Advertisement

Regional Environmental Change

, Volume 18, Issue 4, pp 1103–1115 | Cite as

Woody plant encroachment following grazing abandonment in the subalpine belt: a case study in northern Spain

  • Yasmina Sanjuán
  • José Arnáez
  • Santiago Beguería
  • Noemí Lana-Renault
  • Teodoro Lasanta
  • Amelia Gómez-Villar
  • Javier Álvarez-Martínez
  • Paz Coba-Pérez
  • José M. García-Ruiz
Original Article

Abstract

The montane and subalpine belts in European mountains were affected by intense land use/land cover changes during the twentieth century. In the case of the subalpine belt, most European mountains were affected by complex deforestation processes from Neolithic times, leading to the expansion of summer grasslands to support grazing by transhumant sheep and goats flocks. This resulted in an altitudinal reduction of the tree line and the occurrence of severe soil erosion and shallow landsliding. The intense livestock pressure over centuries explains why the landscape remained without major change until the middle of the twentieth century. Since then, depopulation, land abandonment, and the disappearance of the transhumant system have resulted in a marked decline in livestock numbers and subsequent encroachment of shrubs and trees in the subalpine belt. The Urbión Mountains (Iberian Range, northern Spain) provides one of the clearest examples in the Iberian Peninsula, where there was intense deforestation since the Neolithic period to enlarge the area of subalpine summer grasslands. The recent reversal of this situation in the last decades led to (i) a marked trend to dense forest, which resulted in an average 200 m altitudinal advance, and (ii) the spatial contraction of shrublands, which have been replaced by dense forest in the highest areas. Changes will continue in the future, possibly enhanced by global warming.

Keywords

Woody encroachment Subalpine belt Deforestation Land use/land cover changes Land abandonment 

Notes

Acknowledgements

Support for this research was provided by the projects ESPAS (CGL2015-65569-R) and INDICA (CGL2011-27753-C02-01 and -02), funded by the Spanish Ministry of Economy and Competitiveness.

References

  1. Améztegui A, Brotons L, Coll L (2010) Land use changes as major drivers of mountain pine (Pinus uncinata Ram.) expansion in the Pyrenees. Glob Ecol Biogeogr 19:632–641.  https://doi.org/10.1111/j.1466-8238.2010.00550.x Google Scholar
  2. Améztegui A, Coll L, Brotons L, Ninot JM (2015) Land-use legacies rather than climate change are driving the recent upward shift of the mountain tree line in the Pyrenees. Glob Ecol Biogeogr.  https://doi.org/10.1111/geb.12407
  3. Arnáez Vadillo J (1987) Formas y procesos en la evolución de vertientes de la Sierra de la Demanda (Sistema Ibérico). Cuad Invest Geogr 13:7–153.  https://doi.org/10.18172/cig.vol13iss0 Google Scholar
  4. Arnáez J, Lasanta T, Errea MP, Ortigosa L (2011) Land abandonment, landscape evolution, and soil erosion in a Spanish Mediterranean mountain region: the case of Camero Viejo. Land Degrad Dev 22:537–550.  https://doi.org/10.1002/ldr.1032 CrossRefGoogle Scholar
  5. del Barrio G, Puigdefábregas J (1987) Mass wasting features above the timberline in the Central Pyrenees and their topographic controls. Pirineos 130:29–51 https://dialnet.unirioja.es/servlet/articulo?codigo=135873 Google Scholar
  6. Bathurst JC, Moretti G, El-Hames A, Beguería S, García-Ruiz JM (2007) Modelling the impact of forest loss on shallow landslide sediment yield, Ijuez catchment, Spanish Pyrenees. Hydrol Earth Syst Sci 11:569–583.  https://doi.org/10.5194/hess-11-569-2007 CrossRefGoogle Scholar
  7. Batllori E, Gutiérrez E (2008) Regional tree line dynamics in response to global change in the Pyrenees. J Ecol 96:1275–1288.  https://doi.org/10.1111/j.1365-2745.2008.01429.x CrossRefGoogle Scholar
  8. Beguería S, López-Moreno JI, Lorente A, Seeger M, García-Ruiz JM (2003) Assessing the effects of climate oscillations and land-use changes on streamflow in the Central Spanish Pyrenees. Ambio 32:283–286.  https://doi.org/10.1579/0044-7447-32.4.283 CrossRefGoogle Scholar
  9. Beguería S, López-Moreno JI, Gómez-Villar A, Rubio V, Lana-Renault N, García-Ruiz JM (2006) Fluvial adjustments to soil erosion and plant cover changes in the Central Spanish Pyrenees. Geogr Ann 88A:177–186.  https://doi.org/10.1111/j.1468-0459.2006.00293.x CrossRefGoogle Scholar
  10. Beven KJ, Kirkby MJ (1979) A physically based, variable contributing area model of basin hydrology. Hydrol Sci Bull 24:43–69.  https://doi.org/10.1080/02626667909491834 CrossRefGoogle Scholar
  11. Camarero JJ, García-Ruiz JM, Sangüesa-Barreda G, Galván JD, Alla AQ, Sanjuán Y, Beguería S, Gutiérrez E (2015) Recent and intense dynamics in a formerly static Pyrenean treeline. Arct Antarct Alp Res 47:773–783.  https://doi.org/10.1657/AAAR0015-001 CrossRefGoogle Scholar
  12. Colombaroli D, Vannière B, Emmanuel C, Magny M, Tinner W (2008) Fire-vegetation interactions during the Mesolithic-Neolithic transition at Lago dell’Accesa, Tuscany, Italy. The Holocene 18:679–692.  https://doi.org/10.1177/0959683608091779 CrossRefGoogle Scholar
  13. Croissant Y (2013) mlogit: multinomial logit model. R package version 0.2–4. https://CRAN.R-project.org/package=mlogit
  14. Cunill R, Soriano JM, Bal MC, Pèlachs A, Pérez-Obiol R (2012) Holocene treeline changes on the south slope of the Pyrenees: a pedoanthracological analysis. Veg Hist Archaeobotany 21:373–384.  https://doi.org/10.1007/s00334-011-0342-y CrossRefGoogle Scholar
  15. Diry JP (1995) Moyennes montagnes d’Éurope occidentale et dynamiques rurales. Rev Géogr Alp 83:15–26 http://www.persee.fr/doc/rga_0035-1121_1995_num_83_3_3814 CrossRefGoogle Scholar
  16. Egarter Vigl L, Schipke U, Tasser E, Tappeiner U (2016) Linking long-term landscape dynamics to the multiple interactions among ecosystem services in the European Alps. Landsc Ecol 31:1903–1918.  https://doi.org/10.1007/s10980-016-0389-3 CrossRefGoogle Scholar
  17. Egoh B, Rouget M, Reyers B, Knight AT, Cowling RM, van Jaarsveld AS, Welz A (2007) Integrating ecosystem services into conservation assessment: a review. Ecol Econ 63:714–721.  https://doi.org/10.1016/j.ecolecon.2007.04.007 CrossRefGoogle Scholar
  18. Estienne P (1989) Evolution de la population des montagnes françaises au XXe siècle. Rev Géogr Alp 77:395–405 http://www.persee.fr/doc/rga_0035-1121_1989_num_77_4_2757 CrossRefGoogle Scholar
  19. Fondevilla C, Colomer MA, Fillat F, Tappeiner U (2016) Using a new PDP modelling approach for land-use and land-cover change predictions: a case study in the Stubai Valley (Central Alps). Ecol Model 322:101–114.  https://doi.org/10.1016/j.ecolmodel.2015.11.016 CrossRefGoogle Scholar
  20. Galop D, Houet T, Mazier F, Leroux G, Rius D (2011) Grazing activities and biodiversity in the Pyrenees: new insights on high altitude ecosystems in the framework of a Human Environment Observatory. PAGES News 19:53–55 https://halshs.archives-ouvertes.fr/halshs-00750965/file/2011_Galop_etal_cor.pdf CrossRefGoogle Scholar
  21. García de Celis A, Arroyo Pérez P, Gandía Fernández A (2008) Cambios recientes del límite superior del bosque en Urbión: gestión forestall, ganadería y clima. Zubía Monográfico 20:97–118 https://dialnet.unirioja.es/descarga/articulo/2768907.pdfGoogle Scholar
  22. García-Ruiz JM (2015) Why geomorphology is a global science. Cuad Invest Geogr 41:87–105.  https://doi.org/10.18172/cig.2652 Google Scholar
  23. García-Ruiz JM, Lana-Renault N (2011) Hydrological and erosive consequences of farmland abandonment in Europe, with special reference to the Mediterranean region—a review. Agric Ecosyst Environ 140:317–338.  https://doi.org/10.1016/j.agee.2011.01.003 CrossRefGoogle Scholar
  24. García-Ruiz JM, Lasanta T (1990) Land-use changes in the Spanish Pyrenees. Mt Res Dev 10:267–279.  https://doi.org/10.2307/3673606 CrossRefGoogle Scholar
  25. García-Ruiz JM, Alvera B, del Barrio G, Puigdefábregas J (1990) Geomorphic processes above the timberline in the Spanish Pyrenees. Mt Res Dev 10:201–214.  https://doi.org/10.2307/3673600 CrossRefGoogle Scholar
  26. García-Ruiz JM, Beguería S, Alatorre LC, Puigdefábregas J (2010) Land cover changes and shallow landsliding in the Flysch Sector of the Spanish Pyrenees. Geomorphology 124:250–259.  https://doi.org/10.1016/j.geomorph.2010.03.036 CrossRefGoogle Scholar
  27. García-Ruiz JM, López-Moreno JI, Vicente-Serrano SM, Lasanta T, Beguería S (2011) Mediterranean water resources in a Global Change scenario. Earth Sci Rev 105:121–139.  https://doi.org/10.1016/j.earscirev.2011.01.006 CrossRefGoogle Scholar
  28. García-Ruiz JM, López-Moreno JI, Lasanta T, Vicente-Serrano SM, González-Sampériz P, Valero-Garcés BL, Sanjuán Y, Beguería S, Nadal-Romero E, Lana-Renault N, Gómez-Villar A (2015) Los efectos geoecológicos del Cambio Global en el Pirineo Central español: una revisión a distintas escalas espaciales y temporales. Pirineos 170:e012.  https://doi.org/10.3989/Pirineos.2015.170005 CrossRefGoogle Scholar
  29. García-Ruiz JM, Sanjuán Y, Gil-Romera G, González-Sampériz P, Beguería S, Arnáez J, Coba-Pérez P, Gómez-Villar A, Álvarez-Martínez J, Lana-Renault N, Pérez-Cardiel E, López de Calle C (2016) Mid and Late Holocene forest fires and deforestation in the subalpine belt of the Iberian range, northern Spain. J Mt Sci 13:1760–1772.  https://doi.org/10.1007/s11629-015-3763-8 CrossRefGoogle Scholar
  30. Gartzia M, Alados CL, Pérez-Cabello F (2014) Assessment of the effects of biophysical and anthropogenic factors on woody plant encroachment in dense and sparse mountain grasslands based on remote sensing data. Prog Phys Geogr 38:201–217.  https://doi.org/10.1177/0309133314524429 CrossRefGoogle Scholar
  31. Gehrig-Fasel J, Guisan A, Zimmermann NE (2007) Tree line shifts in the Swiss Alps: climate change or land abandonment? J Veg Sci 18(4):571–582.  https://doi.org/10.1111/j.1654-1103.2007.tb02571.x CrossRefGoogle Scholar
  32. Gómez-Villar A, Álvarez-Martínez J, García-Ruiz JM (2006) Factors influencing the presence or absence of tributary-junction fans in the Iberian Range, Spain. Geomorphology 81:252–264.  https://doi.org/10.1016/j.geomorph.2006.04.011 CrossRefGoogle Scholar
  33. Gómez-Villar A, Sanjuán Y, García-Ruiz JM, Nadal-Romero E, Álvarez-Martínez J, Arnáez J, Serrano Muela MP (2014) Sediment organization and adjustment in a torrential reach of the Upper Ijuez River, Central Spanish Pyrenees. Cuad Invest Geogr 40:191–214.  https://doi.org/10.18172/cig.2566 Google Scholar
  34. Gouveia CM, Páscoa P, Russo A, Trigo RM (2016) Land degradation trend assessment over Iberia during 1982-2012. Cuad Invest Geogr 42:89–112.  https://doi.org/10.18172/cig.2945 Google Scholar
  35. Guiguet-Covex C, Arnaud F, Poulenard J, Disnar JR, Delhon C, Francus P, David F, Enters D, Rey PJ, Delannoy JJ (2011) Changes in erosion patterns during the Holocene in a currently treeless subalpine catchment inferred from lake sediment geochemistry (Lake Anterne, 2063 m a.s.l., NW French Alps): the role of climate and human activities. The Holocene 21:651–665.  https://doi.org/10.1177/0959683610391320 CrossRefGoogle Scholar
  36. Höllermann P (1985) The periglacial belt of mid-latitude mountains from a geoecological point of view. Erdkunde 39:259–270.  https://doi.org/10.3112/erdkunde.1985.04.02 CrossRefGoogle Scholar
  37. Holtmeier FK, Broll G (2005) Sensitivity and response of northern hemisphere altitudinal and polar treelines to environmental change at landscape and local scales. Glob Ecol Biogeogr 14:395–410.  https://doi.org/10.1111/j.1466-822x.2005.00168.x CrossRefGoogle Scholar
  38. Keesstra SD (2007) Impact of natural reforestation on floodplain sedimentation in the Dragonja basin, SW Slovenia. Earth Surf Process Landf 32:49–65.  https://doi.org/10.1002/esp.1360 CrossRefGoogle Scholar
  39. Lana-Renault N, Alvera B, García-Ruiz JM (2011) Runoff and sediment transport during the snowmelt period in a Mediterranean high mountain catchment. Arct Antarct Alp Res 43:213–222.  https://doi.org/10.1657/1938-4246-43.2.213 CrossRefGoogle Scholar
  40. Lasanta T (1990) Tendances actuelles de l’organisation spatiale des montagnes espagnoles. Ann Géogr 551:51–71 http://www.persee.fr/doc/geo_0003-4010_1990_num_99_551_20944 CrossRefGoogle Scholar
  41. Lasanta T, Vicente-Serrano SM (2007) Cambios en la cubierta vegetal en el Pirineo aragonés en los últimos 50 años. Pirineos 162:125–154.  https://doi.org/10.3989/pirineos.2007.v162.16. Google Scholar
  42. Lasanta-Martínez T, Vicente-Serrano SM, Cuadrat-Prats JM (2005) Mountain Mediterranean landscape evolution caused by the abandonment of traditional primary activities: a study of the Spanish Central Pyrenees. Appl Geogr 25:47–65.  https://doi.org/10.1016/j.apgeog.2004.11.001 CrossRefGoogle Scholar
  43. Lasheras-Álvarez L, Pérez-Sanz A, Gil-Romera G, González-Sampériz P, Sevilla-Callejo M, Valero-Garcés B (2013) Historia del fuego y la vegetación en una secuencia holocena del Pirineo Central: La Basa de la Mora. Cuad Invest Geogr 39:77–95.  https://doi.org/10.18172/cig.2000 Google Scholar
  44. Liébault F, Piégay H (2001) Assessment of channel changes due to long-term bedload supply decrease, Roubion River, France. Geomorphology 36:167–186.  https://doi.org/10.1016/S0169-555X(00)00044-1 CrossRefGoogle Scholar
  45. Liébault F, Gomez B, Page M, Marden M, Peacock D, Richard D, Trotter CM (2005) Land-use change, sediment production and channel response in upland regions. River Res Appl 21:739–756.  https://doi.org/10.1002/rra.880
  46. López-Moreno JI (2005) Recent variations of snowpack depth in the Central Spanish Pyrenees. Arct Antarct Alp Res 37:253–260.  https://doi.org/10.1657/1523-0430(2005)037[0253:RVOSDI]2.0.CO;2 CrossRefGoogle Scholar
  47. López-Moreno JI, Goyett S, Meniston M (2009) Impact of climate change on snowpack in the Pyrenees: horizontal spatial variability and vertical gradients. J Hydrol 374:384–396.  https://doi.org/10.1016/j.jhydrol.2009.06.049 CrossRefGoogle Scholar
  48. López-Moreno JI, Zabalza J, Vicente-Serrano SM, Revuelto J, Gilaberte M, Azorín-Molina C, Morán-Tejeda E, García-Ruiz JM, Tague C (2014) Impact of climate and land use change on water availability and reservoir management. Scenarios in the Upper Aragón River, Spanish Pyrenees. Sci Total Environ 493:1222–1231.  https://doi.org/10.1016/scitotenv.2013.09.031 CrossRefGoogle Scholar
  49. MacDonald D, Crabtree JR, Wiesinger G, Dax T, Stamou N, Fleury P, Gutiérrez Lazpita J, Gibon A (2000) Agricultural abandonment in mountain areas of Europe: environmental consequences and policy response. J Environ Manag 59:47–69.  https://doi.org/10.1006/jema.1999.0335 CrossRefGoogle Scholar
  50. Montserrat-Martí J (1992) Evolución glaciar y postglaciar del clima y la vegetación en la vertiente sur del Pirineo: Estudio palinológico. Instituto Pirenaico de Ecología, Zaragoza, pp 147Google Scholar
  51. Morán-Tejeda E, Lorenzo-Lacruz J, López-Moreno JI, Rahman K, Beniston B (2014) Streamflow timing of mountain rivers in Spain: recent changes and future projections. J Hydrol.  https://doi.org/10.1016/j.jhydrol.2014.06.053
  52. Moreno Fernández JR (1996) La ganadería trashumante en La Rioja 1752-1865. Una revisión bibliográfica y cuantitativa. Brocar 20:277–302 https://publicaciones.unirioja.es/ojs/index.php/brocar/article/view/1767 CrossRefGoogle Scholar
  53. Navarro-Serrano E, López-Moreno JI (2017) Spatio-temporal analysis of snowfall events in the Spanish Pyrenees and their relationship to atmospheric circulation. Cuad Invest Geogr 43(1):233–254.  https://doi.org/10.18172/cig.3042 Google Scholar
  54. Pecher C, Tasser E, Tappeiner U (2011) Definition of the potential treeline in the European Alps and its benefit for sustainability monitoring. Ecol Indic 11(2):438–447.  https://doi.org/10.1016/j.ecolind.2010.06.015 CrossRefGoogle Scholar
  55. Pérez-Sanz A, González-Sampériz P, Moreno A, Valero-Garcés B, Gil-Romera G, Rieradevall M, Tarrats P, Lasheras-Álvarez L, Morellón M, Belmonte A, Sancho C, Sevilla-Callejo M, Navas A (2013) Holocene climate variability, vegetation dynamics and fire regime in the central Pyrenees: the Basa de la Mora sequence (NE Spain). Quat Sci Rev 73:149–169.  https://doi.org/10.1016/j.quascirev.2013.05.010 CrossRefGoogle Scholar
  56. Piégay H, Walling DE, Landon N, He Q, Liébault F, Petiot R (2004) Contemporary changes in sediment yield in an alpine mountain basin due to afforestation (the Upper Drôme in France). Catena 55:183–212.  https://doi.org/10.1016/S0341-8162(03)00118-8 CrossRefGoogle Scholar
  57. Poyatos R, Latron J, Llorens P (2003) Land use and land cover change after agricultural abandonment. The case of a Mediterranean mountain area (Catalan Pre-Pyrenees). Mt Res Dev 23:362–368.  https://doi.org/10.1659/0276-4741(2003)023[0362:LUALCC]2.0.CO;2 CrossRefGoogle Scholar
  58. Sanjuán Y, Gómez-Villar A, Nadal-Romero E, Álvarez-Martínez J, Arnáez J, Serrano-Muela MP, Rubiales JM, González-Sampériz P, García-Ruiz JM (2016) Linking land cover changes in the sub-alpine and montane belts to changes in a torrential river. Land Degrad Dev 27:179–189.  https://doi.org/10.1002/ldr.2294 CrossRefGoogle Scholar
  59. Tasser E, Tappeiner U (2002) Impact of land use changes on mountain vegetation. Appl Veg Sci 5:173–184.  https://doi.org/10.1111/j.1654-109X.2002.tb00547.x CrossRefGoogle Scholar
  60. Tasser E, Mader M, Tappeiner U (2003) Effect of land use in alpine grasslands on the probability of landslides. Basic Appl Ecol 4(3):271–280.  https://doi.org/10.1078/1439-1791-00153
  61. Tasser E, Leitinger G, Tappeiner U (2017) Climate change versus land use change – which affects the landscape more? Land Use Policy 60:60–72.  https://doi.org/10.1016/j.landusepol.2016.10.019 CrossRefGoogle Scholar
  62. Vicente-Serrano SM, Lasanta T, Romo A (2004) Analysis of the spatial and temporal evolution of vegetation cover in the Spanish Central Pyrenees: the role of human management. Environ Manag 34(6):802–818.  https://doi.org/10.1007/s00267-003-0022-5
  63. Vicente-Serrano SM, Rodríguez-Camino E, Domínguez-Castro F, El Kenawy A, Azorín-Molina C (2017) An updated review of recent trends in observational surface atmospheric variables and their extremes over Spain. Cuad Invest Geogr 43(1):209–232.  https://doi.org/10.18172/cig.3134 Google Scholar
  64. Vitte P (1992) La montagne italienne. Ann Géogr 563:68–83 http://www.persee.fr/doc/geo_0003-4010_1992_num_101_563_21066 CrossRefGoogle Scholar
  65. Viviroli D, Weingartner R, Messerli B (2003) Assessing the hydrological significance of the World’s mountains. Mt Res Dev 23:32–40.  https://doi.org/10.1659/0276-4741(2003)023[0032:ATHSOT]2.0.CO;2 CrossRefGoogle Scholar
  66. Wallentin G, Tappeiner U, Strobl J, Tasser E (2008) Understanding alpine tree line dynamics: an individual based model. Ecol Model 218:235–246.  https://doi.org/10.1016/j.ecolmodel.2008.07.005 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Yasmina Sanjuán
    • 1
  • José Arnáez
    • 2
  • Santiago Beguería
    • 3
  • Noemí Lana-Renault
    • 2
  • Teodoro Lasanta
    • 1
  • Amelia Gómez-Villar
    • 4
  • Javier Álvarez-Martínez
    • 5
  • Paz Coba-Pérez
    • 6
  • José M. García-Ruiz
    • 1
  1. 1.Instituto Pirenaico de EcologíaConsejo Superior de Investigaciones Científicas (IPE-CSIC)ZaragozaSpain
  2. 2.Área de Geografía Física, Departamento de Ciencias HumanasUniversidad de La RiojaLogroñoSpain
  3. 3.Estación Experimental de Aula DeiConsejo Superior de Investigaciones Científicas (EEAD-CSIC)ZaragozaSpain
  4. 4.Departamento de Geografía y Geología, Facultad de Filosofía y LetrasUniversidad de LeónLeónSpain
  5. 5.Departamento de Ingeniería Agrícola y ForestalUniversidad de ValladolidValladolidSpain
  6. 6.Centro de Investigaciones en Geografía Ambiental, CIGAUniversidad Nacional Autónoma de MéxicoMexico CityMexico

Personalised recommendations