Pellicciotti F, Burlando P, Van Vliet K (2007) Recent trends in precipitation and streamflow in the Aconcagua River Basin, central Chile. In Glaciar mass balance and meltwater discharge, IAHS assembly 2005, Publ. 318. Foz do Iguacu, Brazil.  https://doi.org/10.1175/1520-0442(2001)014<2317:RTIPAS>2.0.CO;2
  93. Pellicciotti F, Ragettli S, Carenzo M, McPhee J (2014) Changes of glaciers in the Andes of Chile and priorities for future work. Sci Total Environ 493:1197–1210.  https://doi.org/10.1016/j.scitotenv.2013.10.055 CrossRefGoogle Scholar
  94. Peña H, Nazarala B (1987) Snowmelt-runoff simulation model of a central Chile Andean basin with relevant orographic effects. In IAHS publ. 166 (Symposium at Vancouver, Canada - Large Scale Effects of Seasonal Snow Cover) (pp. 161–172).Google Scholar
  95. Potter N Jr, Steig EJ, Clark DH, Speece MA, Clark GM, Updike AB (1998) Galena creek rock glacier revisited—new observations on an old controversy. Geografiska Annaler: Series A, Physical Geography 80A(3–4):251–265.  https://doi.org/10.1111/j.0435-3676.1998.00041.x CrossRefGoogle Scholar
  96. Pourrier J, Jourde H, Kinnard C, Gascoin S, Monnier S (2014) Glacier meltwater flow paths and storage in a geomorphologically complex glacial foreland: the case of the Tapado glacier, dry Andes of Chile (30°S). J Hydrol 519:1068–1083.  https://doi.org/10.1016/j.jhydrol.2014.08.023 CrossRefGoogle Scholar
  97. Putman AE, Putman DE (2009) Inactive and relict rock glaciers of the Deboullie Lakes Ecological Reserve, northern Maine, USA. J Quat Sci 24(7):773–784.  https://doi.org/10.1002/jqs.1252 CrossRefGoogle Scholar
  98. Ragettli S, Pellicciotti F (2012) Calibration of a physically based, spatially distributed hydrological model in a glacierized basin: on the use of knowledge from glaciometeorological processes to constrain model parameters. Water Resour Res 48(W03509):1–20.  https://doi.org/10.1029/2011WR010559 Google Scholar
  99. Rangecroft S, Harrison S, Anderson K (2015) Rock glaciers as water wtores in the Bolivian Andes: an assessment of their hydrological importance. Arct Antarct Alp Res 47(1):89–98.  https://doi.org/10.1657/AAAR0014-029 CrossRefGoogle Scholar
  100. Rangecroft S, Suggitt AJ, Anderson K, Harrison S (2016) Future climate warming and changes to mountain permafrost in the Bolivian Andes. Clim Chang 137:231–243.  https://doi.org/10.1007/s10584-016-1655-8 CrossRefGoogle Scholar
  101. Rignot, E. (2002). Rock glacier surface motion in Beacon Valley, Antarctica, from synthetic-aperture radar interferometry. Geophys Res Lett, 29(12), 48–1 to 48–4.  https://doi.org/10.1029/2001GL013494
  102. Rivera A, Acuna C, Casassa G, Bown F (2002) Use of remotely sensed and field data to estimate the contribution of Chilean glaciers to eustatic sea-level rise. Ann Glaciol 34:367–372.  https://doi.org/10.3189/172756402781817734 CrossRefGoogle Scholar
  103. Robson BA, Nuth C, Dahl SO, Hölbling D, Strozzi T, Nielsen PR (2015) Automated classification of debris-covered glaciers combining optical, SAR and topographic data in an object-based environment. Remote Sens Environ 170:372–387.  https://doi.org/10.1016/j.rse.2015.10.001 CrossRefGoogle Scholar
  104. Rodriguez M, Ohlanders N, Pellicciotti F, Williams MW, McPhee J (2016) Estimating runoff from a glacierized catchment using natural tracers in the semi-arid Andes cordillera. Hydrol Process 30:3609–3626.  https://doi.org/10.1002/hyp.10973 CrossRefGoogle Scholar
  105. Santibañez F (1997) Tendencias seculares de la precipitación en Chile. In: Soto G, Ulloa F (eds) Diagnóstico Climatico de la desertificación en Chile. CONAF, La SerenaGoogle Scholar
  106. Schrott L (1996) Some geomorphological-hydrological aspects of rock glaciers in the Andes (San Juan, Argentina). Zeitschrift Fur Geomorphologie NF 104:161–173Google Scholar
  107. Schrott, L. (2002). Mountain permafrot hyrology and its relation to solar radiation. A case study in the Agua Negra Catchment, High Andes of San Juan, Argentina. Geocrology, 83–87Google Scholar
  108. Souvignet M, Gaese H, Ribbe L, Kretschmer N, Oyarzún R (2010) Statistical downscaling of precipitation and temperature in north-central Chile: an assessment of possible climate change impacts in an arid Andean watershed. Hydrol Sci J 55(1):41–57.  https://doi.org/10.1080/02626660903526045 CrossRefGoogle Scholar
  109. Strozzi T, Delaloye R, Kääb A, Ambrosi C, Perruchoud E, Wegmüller U (2010) Combined observations of rock mass movements using satellite SAR interferometry, differential GPS, airborne digital photogrammetry, and airborne photography interpretation. J Geophys Res Earth Surf 115(F01014):1–11.  https://doi.org/10.1029/2009JF001311 Google Scholar
  110. Topp C, Davis JL, Annan AP (1980) Electromagnetic determination of soil water content: measurements in coaxial transmission lines. Water Resour Res 16(3):574–582.  https://doi.org/10.1029/WR016i003p00574 CrossRefGoogle Scholar
  111. Trombotto D, Borzotta E (2009) Indicators of present global warming through changes in active layer-thickness, estimation of thermal diffusivity and geomorphological observations in the Morenas Coloradas rockglacier, Central Andes of Mendoza, Argentina. Cold Reg Sci Technol 55(3):321–330.  https://doi.org/10.1016/j.coldregions.2008.08.009 CrossRefGoogle Scholar
  112. Trombotto D, Buk E, Hernandez J (1997) Monitoring of mountain permafrost in the central Andes, Cordon del Plata, Mendoza, Argentina. Permafr Periglac Process 8:123–129.  https://doi.org/10.1002/(SICI)1099-1530(199701)8:1<123::AID-PPP242>3.0.CO;2-M CrossRefGoogle Scholar
  113. UNCCD (1994) United Nations convention to combat desertification in those countries experiencing serious drought and/or desertification, particularily in Africa. In United Nations Treaty Collection. Retrieved from https://treaties.un.org/pages/ViewDetails.aspx?src=TREATY&mtdsg_no=XXVII-10&chapter=27&clang=_en (Acessed Oct. 2017)
  114. Vicuña S, Garreaud RD, McPhee J (2011) Climate change impacts on the hydrology of a snowmelt driven basin in semiarid Chile. Clim Chang 105(3):469–488.  https://doi.org/10.1007/s10584-010-9888-4 CrossRefGoogle Scholar
  115. Vuille M, Milana J-P (2007) High-latitude forcing of regional aridification along the subtropical west coast of South America. Geophys Res Lett 34(23):1–6.  https://doi.org/10.1029/2007GL031899 CrossRefGoogle Scholar
  116. Williams MW, Knauf M, Caine N, Liu F, Verplanck PL (2006) Geochemistry and source waters of rock glacier outflow, Colorado Front Range. Permafr Periglac Process 17(1):13–33.  https://doi.org/10.1002/ppp.535 CrossRefGoogle Scholar
  117. Winkler G, Wagner T, Pauritsch M, Birk S, Kellerer-Pirklbauer A, Benischke R et al (2016) Identification and assessment of groundwater flow and storage components of the relict Schöneben Rock Glacier, Niedere Tauern Range, Eastern Alps (Austria). Hydrogeol J 24(4):937–953.  https://doi.org/10.1007/s10040-015-1348-9 CrossRefGoogle Scholar
  118. World Bank (2010) World development report 2010: development and climate change. The World Bank, Washington Retrieved from www.worldbank.org/en/publication/wdr/wdr-archive (Accessed 1 Nov 2017)CrossRefGoogle Scholar
  119. World Bank (2013) Estudio para el mejoramiento del marco institucional para la gestión del agua. Washington, U.S.A. Retrieved from http://reformacodigodeaguas.carey.cl/wp-content/uploads/2014/09/Informe-Banco-Mundial-Estudio-para-el-mejoramiento-del-marco-institucional.pdf

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Centro de Estudios Avanzados en Zonas Áridas (CEAZA)ULS—Campus Andrés BelloLa SerenaChile
  2. 2.Facultad de Ingeniería y Ciencias GeológicasUniversidad Católica del NorteAntofagastaChile

Personalised recommendations