Regional Environmental Change

, Volume 18, Issue 4, pp 1117–1129 | Cite as

Land cover effects on water balance partitioning in the Colombian Andes: improved water availability in early stages of natural vegetation recovery

  • Vanessa García-Leoz
  • Juan Camilo Villegas
  • Diego Suescún
  • Claudia P. Flórez
  • Luis Merino-Martín
  • Teresita Betancur
  • Juan Diego León
Original Article

Abstract

Vegetation actively affects different components of the water budget in multiple spatial and temporal scales. Changes in vegetation cover and structure—such as those resulting from land use—alter natural ecohydrological dynamics, leading to changes in natural hydrologic regimes. In tropical mountain ecosystems, such as the Colombian Andes, significant areas of native forests have been converted to agro-ecosystems that include pasturelands and croplands, to supply societal demands for other ecosystem services. Yet, services such as water provision and hydropower generation that depend on the regulation of hydrologic fluxes are also demanded from these ecosystems, potentially generating conflicting societal demands. In this study, we assess the effect of vegetation cover type and rainfall seasonality on the dynamics of hydrological partitioning—an indicator of hydrologic regulation—at three temporal scales, in a simulated gradient of human disturbance characterized by seven types of vegetation cover. Overall, vegetation cover effects on hydrologic partitioning are more pronounced in shorter, weekly to seasonal, timescales than in annual timescales. Natural vegetation cover types have a higher potential for maintaining water availability, as evidenced by lower variability of soil moisture storage and hydrological fluxes both within and between seasons. Notably, among all cover types, early stages of natural vegetation recovery appear to be more effective in maintaining higher levels of soil moisture while decreasing potential overland flow and other water losses, therefore more effectively contributing to deep drainage and potentially to groundwater recharge, which relate to hydrologic regulation and, ultimately, water availability. Collectively, our results provide insights for decision-making in land management, particualrly when provisioning and regulatory ecosystem services are demanded from these strategic ecosystems.

Keywords

Land use change Water balance Hydrologic regulation Ecosystem function Forest degradation Tropical ecohydrology 

Notes

Acknowledgments

We thank Óscar and Martha Pérez for access and logistics at the field site and who made possible the infiltration tests.

Supplementary material

10113_2017_1249_MOESM1_ESM.docx (103 kb)
ESM 1 (DOCX 75 kb)
10113_2017_1249_MOESM2_ESM.docx (127 kb)
ESM 2 (DOCX 126 kb)
10113_2017_1249_MOESM3_ESM.docx (101 kb)
ESM 3 (DOCX 100 kb)
10113_2017_1249_MOESM4_ESM.docx (84 kb)
ESM 4 (DOCX 84.2 kb)
10113_2017_1249_MOESM5_ESM.docx (104 kb)
ESM 5 (DOCX 104 kb)
10113_2017_1249_MOESM6_ESM.docx (143 kb)
ESM 6 (DOCX 142 kb)
10113_2017_1249_MOESM7_ESM.docx (112 kb)
ESM 7 (DOCX 112 kb)

References

  1. Allen CD, Breshears DD, McDowell NG (2015) On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene. Ecosphere 6(8):1–55.  https://doi.org/10.1890/ES15-00203.1 CrossRefGoogle Scholar
  2. Bosch JM, Hewlett JD (1982) A review of catchment experiments to determine the effect of vegetation changes on water yield and evapotranspiration. J Hydrol 55:3–23.  https://doi.org/10.1016/0022-1694(82)90117-2 CrossRefGoogle Scholar
  3. Brown A, Zhang L, McMahon T, Weston A, Vertessy R (2005) A review of paired catchment studies for determining changes in water yield resulting from alterations in vegetation. J Hydrol 310:28–61.  https://doi.org/10.1016/j.jhydrol.2004.12.010 CrossRefGoogle Scholar
  4. Bruijnzeel LA (2004) Hydrological functions of tropical forest: not seeing the soil for the trees? Agric Ecosyst Environ 104:185–228.  https://doi.org/10.1016/j.agee.2004.01.015 CrossRefGoogle Scholar
  5. Carpenter SR, Bennett EM, Peterson GD (2006) Scenarios for ecosystems services: an overview. Ecol Soc 11(1):29.  https://doi.org/10.5751/ES-01610-110129 CrossRefGoogle Scholar
  6. Chandler DG, Walter MF (1998) Runoff responses among common land use in the upland of Matalom, Leyte, Philippines. Trans ASAE 41:1635–1641.  10.13031/2013.17338 CrossRefGoogle Scholar
  7. Crk T, Uriarte M, Corsi F, Flynn D (2009) Forest recovery in a tropical landscape: what is the relative importance of biophysical, socioeconomic, and landscape variables? Landsc Ecol 24:629–642.  https://doi.org/10.1007/s10980-009-9338-8 CrossRefGoogle Scholar
  8. DeFries RS, Rudel T, Uriarte M, Hansen M (2010) Deforestation driven by urban population growth and agricultural trade in the twenty-first century. Nat Geosci 3:178–181.  https://doi.org/10.1038/ngeo756 CrossRefGoogle Scholar
  9. Empresas Públicas de Medellín (2005) Cincuenta años de hidrometeorología en Empresas Públicas de Medellín. Rev Hidrometeorol 1:1 ISSN 1900–7248Google Scholar
  10. Fleischbein K, Wilcke W, Valarezo C, Zech W, Knoblich K (2006) Water budgets of three small catchments under montane forest in Ecuador: experimental and modelling approach. Hydrol Process 20:2491–2507.  https://doi.org/10.1002/hyp.621. CrossRefGoogle Scholar
  11. Foley JA, De Fries R (2005) Global consequences of land use. Science 309(5734):570–574.  https://doi.org/10.1126/science.1111772 CrossRefGoogle Scholar
  12. Giambelluca TW, Nullet M, Ziegler AD, Tran L (2000) Latent and sensible energy flux over deforested land surfaces in the eastern Amazon and northern Thailand. Singap J Trop Geogr 21:107–130.  https://doi.org/10.1111/1467-9493.00070 CrossRefGoogle Scholar
  13. Gibbs HK, Ruesch AS, Achard F, Clayton MK, Holmgren P, Ramankutty N, Foley JA (2010) Tropical forests were the primary sources of new agricultural land in the 1980s and 1990s. Proc Natl Acad Sci U S A 107:16732–16737.  https://doi.org/10.1073/pnas.0910275107. CrossRefGoogle Scholar
  14. Hassan RM, Scholes R, Ash N et al (2005) Ecosystems and human well-being: current state and trends, vol 1. Millenium Ecosystem Assessment Board. Island Press, Washington DCGoogle Scholar
  15. Hassler S, Zimmermann B, Van Breugel M, Hall JSH (2011) Recovery of saturated hydraulic conductivity under secondary succession on former pasture in the humid tropics. For Ecol Manag 261:1634–1642.  https://doi.org/10.1016/j.foreco.2010.06.031 CrossRefGoogle Scholar
  16. Holdridge LR (1967) Life zone ecology. Tropical Science Center, San Jose Kittel, T.G.F., RosenbGoogle Scholar
  17. Hollander M, Wolfe DA (1999) Nonparametric statistical methods, 2nd edn. John Wiley & Sons, Inc, New YorkGoogle Scholar
  18. Holwerda F, Scatena FN, Bruijnzeel LA (2006) Throughfall in a Puerto Rican lower montane rain forest: a comparison of sampling strategies. J Hydrol 324:592–602.  https://doi.org/10.1016/j.jhydrol.2005.12.014 CrossRefGoogle Scholar
  19. Hothorn T, Hornik K, van de Wiel MA, Zeileis A (2006) A lego system for conditional inference. Am Stat 60(3):257–263.  https://doi.org/10.1198/000313006X118430 CrossRefGoogle Scholar
  20. Hothorn T, Bretz F, Westfall P (2008) Simultaneous inference in general parametric models. Biom J 50(3):346–363.  https://doi.org/10.1002/bimj.200810425 CrossRefGoogle Scholar
  21. Huxman TE, Smith MD, Fay PA, Knapp AK, Shaw MR et al (2004) Convergence across biomes to a common rain-use efficiency. Nature 429:651–654.  https://doi.org/10.1038/nature02597. CrossRefGoogle Scholar
  22. IGAC (2007) Estudio general de suelos y zonificación de tierras departamento de Antioquia. Imprenta Nacional de Colombia, BogotáGoogle Scholar
  23. Jobbágy EG, Nosetto M, Santoni C, Baldi G (2008) El desafío ecohidrológico de las transiciones entre sistemas leñosos y herbáceos en la llanura Chaco Pampeana. In: Roset P (Ed) Ecología Austral, Vol 18, 3rd edn. Asociación Argentina de Ecología, San Luís, pp 305–322Google Scholar
  24. Juhrbandt J, Leuschner C, Hölscher D (2004) The relationship between maximal stomatal conductance and leaf traits in eight Southeast Asian early successional tree species. For Ecol Manag 202(1–3):245–256.  https://doi.org/10.1016/j.foreco.2004.07.021 CrossRefGoogle Scholar
  25. Krishnaswamy J, Bonell M, Venkatesh B, Purandara BK, Lele S, Kiran MC, Reddy V, Badiger S, Rakesh VN (2012) The rain-runoff response of tropical humid forest ecosystems to use and reforestation in the Western Ghats of India. J Hydrol 472–473:216–237.  https://doi.org/10.1016/j.jhydrol.2012.09.016 CrossRefGoogle Scholar
  26. Lo MH, Famiglietti J, Yeh P, Syed T (2010) Improving parameter estimation and water table depth simulation in a land surface model using GRACE water storage and estimated base flow data. Water Resour Res 46:W05517.  https://doi.org/10.1029/2009WR007855 CrossRefGoogle Scholar
  27. Mishra N, Khare D, Gupta KK, Shukla R (2014) Impact of land use change on groundwater—a review. Adv Water Resour Protect (AWRP) 2:28–41Google Scholar
  28. Molina A, Govers G, Vanacker V, Poesen J, Zeelmaekers E, Cisneros F (2007) Runoff generation in a degraded Andean ecosystem: interaction of vegetation cover and land use. Catena 71(2):357–370.  https://doi.org/10.1016/j.catena.2007.04.002 CrossRefGoogle Scholar
  29. Monteith JL (1965) Evaporation and environment. Symposium of the Society for Experimental Biology, The State and Movement of Water in Living Organisms. 19: 205–234, Academic Press, Inc., NY.Google Scholar
  30. Mukul SA, Herbohn J (2016) The impacts of shifting cultivation on secondary forest dynamics in tropics: a synthesis of the key findings and spatio temporal distribution of research. Environ Sci Policy 55:167–177.  https://doi.org/10.1016/j.envsci.2015.10.005 CrossRefGoogle Scholar
  31. Mukul SA, Herbohn J, Firn J (2016) Tropical secondary forests regeneration after shifting cultivation in the Philippines uplands are important carbon sinks. Sci Rep 6:22483.  https://doi.org/10.1038/srep22483. CrossRefGoogle Scholar
  32. Muñoz-Villers LE, McDonnell JJ (2013) Land use change effects on runoff generation in a humid tropical montane cloud forest region. Hydrol Earth Syst Sci 17:3543–3560.  https://doi.org/10.5194/hess-17-3543-2013 CrossRefGoogle Scholar
  33. Muñoz-Villers LE, Geissert DR, McDonnell JJ (2016) Factors influencing stream baseflow transit times in tropical montane watersheds. Hydrol Earth Syst Sci 20(4):1621–1635.  https://doi.org/10.5194/hess-20-1621-2016 CrossRefGoogle Scholar
  34. Nosetto MD, Jobbágy EG, Brizuela AB, Jackson RB (2012) The hydrologic consequences of land cover change in central Argentina. Agric Ecosyst Environ 154:2–11.  https://doi.org/10.1016/j.agee.2011.01.008 CrossRefGoogle Scholar
  35. Nunes AN, de Almeida AC, Coelho COA (2011) Impacts of land use and cover type on runoff and soil erosion in a marginal area of Portugal. Appl Geogr 31:687–699.  https://doi.org/10.1016/j.apgeog.2010.12.006 CrossRefGoogle Scholar
  36. Poveda G (2004) La hidroclimatología de Colombia: una síntesis desde la escala inter-decadal hasta la escala diurnal. Rev Acad Colombiana Cienc 28(107):201–222 ISSN: 0370-3908Google Scholar
  37. Radulovich R, Sollins P (1987) Improved performance of zero tension lysimeters. Soil Sci Soc Amer J 51:1386–1388CrossRefGoogle Scholar
  38. Ramírez BH, van der Ploeg M, Teuling AJ, Ganzeveld L, Leemans R (2017) Tropical montane cloud forests in the Orinoco river basin: the role of soil organic layers in water storage and release. Geoderma 298:14–26.  https://doi.org/10.1016/j.geoderma.2017.03.007 CrossRefGoogle Scholar
  39. Recha JW, Johannes L (2012) Stream discharge in tropical headwater catchments as a result of forest clearing and soil degradation. Earth Interact 16(13):1.  https://doi.org/10.1175/2012EI000439.1 CrossRefGoogle Scholar
  40. Rodriguez-Iturbe I (2000) Ecohydrology: a hydrologic perspective of climate-soil-vegetations dynamics. Water Resour Res 36(1):3–9.  https://doi.org/10.1029/1999WR900210 CrossRefGoogle Scholar
  41. Salazar JF, Villegas JC, Rendón AM, Rodríguez E, Hoyos I, Mercado-Bettín D, Poveda G (2017) Scaling properties reveal regulation of river flows in the Amazon through a “forest reservoir”. Hydrol Earth Syst Sci Discuss.  https://doi.org/10.5194/hess-2017-278
  42. Suescún D, Villegas JC, León JD, Flórez CP, García-Leoz V, Correa GA (2017) Vegetation cover and rainfall seasonality impact nutrient loss via runoff and erosion in the Colombian Andes. Reg Environ Chang 17(3):827–839.  https://doi.org/10.1007/s10113-016-1071-7 CrossRefGoogle Scholar
  43. Tejedor N, Álvarez E, Arango S, Araujo A, Blundo C, Boza TE (2012) Evaluación del estado de conservación de los bosques montanos en los Andes tropicales. Ecosistemas 21(1–2):148–166Google Scholar
  44. Thornthwaite CW, Mather JR (1957) Instructions and tables for computing potential evapotranspiration and the water balance. Lab Climatol 10(3):127Google Scholar
  45. Van der Hammen T (1983) Aspectos de historia y ecología de la biodiversidad norandina y amazónica. Rev Acad Colombiana Cienc 24(9):231–245 ISSN 0370-3908Google Scholar
  46. Vedovato L, Gesteira M, Areai L, Oighenstein L, Anderson L, Aragão CO (2016) The extent of 2014 forest fragmentation in the Brazilian Amazon. Reg Environ Chang.  https://doi.org/10.1007/s10113-016-1067-3
  47. Veneklass EJ, Van Ek R (1990) Rainfall interception in two tropical mountain rain forest, Colombia. Hydrol Process 4:311–326.  https://doi.org/10.1002/hyp.3360040403 CrossRefGoogle Scholar
  48. Vis M (1986) Interception, drop size distributions and rainfall kinetic in four Colombian forest ecosystems. Earth Surf Process Landf 11:591–570.  https://doi.org/10.1002/esp.3290110603 CrossRefGoogle Scholar
  49. Wang S, Fu B, Gao G, Liu Y, Zhou J (2013) Responses of soil moisture in different land cover types to rainfall events in a re-vegetation catchment area of the Loess Plateau, China. Catena 101:122–128.  https://doi.org/10.1016/j.catena.2012.10.006 CrossRefGoogle Scholar
  50. Zimmermann B, Zimmermann A, Scheckenbach HL, Schmid T, Hall JS, Van Breugel M (2013) Change in rainfall interception along a secondary forest succession gradient in lowland Panama. Hydrol Earth Syst Sci 17:4659–4670.  https://doi.org/10.5194/hess-17-4659-2013. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Vanessa García-Leoz
    • 1
  • Juan Camilo Villegas
    • 1
  • Diego Suescún
    • 2
  • Claudia P. Flórez
    • 2
  • Luis Merino-Martín
    • 3
  • Teresita Betancur
    • 1
  • Juan Diego León
    • 2
  1. 1.Grupo GIGA, Escuela AmbientalUniversidad de AntioquiaMedellínColombia
  2. 2.Departamento de Ciencias ForestalesUniversidad Nacional de Colombia - Sede MedellínMedellínColombia
  3. 3.AMAP, CIRAD, CNRS, INRA, IRDUniversité de MontpellierMontpellierFrance

Personalised recommendations