Advertisement

Regional Environmental Change

, Volume 18, Issue 1, pp 161–173 | Cite as

A model-based assessment of the environmental impact of land-use change across scales in Southern Amazonia

  • Rüdiger Schaldach
  • Katharina H. E. Meurer
  • Hermann F. Jungkunst
  • Claas Nendel
  • Tobia Lakes
  • Florian Gollnow
  • Jan Göpel
  • Jens Boy
  • Georg Guggenberger
  • Robert Strey
  • Simone Strey
  • Thomas Berger
  • Gerhard Gerold
  • Regine Schönenberg
  • Jürgen Böhner
  • Marcus Schindewolf
  • Evgeny Latynskiy
  • Anna Hampf
  • Phillip S. Parker
  • Paulo César Sentelhas
Original Article

Abstract

This article describes the design of a new model-based assessment framework to identify and analyse possible future trajectories of agricultural development and their environmental consequences within the states of Mato Grosso and Pará in Southern Amazonia, Brazil. The objective is to provide a tool for improving the information basis for scientists and policy makers regarding the effects of global change and national environmental policies on land-use change and the resulting impacts on the loss of natural vegetation, greenhouse gas emissions, hydrological processes, and soil erosion within the region. For this purpose, the framework combines the regional land-use models, LandSHIFT and alucR, the farm-level model, MPMAS, and the MONICA crop model, with a set of environmental impact models that are operating at the regional and watershed levels. As a first application of the framework, four scenarios with the time horizon 2030 were specified and analysed. Future land-use change will strongly depend on the interplay between the production of agricultural commodities, the agricultural intensification in terms of increasing crop yields and pasture biomass productivity, and the enforcement of environmental laws and policies. On the regional level, the scenarios with the highest increase in agricultural production in combination with weak law enforcement (Trend and Illegal Intensification) generated the highest losses in natural vegetation due to the expansion of agricultural area as well as the highest greenhouse gas emissions. Also, at the watershed level, these scenarios are characterised by the highest changes in river discharge and soil erosion that might lead to a further decline in soil fertility in the long term. Moreover, the analysis of the Sustainable Development scenario indicates that a shift in agricultural production patterns from livestock to crop cultivation, together with effective law enforcement, can effectively reduce land-use change and its negative effects on the environment. With the scenario analysis, we could illustrate that our assessment framework is capable to provide a large variety of valuable information to support the development of future land-use strategies in the study region.

Keywords

Assessment framework Land-use change Southern Amazonia Environmental impact 

Notes

Acknowledgements

This study was conducted in the framework of the integrated project CarBioCial funded by the German Ministry of Education and Research (BMBF) under the grant number 01LL0902K. We thank all involved stakeholders, farmers, and our Brazilian scientific colleagues for their support and CNPq, Embrapa, and FAPEMAT for co-funding of Brazilian counterpart projects.

References

  1. Aguiar APD, Vieira ICG, Assis TO, Dalla-Nora EL, Toledo PM, Oliveira Santos-Junior RA, Batistella M, Coelho AS. Savaget EK, Aragão LEOC, Nobre CA, Ometto JPH. (2016) Land use change emission scenarios: anticipating a forest transition process in the Brazilian Amazon. Glob Chang Biol 22: 1821–1840.  https://doi.org/10.1111/gcb.13134
  2. Alcamo J (2008) Chapter six the SAS approach: combining qualitative and quantitative knowledge in environmental scenarios. Dev Integr Environ Assess 2:123–150.  https://doi.org/10.1016/S1574-101X(08)00406-7 CrossRefGoogle Scholar
  3. Amaral S, Câmara G, Monteiro AMV, Quintanilha JA, Elvidge CD (2005) Estimating population and energy consumption in Brazilian Amazonia using DMSP night-time satellite data. Comput Environ Urban Syst 29(2):179–195.  https://doi.org/10.1016/j.compenvurbsys.2003.09.004 CrossRefGoogle Scholar
  4. An l ZA, Liu JG, Axinn W (2014) Agent-based modeling in coupled human and natural systems (CHANS): lessons from a comparative analysis. Ann Assoc Am Geogr 104(4):723–745.  https://doi.org/10.1080/00045608.2014.910085 CrossRefGoogle Scholar
  5. Arnold JG, Moriasi DN, Gassman PW, Abbaspour KC, White MJ, Srinivasan R, Santhi C, Harmel RD, van Griensven A, Van Liew MW, Kannan N (2012) SWAT: model use, calibration, and validation. Trans ASABE 55(4):1491–1508.  https://doi.org/10.13031/2013.42256
  6. Arvor D, Dubreuil V, Simões M, Bégué A (2013) Mapping and spatial analysis of the soybean agricultural frontier in Mato Grosso; Brazil, using remote sensing data. GeoJournal 78:833–850.  https://doi.org/10.1007/s10708-012-9469-3 CrossRefGoogle Scholar
  7. Barni PE, Fearnside PM, de Alencastro Graça PML (2015) Simulating deforestation and carbon loss in Amazonia: impacts in Brazil’s Roraima State from reconstructing Highway BR-319 (Manaus-Porto Velho). Environ Manag 55(2):259–278.  https://doi.org/10.1007/s00267-014-0408-6 CrossRefGoogle Scholar
  8. Böhner J, Dietrich H, Fraedrich K, Kawohl T, Kilian M, Lucarini V, Lunkeit F (2013) Development and implementation of a hierarchical model chain for modelling regional climate variability and climate change over southern Amazonia. In: Interdisciplinary analysis and modeling of carbon-optimized land management strategies for Southern Amazonia. Universitätsdrucke Göttingen, pp 119–128Google Scholar
  9. Bukovsky MS, Karoly DJ (2009) Precipitation simulations using WRF as a nested regional climate model. J Appl Meteorol Climatol 48(10):2152–2159.  https://doi.org/10.1175/2009JAMC2186.1 CrossRefGoogle Scholar
  10. Carauta M, Latynskiy E, Mössinger J, Gil J, Libera A, Hampf A, Moteiro L, Siebold A, Berger T (2017) Can preferential credit programs speed up the adoption of low-carbon agricultural systems in Mato Grosso, Brazil? Results from bioeconomic microsimulation. Reg Environ Chang:1–12.  https://doi.org/10.1007/s10113-017-1104-x
  11. CESB (2015) Desafio Nacional de Máxima Produtividade da Soja. http://www.cesbrasil.org.br/Sobre.aspx. Accessed Jue 2015
  12. Chaplin-Kramer R, Sharp RP, Mandle L, Sim S, Johnson J, Butnar I, Milà i, Canals L, Eichelberger BA, Ramler I, Mueller C, McLachlan N, Yousefi A, King H, Kareiva PM (2015) Spatial patterns of agricultural expansion determine impacts on biodiversity and carbon storage. Proc Natl Acad Sci 112(24):7402–7407.  https://doi.org/10.1073/pnas.1406485112 CrossRefGoogle Scholar
  13. Coy M, Klingler M (2014) Frentes pioneiras em transformação: o eixo da BR-163 e os desafios socio ambientais. Territórios e Fronteiras 7:1–26.  https://doi.org/10.22228/rt-f.v7i0.282 CrossRefGoogle Scholar
  14. Dalla-Nora EL, de Aguiar APD, Lapola DM, Woltjer G (2014) Why have land use change models for the Amazon failed to capture the amount of deforestation over the last decade? Land Use Policy 39:403–411.  https://doi.org/10.1016/j.landusepol.2014.02.004 CrossRefGoogle Scholar
  15. de Oliveira Silva R, Barioni LG, Hall JAJ, Folegatti Matsuura M, Zanett Albertini T, Fernandes FA, Moran D (2016) Increasing beef production could lower greenhouse gas emissions in Brazil if decoupled from deforestation. Nat Clim Chang 6:493–497.  https://doi.org/10.1038/nclimate2916 CrossRefGoogle Scholar
  16. Embrapa (2014) Ensaio Nacional de Cultivares de Milho. http://www.cnpms.embrapa.br/ensaio/. Accessed 15 Jul 2015
  17. FAO (2015) Food outlook—biannual report on global food markets. Food and Agricultural Organization of the United Nations (FAO), RomeGoogle Scholar
  18. Fearnside PM (2015) Environment: deforestation soars in the Amazon. Nature 521(7553):423–423.  https://doi.org/10.1038/521423b CrossRefGoogle Scholar
  19. Fearnside PM (2016) Brazil’s Amazonian forest carbon: the key to Southern Amazonia’s significance for global climate. Reg Environ Chang:1–15.  https://doi.org/10.1007/s10113-016-1007-2
  20. Fearnside PM, Righi CA, de Alencastro Graça PML, Keizer EW, Cerri CC, Nogueira EM, Barbosa RI (2009) Biomass and greenhouse-gas emissions from land use change in Brazil’s Amazonian “arc of deforestation”: the states of Mato Grosso and Rondônia. For Ecol Manag 258(9):1968–1978.  https://doi.org/10.1016/j.foreco.2009.07.042
  21. Forster P, Ramaswamy V, Artaxo P, Berntsen T, Betts R, Fahey DW, Haywoos J, Lean J, Lowe DC, Myhre G, Nganga J, Prinn R, Raga G, Schulz M, Can Dorland R (2007) Changes in atmospheric constituents and in radiative forcing. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (ed) Climate change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  22. Galford GL, Melillo JM, Mustard JF, Cerri CEP, Cerri CC (2010) The Amazon frontier of land-use change: croplands and consequences for greenhouse gas emissions. Earth Interact 14:1–24.  https://doi.org/10.1175/2010EI327.1 CrossRefGoogle Scholar
  23. Gibbs HK, Rausch L, Munger J, Schelly I, Morton DC, Noojipady P, Soares-Filho B, Barreto P, Micol L, Walker NF (2015) Brazil’s soy moratorium. Science 347(6220):377–378.  https://doi.org/10.1126/science.aaa0181 CrossRefGoogle Scholar
  24. Gil J, Siebold M, Berger T (2015) Adoption and development of integrated crop–livestock–forestry systems in Mato Grosso, Brazil. Agric Ecosyst Environ 199:394–406.  https://doi.org/10.1016/j.agee.2014.10.008 CrossRefGoogle Scholar
  25. Gollnow F, Göpel J, Schaldach R, Lakes T (2017) Scenarios of land-use change in a deforestation corridor in the Brazilian Amazon: combining two scales of analysis. Reg Environ Chang:1–17.  https://doi.org/10.1007/s10113-017-1129-1
  26. Göpel J, Schüngel J, Schaldach R, Meurer KHE, Jungkunst HF, Franko U, Boy J, Strey R, Strey S, Guggenberger G, Hampf AC, Parker PS (2017) Future scenarios of land-use change in southern Amazonia and its impacts on greenhouse gas emissions from agricultural soils. Reg Environ Chang: 1-14.  https://doi.org/10.1007/s10113-017-1235-0
  27. Green WH, Ampt GA (1911) Studies on soil physics. J Agric Sci 4(01):1–24.  https://doi.org/10.1017/S0021859600001441 CrossRefGoogle Scholar
  28. Hamilton SH, El Sawah S, Guillaume JHA, Jakeman AJ, Pierce SA (2015) Integrated assessment and modelling: overview and synthesis of salient dimensions. Environ Model Softw 64:215–229.  https://doi.org/10.1016/j.envsoft.2014.12.005 CrossRefGoogle Scholar
  29. Hertel TW (2015) The challenges of sustainably feeding a growing planet. Food Sec 7(2):185–198.  https://doi.org/10.1007/s12571-015-0440-2 CrossRefGoogle Scholar
  30. IMEA - Instituto Mato-grossense de Economia Agropecuária (2013) Production Cost Survey from the Mato Grosso Institute of Agricultural Economics—MEA. (private survey—unpublished raw data). Cuiabá, Brazil http://www.imea.com.br/sinc/web2/login.php. Accessed 01 Dec 2016
  31. INPE (2015) Projecto TerraClass. http://www.inpe.br/cra/projetos_pesquisas/terraclass2010.php. Accessed 23 Apr 2015
  32. Lamparter G, Nobrega RLB, Kovacs K, Amorim S, Gerold G (2017) Modelling hydrological impacts of agricultural expansion in two macro-catchments in Southern Amazonia, Brazil. Reg Environ Chang:1–13.  https://doi.org/10.1007/s10113-016-1015-2
  33. Lapola DM, Schaldach R, Alcamo J, Bondeau A, Koch J, Koelking C, Priess JA (2010) Indirect land-use changes can overcome carbon savings from biofuels in Brazil. Proc Natl Acad Sci 107(8):3388–3393.  https://doi.org/10.1073/pnas.0907318107 CrossRefGoogle Scholar
  34. Lapola DM, Schaldach R, Alcamo J (2011) Impacts of climate change and the end of deforestation on land use in the Brazilian Legal Amazon. Earth Interact 1:2–29.  https://doi.org/10.1175/2010EI333.1 Google Scholar
  35. Latynskiy E, Berger T, Troost C (2014) Assessment of policies forlow-carbon agriculture by means of multi-agent simulation. In: Ames DP, Quinn NWT, Rizzoli AE (eds) Proceedings of the 7th international congress on environmental modelling and software, June 15–19, San Diego, CaliforniaGoogle Scholar
  36. Lima AJN, Suwa R, de Mello Ribeiro GHP, Kajimoto T, dos Santos J, da Silva RP, De Souza CAS, de Barros PC, Noguchi H, Ishizuka M, Higuchi N (2012) Allometric models for estimating aboveand belowground biomass in Amazonian forests at Sao Gabriel da Cachoeira in the upper Rio Negro, Brazil. For Ecol Manag 277:163–172.  https://doi.org/10.1016/jforeco201204028
  37. Macedo MN, DeFries RS, Morton DC, Stickler CM, Galford GL, Shimabukuro YE (2012) Decoupling of deforestation and soy production in the southern Amazon during the late 2000s. Proc Natl Acad Sci 109:1341–1346.  https://doi.org/10.1073/pnas.1111374109 CrossRefGoogle Scholar
  38. Malhi Y, Aragão LE, Galbraith D, Huntingford C, Fisher R, Zelazowski P, Sitch S, McSweeney C, Meir P (2009) Exploring the likelihood and mechanism of a climate-change-induced dieback of the Amazon rainforest. Proc Natl Acad Sci 106(49):20610–20615.  https://doi.org/10.1073/pnas.0804619106 CrossRefGoogle Scholar
  39. Martinelli LA, Naylor R, Vitousek PM, Moutinho P (2010) Agriculture in Brazil: impacts, costs, and opportunities for a sustainable future. Curr Opin Environ Sustain 2(5):431–438.  https://doi.org/10.1016/j.cosust.2010.09.008 CrossRefGoogle Scholar
  40. Meinshausen M, Smith SJ, Calvin K, Daniel JS, Kainuma MLT, Lamarque JF, Matsumoto K, Montzka A, Rape CB, Riahi K, Thomson A, Velders GJM, van Vuuren.DPP (2011) The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Clim Chang 109(1–2): 213.  https://doi.org/10.1007/s10584-011-0156-z
  41. Melillo JM, Steudler PA, Feigl BJ, Neill C, Garcia D, Piccolo MC, Tian H (2001) Nitrous oxide emissions from forests and pastures of various ages in the Brazilian Amazon. J Geophys Res Atmos 106(D24):34179–34188.  https://doi.org/10.1029/2000JD000036 CrossRefGoogle Scholar
  42. Meurer KHE, Franko U, Stange CF, Dalla Rosa J, Madari BE, Jungkunst HF (2016) Direct nitrous oxide (N2O) fluxes from soils under different land use in Brazil—a critical review. Environ Res Lett 11:02001.  https://doi.org/10.1088/1748-9326/11/2/023001 CrossRefGoogle Scholar
  43. Meyfroidt P, Lambin EF, Erb KH, Hertel TW (2013) Globalization of land use: distant drivers of land change and geographic displacement of land use. Curr Opin Environ Sustain 5(5):438–444.  https://doi.org/10.1016/j.cosust.2013.04.003 CrossRefGoogle Scholar
  44. Miranda SC, Bustamante M, Palace M, Hagen S, Keller M, Ferreira LG (2014) Regional variations in biomass distribution in Brazilian savanna woodland. Biotropica 46(2):125–138.  https://doi.org/10.1111/btp.12095 CrossRefGoogle Scholar
  45. Moreira E, Costa S, Aguiar AP, Câmara G, Carneiro T (2009) Dynamical coupling of multiscale land change models. Landsc Ecol 24(9):1183.  https://doi.org/10.1007/s10980-009-9397-x CrossRefGoogle Scholar
  46. NAS, National Academy of Sciences (2014) Advancing land change modeling: opportunities and research requirements. The National Academic Press, Washington DCGoogle Scholar
  47. Neill C, Steudler PA, Garcia-Montiel DC, Melillo JM, Feigl BJ, Piccolo MC, Cerri CC (2005) Rates and controls of nitrous oxide and nitric oxide emissions following conversion of forest to pasture in Rondonia. Nutr Cycl Agroecosyst 71:1–15.  https://doi.org/10.1007/s10705-004-0378-9 CrossRefGoogle Scholar
  48. Nendel C, Berg M, Kersebaum KC, Mirschel W, Specka X, Wegehenkel M, Wenkel KO, Wieland R (2011) The MONICA model: testing predictability for crop growth, soil moisture and nitrogen dynamics. Ecol Model 222(9):1614–1625.  https://doi.org/10.1016/j.ecolmodel.2011.02.018 CrossRefGoogle Scholar
  49. Nepstad, D.; Soares-Filho, B. S.; Merry, F.; Lima, A.; Moutinho, P.; Carter, J. and Stella, O. (2009): The end of deforestation in the Brazilian Amazon. In: Science 326 (5958), 1350–1351.  https://doi.org/10.1126/science.1182108
  50. O’Neill BC, Kriegler E, Ebi KL, Kemp-Benedict E, Riahi K, Rothman DS, van Ruiven BJ, van Vuure DP, Birkmann J, Kok K, Levy M, Solecki W (2017) The roads ahead: narratives for shared socioeconomic pathways describing world futures in the 21st century. Glob Environ Chang 42:169–180.  https://doi.org/10.1016/j.gloenvcha.2015.01.004 CrossRefGoogle Scholar
  51. Orlowsky B, Bothe O, Fraedrich K, Gerstengarbe FW, Zhu X (2010) Future climates from bias-bootstrapped weather analogs: an application to the Yangtze River Basin. J Clim 23(13):3509–3524.  https://doi.org/10.1175/2010JCLI3271.1 CrossRefGoogle Scholar
  52. Richards PD, Walker RT, Arima EY (2014) Spatially complex land change: the indirect effect of Brazil’s agricultural sector on land use in Amazonia. Glob Environ Chang 29:1–9.  https://doi.org/10.1016/j.gloenvcha.2014.06.011 CrossRefGoogle Scholar
  53. Roeckner E, Bäuml G, Bonaventura L, Brokopf R, Esch M, Giorgetta M, Hagemann S, Kirchner I, Kornblueh L, Manzini E, Rhodin A, Schlese U, Schulzweida U, Tompkins A (2003) The atmospheric general circulation model ECHAM 5. PART I: model description. Report, MPI für Meteorologie, 349Google Scholar
  54. Rudorff BFT, Adami M, Aguiar DA, Moreira MA, Mello MP, Fabiani L, Amaral DF, Pires BM (2011) The soy moratorium in the Amazon biome monitored by remote sensing images. Remote Sens 3(12):185–202.  https://doi.org/10.3390/rs3010185 CrossRefGoogle Scholar
  55. Schaldach R, Alcamo J, Koch J, Kölking C, Lapola DM, Schüngel J, Priess JA (2011) An integrated approach to modelling land-use change on continental and global scales. Environ Model Softw 26(8):1041–1051.  https://doi.org/10.1016/j.envsoft.2011.02.013 CrossRefGoogle Scholar
  56. Schmidt J (1991) A mathematical model to simulate rainfall erosion. In: Bork HR, de Ploey J, Schick AP (eds) Erosion, transport and deposition processes—theories and models, vol 19. Catena Suppl 101–109Google Scholar
  57. Schmidt J (1992) Modelling long-term soil loss and landform change. In: Abrahams AJ, Parsons AD (eds) Overland flow—hydraulics and erosion mechanics. University College London Press, LondonGoogle Scholar
  58. Schmidt MWI, Torn MS, Abiven S, Dittmar T, Guggenberger G, Janssens IA, Kleber M, Kögel-Knabner I, Lehmann J, Manning DAC, Nannupieri P, Rasse DP, Weiner S, Trumbore SE (2011) Persistence of soil organic matter as an ecosystem property. Nature 478:49–56.  https://doi.org/10.1038/nature10386 CrossRefGoogle Scholar
  59. Schönenberg R, Schaldach R, Lakes T, Göpel J, Gollnow F (2017) Inter-and transdisciplinary scenario construction to explore future land-use options in southern Amazonia. Ecol Soc 22(3):13.  https://doi.org/10.5751/ES-09032-220313 CrossRefGoogle Scholar
  60. Schreinemachers P, Berger T (2011) An agent-based simulation model of human environment interactions in agricultural systems. Environ Model Softw 26:845–859.  https://doi.org/10.1016/j.envsoft.2011.02.004 CrossRefGoogle Scholar
  61. Soares-Filho BS, Nepstad DC, Curran LM, Cerqueira GC, Garcia RA, Ramos CA, Voll E, McDonald A, Lefebvre P, Schlesinger P (2006) Modelling conservation in the Amazon basin. Nature 440:520–523.  https://doi.org/10.1038/nature04389 CrossRefGoogle Scholar
  62. Soares-Filho B, Moutinho P, Nepstad D, Anderson A, Rodrigues H, Garcia R, Silvestrini R (2010) Role of Brazilian Amazon protected areas in climate change mitigation. Proc Natl Acad Sci 107(24):10821–10826.  https://doi.org/10.1073/pnas.0913048107 CrossRefGoogle Scholar
  63. Specht JE, Hume DJ, Kumudini SV (1999) Soybean yield potential—a genetic and physiological perspective. Crop Sci 39(6):1560–1570.  https://doi.org/10.2135/cropsci1999.3961560x CrossRefGoogle Scholar
  64. Starkloff T, Stolte J (2014) Applied comparison of the erosion risk models EROSION 3D and LISEM for a small catchment in Norway. Catena 118:154–167.  https://doi.org/10.1016/j.catena.2014.02.004 CrossRefGoogle Scholar
  65. Stehfest E, Bouwman L, van Vuuren DP, den Elzen MG, Eickhout B, Kabat P (2009) Climate benefits of changing diet. Clim Chang 95(1–2):83–102.  https://doi.org/10.1007/s10584-008-9534-6 CrossRefGoogle Scholar
  66. Strey S, Boy J, Strey R, Weber O, Guggenberger G (2016) Response of soil organic carbon to land-use change in central Brazil: a large-scale comparison of Ferralsols and Acrisols. Plant Soil 408(1–2):327–342.  https://doi.org/10.1007/s11104-016-2901-6 CrossRefGoogle Scholar
  67. Tölle MH, Gutjahr O, Busch G, Thiele JC (2014) Increasing bioenergy production on arable land: does the regional and local climate respond? Germany as a case study. J Geophys Res Atmosp 119(6):2711–2724.  https://doi.org/10.1002/2013JD020877 CrossRefGoogle Scholar
  68. Turner BL, Lambin EF, Reenberg A (2007) The emergence of land change science for global environmental change and sustainability. Proc Natl Acad Sci 104(52):20666–20671.  https://doi.org/10.1073/pnas.0704119104 CrossRefGoogle Scholar
  69. Turner BL, Geoghegan J, Lawrence D, Radel C, Schmook B, Vance C, Vester H (2016) Land system science and the social–environmental system: the case of Southern Yucatán Peninsular Region (SYPR) project. Curr Opin Environ Sustain 19:18–29.  https://doi.org/10.1016/j.cosust.2015.08.014 CrossRefGoogle Scholar
  70. Van Vuuren DP, Carter TR (2014) Climate and socio-economic scenarios for climate change research and assessment: reconciling the new with the old. Clim Chang 122(3):415–429.  https://doi.org/10.1007/s10584-013-0974-2 CrossRefGoogle Scholar
  71. Vuuren DP, Stehfest E, Elzen MG, Kram T, Vliet J, Deetman S, Isaac M, Klein Goldewijk K, Hof A, Mendoza Beltran A, Oostenrijk R, van Ruijven B (2011) RCP2. 6: exploring the possibility to keep global mean temperature increase below 2 °C. Clim Chang 109(1–2):95–116.  https://doi.org/10.1007/s10584-011-0152-3 CrossRefGoogle Scholar
  72. Wenkel KO, Berg M, Mirschel W, Wieland R, Nendel C, Köstner B (2013) LandCaRe DSS—an interactive decision support system for climate change impact assessment and the analysis of potential agricultural land use adaptation strategies. J Environ Manag 127:168–183.  https://doi.org/10.1016/j.jenvman.2013.02.051 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Rüdiger Schaldach
    • 1
  • Katharina H. E. Meurer
    • 2
    • 3
  • Hermann F. Jungkunst
    • 4
  • Claas Nendel
    • 5
  • Tobia Lakes
    • 6
  • Florian Gollnow
    • 6
  • Jan Göpel
    • 1
  • Jens Boy
    • 7
  • Georg Guggenberger
    • 7
  • Robert Strey
    • 7
  • Simone Strey
    • 7
  • Thomas Berger
    • 8
  • Gerhard Gerold
    • 3
  • Regine Schönenberg
    • 9
  • Jürgen Böhner
    • 10
  • Marcus Schindewolf
    • 11
  • Evgeny Latynskiy
    • 8
  • Anna Hampf
    • 5
  • Phillip S. Parker
    • 5
  • Paulo César Sentelhas
    • 12
  1. 1.Center for Environmental Systems Research (CESR)University of KasselKasselGermany
  2. 2.Helmholtz Centre for Environmental Research – UFZ, Halle (Saale)LeipzigGermany
  3. 3.Georg August University of GöttingenGöttingenGermany
  4. 4.University of Koblenz-LandauMainzGermany
  5. 5.Institute of Landscape Systems AnalysisLeibniz Centre for Agricultural Landscape Research (ZALF)MünchebergGermany
  6. 6.Humboldt University BerlinBerlinGermany
  7. 7.Institute of Soil ScienceLeibniz Universität HannoverHannoverGermany
  8. 8.University of HohenheimStuttgartGermany
  9. 9.Free University of BerlinBerlinGermany
  10. 10.University of HamburgHamburgGermany
  11. 11.University of FreibergFreibergGermany
  12. 12.Luiz de Queiroz College of AgricultureUniversity of São PauloPiracicabaBrazil

Personalised recommendations