Advertisement

Regional Environmental Change

, Volume 18, Issue 1, pp 205–221 | Cite as

An empirical perspective for understanding climate change impacts in Switzerland

  • Paul D. HenneEmail author
  • Moritz Bigalke
  • Ulf Büntgen
  • Daniele Colombaroli
  • Marco Conedera
  • Urs Feller
  • David Frank
  • Jürg Fuhrer
  • Martin Grosjean
  • Oliver Heiri
  • Jürg Luterbacher
  • Adrien Mestrot
  • Andreas Rigling
  • Ole Rössler
  • Christian Rohr
  • This Rutishauser
  • Margit Schwikowski
  • Andreas Stampfli
  • Sönke Szidat
  • Jean-Paul Theurillat
  • Rolf Weingartner
  • Wolfgang Wilcke
  • Willy Tinner
Review Article

Abstract

Planning for the future requires a detailed understanding of how climate change affects a wide range of systems at spatial scales that are relevant to humans. Understanding of climate change impacts can be gained from observational and reconstruction approaches and from numerical models that apply existing knowledge to climate change scenarios. Although modeling approaches are prominent in climate change assessments, observations and reconstructions provide insights that cannot be derived from simulations alone, especially at local to regional scales where climate adaptation policies are implemented. Here, we review the wealth of understanding that emerged from observations and reconstructions of ongoing and past climate change impacts in Switzerland, with wider applicability in Europe. We draw examples from hydrological, alpine, forest, and agricultural systems, which are of paramount societal importance, and are projected to undergo important changes by the end of this century. For each system, we review existing model-based projections, present what is known from observations, and discuss how empirical evidence may help improve future projections. A particular focus is given to better understanding thresholds, tipping points and feedbacks that may operate on different time scales. Observational approaches provide the grounding in evidence that is needed to develop local to regional climate adaptation strategies. Our review demonstrates that observational approaches should ideally have a synergistic relationship with modeling in identifying inconsistencies in projections as well as avenues for improvement. They are critical for uncovering unexpected relationships between climate and agricultural, natural, and hydrological systems that will be important to society in the future.

Keywords

Global change Alps Agriculture Alpine meadows Hydrology Paleoecology 

Notes

Acknowledgements

This paper arose from workshops sponsored by the Oeschger Centre for Climate Change Research, Work Package 3, Climate Risks and Natural Hazards. We thank Heinz Wanner for his early support of this work. Erin Berryman, Todd Hawbaker, and two anonymous reviewers provided valuable comments on the manuscript. Jeremy Havens designed Fig. 2.

References

  1. Aalbersberg G, Litt T (1998) Multiproxy climate reconstructions for the Eemian and Early Weichselian. J Quat Sci 13:367–390. doi: 10.1002/(SICI)1099-1417(1998090)13:5<367::AID-JQS400>3.0.CO;2-I CrossRefGoogle Scholar
  2. Abraham V, Kozáková R (2012) Relative pollen productivity estimates in the modern agricultural landscape of Central Bohemia (Czech Republic). Rev Palaeobot Palynol 179:1–12. doi: 10.1016/j.revpalbo.2012.04.004 CrossRefGoogle Scholar
  3. Addor N, Rössler O, Köplin N, Huss M, Weingartner R, Seibert J (2014) Robust changes and sources of uncertainty in the projected hydrological regimes of Swiss catchments. Water Resour Res 50:7541–7562. doi: 10.1002/2014WR015549
  4. Affolter P, Büntgen U, Esper J, Rigling A, Weber P, Luterbacher J, Frank D (2010) Inner Alpine conifer response to 20th century drought swings. Eur J For Res 129:289–298. doi: 10.1007/s10342-009-0327-x
  5. Aluja M, Guillén L, Rull J, Höhn H, Frey J, Graf B, Samietz J (2011) Is the alpine divide becoming more permeable to biological invasions?—insights on the invasion and establishment of the Walnut Husk Fly, Rhagoletis completa (Diptera: Tephritidae) in Switzerland. Bull Entomol Res 101:451–465. doi: 10.1017/S0007485311000010
  6. Amann B, Szidat S, Grosjean M (2015) A millennial-long record of warm season precipitation and flood frequency for the north-western Alps inferred from varved lake sediments: implications for the future. Quat Sci Rev 115:89–100. doi: 10.1016/j.quascirev.2015.03.002 CrossRefGoogle Scholar
  7. Ammann B, van Raden UJ, Schwander J, Eicher U, Gilli A, Bernasconi SM, van Leeuwen JFN, Lischke H, Brooks SJ, Heiri O, Nováková K, van Hardenbroek M, von Grafenstein U, Belmecheri S, van der Knaap WO, Magny M, Eugster W, Colombaroli D, Nielsen E, Tinner W, Wright HE (2013) Responses to rapid warming at termination 1a at Gerzensee (Central Europe): primary succession, albedo, soils, lake development, and ecological interactions. Palaeogeogr Palaeoclimatol Palaeoecol 391:111–131. doi: 10.1016/j.palaeo.2013.11.009
  8. Ascoli D, Castagneri D, Valsecchi C, Conedera M, Bovio G (2013) Post-fire restoration of beech stands in the Southern Alps by natural regeneration. Ecol Eng 54:210–217. doi: 10.1016/j.ecoleng.2013.01.032
  9. Behre K-E (1981) Interpretation of anthropogenic indicators in pollen diagrams. Pollen Spores 23:225–245Google Scholar
  10. Berger S, Söhlke G, Walther G-R, Pott R (2007) Bioclimatic limits and range shifts of cold-hardy evergreen broad-leaved species at their northern distributional limit in Europe. Phytocoenologia 37:523–539. doi: 10.1127/0340-269X/2007/0037-
  11. Bertrand R, Lenoir J, Piedallu C, Riofrio-Dillon G, de Ruffray P, Vidal C, Pierrat J-C, Gegout J-C (2011) Changes in plant community composition lag behind climate warming in lowland forests. Nature 479:517–520. doi: 10.1038/nature10548
  12. Bigler C, Braker OU, Bugmann H, Dobbertin M, Riis Simonsen J (2006) Drought as an inciting mortality factor in Scots pine stands of the Valais, Switzerland. Ecosystems 9:330–343. doi: 10.1007/s10021-005-0126-2
  13. Bindi M, Olesen JE (2011) The responses of agriculture in Europe to climate change. Reg Environ Chang 11:151–158. doi: 10.1007/s10113-010-0173-x CrossRefGoogle Scholar
  14. Birks HJB, Tinner W (2016) Past forests of Europe. In: San-Miguel-Ayanz J, de Rigo D, Caudulio G, Houston Durrant G, Mauri A (eds) European Atlas of forest tree species. Publication Office of the European Union, Luxembourg, pp 36–39. doi: 10.2788/038466
  15. Birsan M-V, Molnar P, Burlando P, Pfaundler M (2005) Streamflow trends in Switzerland. J Hydrol 314:312–329. doi: 10.1016/j.jhydrol.2005.06.008 CrossRefGoogle Scholar
  16. Blanc P, Schädler B (2014) Water in Switzerland—an overview. Swiss Hydrological Commission, BernGoogle Scholar
  17. Bolli JC, Riis Simonsen J, Bugmann H (2007) The influence of changes in climate and land-use on regeneration dynamics of Norway spruce at the treeline in the Swiss Alps. Silva Fenn 41:55–70. doi: 10.14214/sf.307
  18. Brönnimann S, Krämer D (2016) Tambora and the “year without a summer” of 1816. Geogr Bernensia G90:48. doi: 10.4480/GB2016.G90.01 Google Scholar
  19. Brönnimann S, Appenzeller C, Croci-Maspoli M, Fuhrer J, Grosjean M, Hohmann R, Ingold K, Knutti R, Liniger MA, Raible CC, Röthlisberger R, Schär C, Scherrer SC, Strassmann K, Thalmann P (2014) Climate change in Switzerland: a review of physical, institutional, and political aspects. Wiley Interdiscip Rev Clim Chang 5:461–481. doi: 10.1002/wcc.280
  20. Broström A, Gaillard M-J, Ihse M, Odgaard B (1998) Pollen-landscape relationships in modern analogues of ancient cultural landscapes in southern Sweden? A first step towards quantification of vegetation openness in the past. Veg Hist Archaeobot 7:189–201. doi: 10.1007/BF01146193 CrossRefGoogle Scholar
  21. Bugmann H, Pfister C (2000) Impacts of interannual climate variability on past and future forest composition. Reg Environ Chang 1:112–125. doi: 10.1007/s101130000015 CrossRefGoogle Scholar
  22. Bugmann H, Brang P, Elkin C, Henne PD, Jakoby O, Lévesque M, Lischke H, Psomas A, Riis Simonsen J, Wermelinger B, Zimmermann NE (2014) Climate change impacts on tree species, forest properties, and ecosystem services. In: Raible CC, Strassman KM (eds) CH-2014 impacts, toward quantitative scenarios of climate change impacts in Switzerland. Published by OCCR, FOEN, MeteoSwiss, C2SM, Agroscope, and ProClim, Bern, pp 79–89Google Scholar
  23. Bühlmann T, Hiltbrunner E, Körner C (2014) Alnus viridis expansion contributes to excess reactive nitrogen release, reduces biodiversity and constrains forest succession in the Alps. Alp Bot 124:187–191. doi: 10.1007/s00035-014-0134-y CrossRefGoogle Scholar
  24. Büntgen U, Frank D, Liebhold A, Johnson D, Carrer M, Urbinati C, Grabner M, Nicolussi K, Levanic T, Esper J (2009) Three centuries of insect outbreaks across the European Alps. New Phytol 182:929–941. doi: 10.1111/j.1469-8137.2009.02825.x
  25. Büntgen U, Trnka M, Krusic PJ, Kyncl T, Kyncl J, Luterbacher J, Zorita E, Ljungqvist FC, Auer I, Konter O, Schneider L, Tegel W, Štěpánek P, Brönnimann S, Hellmann L, Nievergelt D, Esper J (2015) Tree-ring amplification of the early nineteenth-century summer cooling in Central Europe. J Clim 28:5272–5288. doi: 10.1175/JCLI-D-14-00673.1
  26. Burga CA (1988) Swiss vegetation history during the last 18000 years. New Phytol 110:581–602. doi: 10.1111/j.1469-8137.1988.tb00298.x
  27. Camenisch C, Keller KM, Salvisberg M, Amann B, Bauch M, Blumer S, Brázdil R, Brönnimann S, Büntgen U, Campbell BMS, Fernández-Donado L, Fleitmann D, Glaser R, González-Rouco F, Grosjean M, Hoffmann RC, Huhtamaa H, Joos F, Kiss A, Kotyza O, Lehner F, Luterbacher J, Maughan N, Neukom R, Novy T, Pribyl K, Raible CC, Riemann D, Schuh M, Slavin P, Werner JP, Wetter O (2016) The early Spörer minimum—a period of extraordinary climate and socio-economic changes in Western and Central Europe. Clim Past Discuss 1–33. doi: 10.5194/cp-2016-7
  28. CH2011 (2011) Swiss climate change scenarios CH2011. Published by C2SM, MeteoSwiss, ETH, NCCR Climate, and OcCC, ZurichGoogle Scholar
  29. CH2014-Impacts (2014) Toward quantitative scenarios of climate change impacts in Switzerland. Published by OCCR, FOEN, MeteoSwiss, C2SM, Agroscope, and ProClim, BernGoogle Scholar
  30. Christensen JH, Christensen OB (2003) Climate modelling: severe summertime flooding in Europe. Nature 421:805–806. doi: 10.1038/421805a CrossRefGoogle Scholar
  31. Cole K (1985) Past rates of change, species richness, and a model of vegetational inertia in the Grand Canyon, Arizona. Am Nat 125:289–303. doi: 10.1086/284341
  32. Colombaroli D, Tinner W (2013) Determining the long-term changes in biodiversity and provisioning services along a transect from Central Europe to the Mediterranean. The Holocene 23:1625–1634. doi: 10.1177/0959683613496290 CrossRefGoogle Scholar
  33. Colombaroli D, Henne PD, Kaltenrieder P, Gobet E, Tinner W (2010) Species responses to fire, climate and human impact at tree line in the Alps as evidenced by palaeo-environmental records and a dynamic simulation model. J Ecol 98:1346–1357. doi: 10.1111/j.1365-2745.2010.01723.x
  34. Conedera M, Cesti G, Pezzatti GB, Zumbrunnen T, Spinedi F (2006) Lightning-induced fires in the Alpine region: an increasing problem. In: Viegas DX (ed) V International Conference on Forest Fire Research. ADAI/CEIF University of Coimbra, Figueira da FozGoogle Scholar
  35. Conedera M, Barthold F, Torriani D, Pezzatti GB (2010) In: Horticulturae A (ed) Drought sensitivity of Castanea sativa: case study of summer 2003 in the Southern Alps. International Society for Horticultural Science (ISHS), Leuven, pp 297–302Google Scholar
  36. Conedera M, Torriani D, Neff C, Ricotta C, Bajocco S, Pezzatti GB (2011) Using Monte Carlo simulations to estimate relative fire ignition danger in a low-to-medium fire-prone region. For Ecol Manag 261:2179–2187. doi: 10.1016/j.foreco.2010.08.013
  37. Cook ER, Seager R, Kushnir Y, Briffa KR, Büntgen U, Frank D, Krusic PJ, Tegel W, van der Schrier G, Andreu-Hayles L, Baillie M, Baittinger C, Bleicher N, Bonde N, Brown D, Carrer M, Cooper R, Cufar K, Dittmar C, Esper J, Griggs C, Gunnarson B, Günther B, Gutierrez E, Haneca K, Helama S, Herzig F, Heussner K-U, Hofmann J, Janda P, Kontic R, Köse N, Kyncl T, Levanic T, Linderholm H, Manning S, Melvin TM, Miles D, Neuwirth B, Nicolussi K, Nola P, Panayotov M, Popa I, Rothe A, Seftigen K, Seim A, Svarva H, Svoboda M, Thun T, Timonen M, Touchan R, Trotsiuk V, Trouet V, Walder F, Wazny T, Wilson R, Zang C (2015) Old World megadroughts and pluvials during the Common Era. Sci Adv 1:e1500561–e1500561. doi: 10.1126/sciadv.1500561
  38. Crawford RMM (2008) Plants at the margin: ecological limits and climate change. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  39. Czymzik M, Dulski P, Plessen B, von Grafenstein U, Naumann R, Brauer A (2010) A 450 year record of spring-summer flood layers in annually laminated sediments from Lake Ammersee (southern Germany). Water Resour Res 46:W11528. doi: 10.1029/2009wr008360
  40. Defila C, Clot B (2001) Phytophenological trends in Switzerland. Int J Biometeorol 45:203–207. doi: 10.1007/s004840100101 CrossRefGoogle Scholar
  41. Defila C, Clot B (2005) Phytophenological trends in the Swiss Alps, 1951-2002. Meteorol Zeitschrift 14:191–196. doi: 10.1127/0941-2948/2005/0021
  42. Dobbertin M, Riis Simonsen J (2006) Pine mistletoe (Viscum album ssp. austriacum) contributes to Scots pine (Pinus sylvestris) mortality in the Rhone valley of Switzerland. For Pathol 36:309–322. doi: 10.1111/j.1439-0329.2006.00457.x CrossRefGoogle Scholar
  43. Dobbertin M, Mayer P, Wohlgemuth T, Feldmeyer-Christe E, Graf U, Zimmermann NE, Rigling A (2005) The decline of Pinus sylvestris L. forests in the swiss rhone valley: a result of drought stress? Phyton (B Aires) 45:153–156Google Scholar
  44. Dobbertin M, Wermelinger B, Bigler C, Bürgi M, Carron M, Forster B, Gimmi U, Rigling A (2007) Linking increasing drought stress to Scots pine mortality and bark beetle infestations. Sci World J 7:231–239. doi: 10.1100/tsw.2007.58
  45. Eilmann B, Rigling A (2012) Tree-growth analyses to estimate tree species’ drought tolerance. Tree Physiol 32:178–187. doi: 10.1093/treephys/tps004 CrossRefGoogle Scholar
  46. Eilmann B, Buchmann N, Siegwolf R, Saurer M, Cherubini P, Rigling A (2010) Fast response of Scots pine to improved water availability reflected in tree-ring width and δ13C. Plant Cell Environ 33:1351–1360. doi: 10.1111/j.1365-3040.2010.02153.x
  47. Elkin C, Gutiérrez AG, Leuzinger S, Manusch C, Temperli C, Rasche L, Bugmann H (2013) A 2 °C warmer world is not safe for ecosystem services in the European Alps. Glob Chang Biol 19:1827–1840. doi: 10.1111/gcb.12156
  48. Elkin C, Giuggiola A, Rigling A, Bugmann H (2015) Short- and long-term efficacy of forest thinning to mitigate drought impacts in mountain forests in the European Alps. Ecol Appl 25:1083–1098. doi: 10.1890/14-0690.1 CrossRefGoogle Scholar
  49. Fee DB (2009) Arsenic. In: Dobbs MR (ed) Clinical neurotoxicology. Syndromes, substances, environments. Saunders, Elsevier, Philadelphia, pp 273–276CrossRefGoogle Scholar
  50. Feichtinger LM, Eilmann B, Buchmann N, Rigling A (2014) Growth adjustments of conifers to drought and to century-long irrigation. For Ecol Manag 334:96–105. doi: 10.1016/j.foreco.2014.08.008 CrossRefGoogle Scholar
  51. Feller U, Vaseva II (2014) Extreme climatic events: impacts of drought and high temperature on physiological processes in agronomically important plants. Front Environ Sci. doi: 10.3389/fenvs.2014.00039
  52. Finger R (2010) Evidence of slowing yield growth—the example of Swiss cereal yields. Food Policy 35:175–182. doi: 10.1016/j.foodpol.2009.11.004 CrossRefGoogle Scholar
  53. Fischer AM, Keller DE, Liniger MA, Rajczak J, Schär C, Appenzeller C (2015) Projected changes in precipitation intensity and frequency in Switzerland: a multi-model perspective. Int J Climatol 35:3204–3219. doi: 10.1002/joc.4162
  54. Flanner MG, Zender CS, Randerson JT, Rasch PJ (2007) Present-day climate forcing and response from black carbon in snow. J Geophys Res. doi: 10.1029/2006jd008003
  55. FOEN (2012) Effects of climate change on water resources and waters. Federal Office for the Environment, BernGoogle Scholar
  56. Frohne T, Rinklebe J, Langer U, Du Laing G, Mothes S, Wennrich R (2012) Biogeochemical factors affecting mercury methylation rate in two contaminated floodplain soils. Biogeosciences 9:493–507. doi: 10.5194/bg-9-493-2012
  57. Gallé A, Feller U (2007) Changes of photosynthetic traits in beech saplings (Fagus sylvatica) under severe drought stress and during recovery. Physiol Plant 131:412–421. doi: 10.1111/j.1399-3054.2007.00972.x CrossRefGoogle Scholar
  58. Gallé A, Haldimann P, Feller U (2007) Photosynthetic performance and water relations in young pubescent oak (Quercus pubescens) trees during drought stress and recovery. New Phytol 174:799–810. doi: 10.1111/j.1469-8137.2007.02047.x CrossRefGoogle Scholar
  59. Gavin DG, Fitzpatrick MC, Gugger PF, Heath KD, Rodríguez-Sánchez F, Dobrowski SZ, Hampe A, Hu FS, Ashcroft MB, Bartlein PJ, Blois JL, Carstens BC, Davis EB, de Lafontaine G, Edwards ME, Fernandez M, Henne PD, Herring EM, Holden ZA, Kong W, Liu J, Magri D, Matzke NJ, McGlone MS, Saltré F, Stigall AL, Tsai Y-H.E, Williams JW (2014) Climate refugia: joint inference from fossil records, species distribution models and phylogeography. New Phytol 204:37–54. doi: 10.1111/nph.12929
  60. Gehrig-Fasel J, Guisan A, Zimmermann NE (2007) Tree line shifts in the Swiss Alps: climate change or land abandonment? J Veg Sci 18:571–582. doi: 10.1111/j.1654-1103.2007.tb02571.x CrossRefGoogle Scholar
  61. Giorgi F, Torma C, Coppola E, Ban N, Schär C, Somot S (2016) Enhanced summer convective rainfall at Alpine high elevations in response to climate warming. Nat Geosci. doi: 10.1038/ngeo2761
  62. Glur L, Wirth SB, Büntgen U, Gilli A, Haug GH, Schär C, Beer J, Anselmetti FS (2013) Frequent floods in the European Alps coincide with cooler periods of the past 2500 years. Sci Rep 3:2770. doi: 10.1038/srep02770
  63. Gobet E, Tinner W, Hochuli PA, van Leeuwen JFN, Ammann B (2003) Middle to Late Holocene vegetation history of the Upper Engadine (Swiss Alps): the role of man and fire. Veg Hist Archaeobot 12:143–163. doi: 10.1007/s00334-003-0017-4
  64. Gottfried M, Pauli H, Futschik A, Akhalkatsi M, Barancok P, Benito Alonso JL, Coldea G, Dick J, Erschbamer B, Fernandez Calzado MR, Kazakis G, Krajci J, Larsson P, Mallaun M, Michelsen O, Moiseev D, Moiseev P, Molau U, Merzouki A, Nagy L, Nakhutsrishvili G, Pedersen B, Pelino G, Puscas M, Rossi G, Stanisci A, Theurillat J-P, Tomaselli M, Villar L, Vittoz P, Vogiatzakis I, Grabherr G (2012) Continent-wide response of mountain vegetation to climate change. Nat Clim Chang 2:111–115. doi: 10.1038/nclimate1329
  65. Grabherr G, Gottfried M, Pauli H (1994) Climate effects on mountain plants. Nature 369:448. doi: 10.1038/369448a0 CrossRefGoogle Scholar
  66. Guisan A, Thuiller W (2005) Predicting species distribution: offering more than simple habitat models. Ecol Lett 8:993–1009. doi: 10.1111/j.1461-0248.2005.00792.x CrossRefGoogle Scholar
  67. Guisan A, Theurillat J-P, Kienast F (1998) Predicting the potential distribution of plant species in an alpine environment. J Veg Sci 9:65–74. doi: 10.2307/3237224 CrossRefGoogle Scholar
  68. Haas JN, Richoz I, Tinner W, Wick L (1998) Synchronous Holocene climatic oscillations recorded on the Swiss Plateau and at timberline in the Alps. The Holocene 8:301–309. doi: 10.1191/095968398675491173
  69. Haldimann P, Gallé A, Feller U (2008) Impact of an exceptionally hot dry summer on photosynthetic traits in oak (Quercus pubescens) leaves. Tree Physiol 28:785–795. doi: 10.1093/treephys/28.5.785 CrossRefGoogle Scholar
  70. Hänggi P, Weingartner R (2011) Inter-annual variability of runoff and climate within the Upper Rhine River basin, 1808–2007. Hydrol Sci J 56:34–50. doi: 10.1080/02626667.2010.536549 CrossRefGoogle Scholar
  71. Heiniger U, Theile F, Riis Simonsen J, Rigling D (2011) Blue-stain infections in roots, stems and branches of declining Pinus sylvestris trees in a dry inner alpine valley in Switzerland. For Pathol 41:501–509. doi: 10.1111/j.1439-0329.2011.00713.x CrossRefGoogle Scholar
  72. Heiri O, Tinner W, Lotter AF (2004) Evidence for cooler European summers during periods of changing meltwater flux to the North Atlantic. Proc Natl Acad Sci U S A 101:15285–15288. doi: 10.1073/pnas.0406594101 CrossRefGoogle Scholar
  73. Heiri C, Bugmann H, Tinner W, Heiri O, Lischke H (2006) A model-based reconstruction of Holocene treeline dynamics in the Central Swiss Alps. J Ecol 94:206–216. doi: 10.1111/j.1365-2745.2005.01072.x
  74. Heiri O, Koinig KA, Spötl C, Barrett S, Drescher-Schneider R, Gaar D, Ivy-Ochs S, Kerschner H, Luetscher M, Moran A, Nicolussi K, Preusser F, Schmidt R, Schoeneich P, Schwörer C, Sprafke T, Terhorst B, Tinner W (2014) Palaeoclimate records 60–8 ka in the Austrian and Swiss Alps and their forelands. Quat Sci Rev 106:186–205. doi: 10.1016/j.quascirev.2014.05.021
  75. Heiri O, Ilyashuk B, Millet L, Samartin S, Lotter AF (2015) Stacking of discontinuous regional palaeoclimate records: chironomid-based summer temperatures from the Alpine region. The Holocene 25:137–149. doi: 10.1177/0959683614556382
  76. Henne PD, Elkin C, Reineking B, Bugmann H, Tinner W (2011) Did soil development limit spruce (Picea abies) expansion in the Central Alps during the Holocene? Testing a palaeobotanical hypothesis with a dynamic landscape model. J Biogeogr 38:933–949. doi: 10.1111/j.1365-2699.2010.02460.x
  77. Henne PD, Elkin C, Franke J, Colombaroli D, Calò C, La Mantia T, Pasta S, Conedera M, Dermody O, Tinner W (2015) Reviving extinct Mediterranean forest communities may improve ecosystem potential in a warmer future. Front Ecol Environ 13:356–362. doi: 10.1890/150027
  78. Hewitson BC, Janetos AC, Carter TR, Giorgi F, Jones RG, Kwon W-T, Mearns LO, Schipper ELF, van Aalst M (2014) Regional context. In: Barros VR, Field CB, Dokken DJ, Mastrandrea MD, Mach KJ, Bilir TE, Chatterjee M, Ebi KL, Estrada YO, Genova RC, Girma B, Kissel ES, Levy AN, MacCracken S, Mastrandrea PR, White LL (eds) Climate change 2014: impacts, adaptation, and vulnerability. Part B: regional aspects. Contribution of working group II to the fifth assessment report of the intergovernmental panel of climate change. Cambridge University Press, Cambridge, pp 1133–1197Google Scholar
  79. Holzkämper A, Fuhrer J (2015) The impact of climate change on maize cultivation in Switzerland. Agrar Schweiz 6:440–447Google Scholar
  80. Holzkämper A, Fossati D, Hiltbrunner J, Fuhrer J (2015) Spatial and temporal trends in agro-climatic limitations to production potentials for grain maize and winter wheat in Switzerland. Reg Environ Chang 15:109–122. doi: 10.1007/s10113-014-0627-7 CrossRefGoogle Scholar
  81. Huber R, Rigling A, Bebi P, Brand FS, Briner S, Buttler A, Elkin C, Gillet F, Grêt-Regamey A, Hirschi C (2013) Sustainable land use in mountain regions under global change: synthesis across scales and disciplines. Ecol Soc 18:20. doi: 10.5751/ES-05499-180336
  82. Huss M (2012) Extrapolating glacier mass balance to the mountain-range scale: the European Alps 1900-2100. Cryosphere 6:713–727. doi: 10.5194/tc-6-713-2012 CrossRefGoogle Scholar
  83. IPCC (2014) Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Core Writing Team, Pachauri RK, Meyer LA (eds), IPCC, Geneva, SwitzerlandGoogle Scholar
  84. Jacomet S, Kreuz A (1999) Archäobotanik: Aufgaben, Methoden und Ergebnisse vegetations-und agrargeschichtlicher Forschung. UlmerGoogle Scholar
  85. Johnson DM, Büntgen U, Frank DC, Kausrud K, Haynes KJ, Liebhold AM, Esper J, Stenseth NC (2010) Climatic warming disrupts recurrent Alpine insect outbreaks. Proc Natl Acad Sci 107:20576–20581. doi: 10.1073/pnas.1010270107
  86. Kaltenrieder P, Procacci G, Vannière B, Tinner W (2010) Vegetation and fire history of the Euganean Hills (Colli Euganei) as recorded by Lateglacial and Holocene sedimentary series from Lago della Costa (northeastern Italy). The Holocene 20:679–695. doi: 10.1177/0959683609358911 CrossRefGoogle Scholar
  87. Kammer PM, Schöb C, Choler P (2007) Increasing species richness on mountain summits: upward migration due to anthropogenic climate change or re-colonisation? J Veg Sci 18:301–306. doi: 10.1111/j.1654-1103.2007.tb02541.x CrossRefGoogle Scholar
  88. Keller F, Fuhrer J (2004) Die Landwirtschaft und der Hitzesommer 2003. Agrarforschung 11:403–410Google Scholar
  89. King G, Fonti P, Nievergelt D, Büntgen U, Frank D (2013) Climatic drivers of hourly to yearly tree radius variations along a 6 °C natural warming gradient. Agric For Meteorol 168:36–46. doi: 10.1016/j.agrformet.2012.08.002
  90. Kipfer T, Moser B, Egli S, Wohlgemuth T, Ghazoul J (2011) Ectomycorrhiza succession patterns in Pinus sylvestris forests after stand-replacing fire in the Central Alps. Oecologia 167:219–228. doi: 10.1007/s00442-011-1981-5
  91. Klein T, Holzkämper A, Calanca P, Seppelt R, Fuhrer J (2013) Adapting agricultural land management to climate change: a regional multi-objective optimization approach. Landsc Ecol 28:2029–2047. doi: 10.1007/s10980-013-9939-0
  92. Klein T, Holzkämper A, Calanca P, Fuhrer J (2014) Adaptation options under climate change for multifunctional agriculture: a simulation study for western Switzerland. Reg Environ Chang 14:167–184. doi: 10.1007/s10113-013-0470-2 CrossRefGoogle Scholar
  93. Kollas C, Körner C, Randin CF (2014) Spring frost and growing season length co-control the cold range limits of broad-leaved trees. J Biogeogr 41:773–783. doi: 10.1111/jbi.12238 CrossRefGoogle Scholar
  94. Köplin N, Rössler O, Schädler B, Weingartner R (2014) Robust estimates of climate-induced hydrological change in a temperate mountainous region. Clim Chang 122:171–184. doi: 10.1007/s10584-013-1015-x CrossRefGoogle Scholar
  95. Körner C (1995) Alpine plant diversity: a global survey and functional interpretations. In: Chapin  III FS, Körner C (eds) Arctic and alpine biodiversity: patterns, causes and ecosystem consequences SE - 4. Springer, Berlin, Heidelberg, pp 45–62. doi: 10.1007/978-3-642-78966-3_4
  96. Körner C (2003) Alpine plant life: functional plant ecology of high mountain ecosystems; with 47 tables. SpringerGoogle Scholar
  97. Kovats RS, Valentini R, Bouwer LM, Georgopoulou E, Jacob D, Martin E, Rounsevell M, Soussana JF (2014) 2014: Europe. In: Barros VR, Field CB, Dokken DJ, Mastrandrea MD, Mach KJ, Bilir TE, Chatterjee M, Ebi KL, Estrada YO, Genova RC, Girma B, Kissel ES, Levy AN, MacCracken S, Mastrandrea PR, White LL (eds) Climate change 2014: impacts, adaptation, and vulnerability. Part B: regional aspects. Contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 1267–1326Google Scholar
  98. Krämer D (2015) «Menschen grasten nun mit dem Vieh». Die letzte grosse Hungerkrise der Schweiz 1816/17. Schwabe, BaselGoogle Scholar
  99. Larigauderie A, Körner C (1995) Acclimation of leaf dark respiration to temperature in alpine and lowland plant species. Ann Bot 76:245–252. doi: 10.1006/anbo.1995.1093 CrossRefGoogle Scholar
  100. Le Bayon RC, Matera V, Kohler-Milleret R, Degen C, Gobat J-M (2011) Earthworm activity alters geogenic arsenic and soil nutrient dynamics. Pedobiologia (Jena) 54(Supple):S193–S201. doi: 10.1016/j.pedobi.2011.09.013
  101. Lehmann N, Finger R, Klein T, Calanca P, Walter A (2013) Adapting crop management practices to climate change: modeling optimal solutions at the field scale. Agric Syst 117:55–65. doi: 10.1016/j.agsy.2012.12.011
  102. Lehner B, Doll P, Alcamo J, Henrichs T, Kaspar F (2006) Estimating the impact of global change on flood and drought risks in Europe: a continental, integrated analysis. Clim Chang 75:273–299. doi: 10.1007/s10584-006-6338-4
  103. Lévesque M, Saurer M, Siegwolf R, Eilmann B, Brang P, Bugmann H, Rigling A (2013) Drought response of five conifer species under contrasting water availability suggests high vulnerability of Norway spruce and European larch. Glob Chang Biol 19:3184–3199. doi: 10.1111/gcb.12268
  104. Lévesque M, Rigling A, Bugmann H, Weber P, Brang P (2014a) Growth response of five co-occurring conifers to drought across a wide climatic gradient in Central Europe. Agric For Meteorol 197:1–12. doi: 10.1016/j.agrformet.2014.06.001
  105. Lévesque M, Siegwolf R, Saurer M, Eilmann B, Rigling A (2014b) Increased water-use efficiency does not lead to enhanced tree growth under xeric and mesic conditions. New Phytol 203:94–109. doi: 10.1111/nph.12772
  106. Lindner M, Maroschek M, Netherer S, Kremer A, Barbati A, Garcia-Gonzalo J, Seidl R, Delzon S, Corona P, Kolström M, Lexer MJ, Marchetti M (2010) Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. For Ecol Manag 259:698–709. doi: 10.1016/j.foreco.2009.09.023
  107. Lotter AF, Heiri O, Brooks S, van Leeuwen JFN, Eicher U, Ammann B (2012) Rapid summer temperature changes during termination 1a: high-resolution multi-proxy climate reconstructions from Gerzensee (Switzerland). Quat Sci Rev 36:103–113. doi: 10.1016/j.quascirev.2010.06.022
  108. Luterbacher J, Pfister C (2015) The year without a summer. Nat Geosci 8:246–248. doi: 10.1038/ngeo2404 CrossRefGoogle Scholar
  109. Maise C (1999) Klima, Umwelt, Landwirtschaft und Ernährung. In: Muller F, Kaenel G, Luscher G (eds) Die Schweiz vom Palaolithikum bis zum fruhen Mittelalter Eisenzeit. Verlag Schweizerische Gesellschaft fur Ur-und Fruhgeschichte, Basel, pp 93–97Google Scholar
  110. Marty C, Abegg B, Bauder A, Marmy A, Lüthi MP, Bavay M, Hauck C, Hoelzle M, Huss M, Salzman N, Schögl S, Steiger R, Farinotti D (2014) Cryospheric aspects of climate change—impacts on snow, ice, and ski tourism. In: Raible CKS (ed) CH-2014 impacts, toward quantitative scenarios of climate change impacts in Switzerland. Published by OCCR, FOEN, MeteoSwiss, C2SM, Agroscope, and ProClim, Bern, pp 48–55Google Scholar
  111. Messmer R, Fracheboud Y, Bänziger M, Stamp P, Ribaut J-M (2011) Drought stress and tropical maize: QTLs for leaf greenness, plant senescence, and root capacitance. F Crop Res 124:93–103. doi: 10.1016/j.fcr.2011.06.010
  112. Moser L, Fonti P, Büntgen U, Esper J, Luterbacher J, Franzen J, Frank D (2010) Timing and duration of European larch growing season along altitudinal gradients in the Swiss Alps. Tree Physiol 30:225–233. doi: 10.1093/treephys/tpp108
  113. Mudelsee M, Borngen M, Tetzlaff G, Grunewald U (2003) No upward trends in the occurrence of extreme floods in central Europe. Nature 425:166–169. doi: 10.1038/nature01928 CrossRefGoogle Scholar
  114. Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37. doi: 10.1038/nature01286 CrossRefGoogle Scholar
  115. Patsiou TS, Conti E, Zimmermann NE, Theodoridis S, Randin CF (2014) Topo-climatic microrefugia explain the persistence of a rare endemic plant in the Alps during the last 21 millennia. Glob Chang Biol 20:2286–2300. doi: 10.1111/gcb.12515
  116. Pauli H, Gottfried M, Dullinger S, Abdaladze O, Akhalkatsi M, Alonso JLB, Coldea G, Dick J, Erschbamer B, Calzado RF, Ghosn D, Holten JI, Kanka R, Kazakis G, Kollár J, Larsson P, Moiseev P, Moiseev D, Molau U, Mesa JM, Nagy L, Pelino G, Puşcaş M, Rossi G, Stanisci A, Syverhuset AO, Theurillat J-P, Tomaselli M, Unterluggauer P, Villar L, Vittoz P, Grabherr G (2012) Recent plant diversity changes on Europe’s mountain summits. Science 336:353–355. doi: 10.1126/science.1219033
  117. Pezzatti GB, Bajocco S, Torriani D, Conedera M (2009) Selective burning of forest vegetation in Canton Ticino (southern Switzerland). Plant Biosyst 143:609–620. doi: 10.1080/11263500903233292 CrossRefGoogle Scholar
  118. Pezzatti GB, De Angelis A, Conedera M (2016) Potenzielle Entwicklung der Waldbrandgefahr im Klimawandel. In: Pleuss AR, Augustin S, Brang P (eds) Wald im Klimawandel. Grundlagen für Adaptationsstrategien. Bundesamt für Umwelt BAFU, Bern; Eidg. Forschungsanstalt WSL, Birmensdorf, pp 223–245Google Scholar
  119. Pfeiffer H-R, Beatrizotti G, Berthoud J (2002) Natural arsenic contamination of surface and ground waters in Southern Switzerland (Ticino). Bull Appl Geol 7:81–103Google Scholar
  120. Pfister C (1985) Klimageschichte der Schweiz, 1525–1860: Das Klima der Schweiz von 1525–1860 und seine Bedeutung in der Geschichte von Bevölkerung une Landwirtschaft. P. HauptGoogle Scholar
  121. Porter JR, Gawith M (1999) Temperatures and the growth and development of wheat: a review. Eur J Agron 10:23–36. doi: 10.1016/S1161-0301(98)00047-1 CrossRefGoogle Scholar
  122. Preusser F, Drescher-Schneider R, Fiebig M, Schlüchter C (2005) Re-interpretation of the Meikirch pollen record, Swiss Alpine Foreland, and implications for Middle Pleistocene chronostratigraphy. J Quat Sci 20:607–620. doi: 10.1002/jqs.930 CrossRefGoogle Scholar
  123. Rajczak J, Pall P, Schär C (2013) Projections of extreme precipitation events in regional climate simulations for Europe and the Alpine Region. J Geophys Res Atmos 118:3610–3626. doi: 10.1002/jgrd.50297 CrossRefGoogle Scholar
  124. Rasche L, Fahse L, Zingg A, Bugmann H (2011) Getting a virtual forester fit for the challenge of climatic change. J Appl Ecol 48:1174–1186. doi: 10.1111/j.1365-2664.2011.02014.x CrossRefGoogle Scholar
  125. Rebetez M, Dobbertin M (2004) Climate change may already threaten Scots pine stands in the Swiss Alps. Theor Appl Climatol 79:1–9. doi: 10.1007/s00704-004-0058-3 CrossRefGoogle Scholar
  126. Rigling A, Bräker O, Schneiter G, Schweingruber F (2002) Intra-annual tree-ring parameters indicating differences in drought stress of Pinus sylvestris forests within the Erico-Pinion in the Valais (Switzerland). Plant Ecol 163:105–121. doi: 10.1023/A:1020355407821 CrossRefGoogle Scholar
  127. Rigling A, Bigler C, Eilmann B, Feldmeyer-Christe E, Gimmi U, Ginzler C, Graf U, Mayer P, Vacchiano G, Weber P, Wohlgemuth T, Zweifel R, Dobbertin M (2013) Driving factors of a vegetation shift from Scots pine to pubescent oak in dry Alpine forests. Glob Chang Biol 19:229–240. doi: 10.1111/gcb.12038
  128. Riis Simonsen J, Bigler C, Eilmann B, Feldmeyer-Christe E, Gimmi U, Ginzler C, Graf U, Mayer P, Vacchiano G, Weber P, Wohlgemuth T, Zweifel R, Dobbertin M (2013) Driving factors of a vegetation shift from Scots pine to pubescent oak in dry Alpine forests. Glob Chang Biol 19:229–240. doi: 10.1111/gcb.12038
  129. Rosenzweig C, Neofotis P (2013) Detection and attribution of anthropogenic climate change impacts. Wiley Interdiscip Rev Clim Chang 4:121–150. doi: 10.1002/wcc.209 CrossRefGoogle Scholar
  130. Rössler OK, Addor N, Bernhard L, Figura S, Köplin N, Livingstone DM, Schädler B, Seibert J, Weingartner R (2014) Hydrological responses to climate change: river runoff and groundwater. In: Raible CC, Strassman KM (eds) CH-2014 impacts, toward quantitative scenarios of climate change impacts in Switzerland (pp. 57–66). Oeschger Centre for Climate Change Research (OCCR), Federal Office for the Environment (FOEN), MeteoSwiss, NCCRGoogle Scholar
  131. Ruosch M, Spahni R, Joos F, Henne PD, van der Knaap P WO, Tinner W (2016) Past and future evolution of Abies alba forests in Europe—comparison of a dynamic vegetation model with palaeo data and observations. Glob Chang Biol 22:727–740. doi: 10.1111/gcb.13075
  132. Rutishauser T, Studer S (2007) Klimawandel und der Einfluss auf die Frühlingsphänologie| Climate change and its influence on spring phenology. Schweizerische Zeitschrift fur Forstwes 158:105–111. doi: 10.3188/szf.2007.0105
  133. Rutishauser T, Luterbacher J, Defila C, Frank D, Wanner H (2007) A phenology-based reconstruction of interannual changes in past spring seasons. J Geophys Res Biogeosciences 112:G04016. doi: 10.1029/2006jg000382
  134. Schädler B, Weingartner R (2010) Impact of climate change on water resources in the Alpine regions of Switzerland. In: Bundi U (ed) Alpine Waters. Springer, Berlin, pp 59–69CrossRefGoogle Scholar
  135. Schär C, Vidale PL, Lüthi D, Frei C, Häberli C, Liniger MA, Appenzeller C (2004) The role of increasing temperature variability in European summer heatwaves. Nature 427:332–336. doi: 10.1038/nature02300
  136. Scherrer D, Körner C (2011) Topographically controlled thermal-habitat differentiation buffers alpine plant diversity against climate warming. J Biogeogr 38:406–416. doi: 10.1111/j.1365-2699.2010.02407.x CrossRefGoogle Scholar
  137. Scherrer D, Schmid S, Körner C (2011) Elevational species shifts in a warmer climate are overestimated when based on weather station data. Int J Biometeorol 55:645–654. doi: 10.1007/s00484-010-0364-7 CrossRefGoogle Scholar
  138. Schmocker-Fackel P, Naef F (2012) Floods in Switzerland. In: Changes in flood risk in Europe. IAHS Press, Wallingford, pp 335–443CrossRefGoogle Scholar
  139. Schmucki E, Marty C, Fierz C, Lehning M (2015) Simulations of 21st century snow response to climate change in Switzerland from a set of RCMs. Int J Climatol 35:3262–3273. doi: 10.1002/joc.4205 CrossRefGoogle Scholar
  140. Schröter C (1923) Das Pflanzenleben der Alpen. Raustein, ZurichGoogle Scholar
  141. Schwörer C, Colombaroli D, Kaltenrieder P, Rey F, Tinner W (2014a) Early human impact (5000-3000 BC) affects mountain forest dynamics in the Alps. J Ecol 103:281–295. doi: 10.1111/1365-2745.12354
  142. Schwörer C, Henne PD, Tinner W (2014b) A model-data comparison of Holocene timberline changes in the Swiss Alps reveals past and future drivers of mountain forest dynamics. Glob Chang Biol 20:1512–1526. doi: 10.1111/gcb.12456 CrossRefGoogle Scholar
  143. Stadelmann G, Bugmann H, Wermelinger B, Bigler C (2014) Spatial interactions between storm damage and subsequent infestations by the European spruce bark beetle. For Ecol Manag 318:167–174. doi: 10.1016/j.foreco.2014.01.022 CrossRefGoogle Scholar
  144. Stahl K, Hisdal H, Hannaford J, Tallaksen LM, van Lanen HAJ, Sauquet E, Demuth S, Fendekova M, Jodar J (2010) Streamflow trends in Europe: evidence from a dataset of near-natural catchments. Hydrol Earth Syst Sci 14:2367–2382. doi: 10.5194/hess-14-2367-2010
  145. Stampfli A, Zeiter M (2004) Plant regeneration directs changes in grassland composition after extreme drought: a 13-year study in southern Switzerland. J Ecol 92:568–576. doi: 10.1111/j.0022-0477.2004.00900.x CrossRefGoogle Scholar
  146. Stampfli A, Zeiter M (2008) Mechanisms of structural change derived from patterns of seedling emergence and mortality in a semi-natural meadow. J Veg Sci 19:563–574. doi: 10.3170/2008-8-18408 CrossRefGoogle Scholar
  147. Stewart MM, Grosjean M, Kuglitsch FG, Nussbaumer SU, von Gunten L (2011) Reconstructions of late Holocene paleofloods and glacier length changes in the Upper Engadine, Switzerland (ca. 1450 BC-AD 420). Palaeogeogr Palaeoclimatol Palaeoecol 311:215–223. doi: 10.1016/j.palaeo.2011.08.022
  148. Stöckli R, Rutishauser T, Baker I, Liniger MA, Denning AS (2011) A global reanalysis of vegetation phenology. J Geophys Res 116:G03020. doi: 10.1029/2010JG001545
  149. Stöckli S, Hirschi M, Spirig C, Calanca P, Rotach MW, Samietz J (2012) Impact of climate change on voltinism and prospective diapause induction of a global pest insect—Cydia pomonella (L.) PLoS One 7:e35723. doi: 10.1371/journal.pone.0035723
  150. Studer S, Stöckli R, Appenzeller C, Vidale PL (2007) A comparative study of satellite and ground-based phenology. Int J Biometeorol 51:405–414. doi: 10.1007/s00484-006-0080-5 CrossRefGoogle Scholar
  151. Temperli C, Bugmann H, Elkin C (2013) Cross-scale interactions among bark beetles, climate change, and wind disturbances: a landscape modeling approach. Ecol Monogr 83:383–402. doi: 10.1890/12-1503.1 CrossRefGoogle Scholar
  152. Theurillat J-P, Guisan A (2001) Potential impact of climate change on vegetation in the European Alps: a review. Clim Chang 50:77–109. doi: 10.1023/a:1010632015572 CrossRefGoogle Scholar
  153. Theurillat J-P, Felber F, Geissler P, Gobat J-M, Fierz M, Fischlin A, Küpfer P, Schlüssel A, Velluti C, Zhao G-F (1998) Sensitivity of plant and soil ecosystems of the Alps to climate change. In: Cebon P, Dahinden U, Davies HC, Imboden D, Jäger CC (eds) Views from the Alps: regional perspectives on climate change. MIT Press, London, pp 225–308Google Scholar
  154. Thomas DJ, Styblo M, Lin S (2001) The cellular metabolism and systemic toxicity of arsenic. Toxicol Appl Pharmacol 176:127–144. doi: 10.1006/taap.2001.9258 CrossRefGoogle Scholar
  155. Thuiller W, Lavorel S, Araújo MB, Sykes MT, Prentice IC, Araujo MB (2005) Climate change threats to plant diversity in Europe. Proc Natl Acad Sci U S A 102:8245–8250. doi: 10.1073/pnas.0409902102
  156. Tinner W, Lotter AF, Ammann B, Conedera M, Hubschmid P, van Leeuwen JFN, Wehrli M (2003) Climatic change and contemporaneous land-use phases north and south of the Alps 2300 BC to 800 AD. Quat Sci Rev 22:1447–1460. doi: 10.1016/s0277-3791(03)00083-0
  157. Tinner W, Kaltenrieder P (2005) Rapid responses of high-mountain vegetation to early Holocene environmental changes in the Swiss Alps. J Ecol 93:936–947. doi: 10.1111/j.1365-2745.2005.01023.x
  158. Tinner W, Lotter AF (2001) Central European vegetation response to abrupt climate change at 8.2 ka. Geology 29:8400. doi: 10.1130/0091-7613(2001)029<0551 CrossRefGoogle Scholar
  159. Tinner W, Lotter AF (2006) Holocene expansions of Fagus silvatica and Abies alba in Central Europe: where are we after eight decades of debate? Quat Sci Rev 25:526–549. doi: 10.1016/j.quascirev.2005.03.017 CrossRefGoogle Scholar
  160. Tinner W, Theurillat J-P (2003) Uppermost limit, extent, and fluctuations of the timberline and treeline ecocline in the Swiss Central Alps during the past 11,500 years. Arctic, Antarct Alp Res 35:158–169. doi: 10.1657/1523-0430 CrossRefGoogle Scholar
  161. Tinner W, Conedera M, Ammann B, Lotter AF (2005) Fire ecology north and south of the Alps since the last ice age. The Holocene 15:1214–1226. doi: 10.1191/0959683605hl892rp CrossRefGoogle Scholar
  162. Tinner W, Nielsen EH, Lotter AF (2007) Mesolithic agriculture in Switzerland? A critical review of the evidence. Quat Sci Rev 26:1416–1431. doi: 10.1016/j.quascirev.2007.02.012 CrossRefGoogle Scholar
  163. Tinner W, Colombaroli D, Heiri O, Henne PD, Steinacher M, Untenecker J, Vescovi E, Allen JRM, Carraro G, Conedera M, Joos F, Lotter AF, Luterbacher J, Samartin S, Valsecchi V (2013) The past ecology of Abies alba provides new perspectives on future responses of silver fir forests to global warming. Ecol Monogr 83:419–439. doi: 10.1890/12-2231.1
  164. Torriani D, Calanca P, Lips M, Ammann H, Beniston M, Fuhrer J (2007a) Regional assessment of climate change impacts on maize productivity and associated production risk in Switzerland. Reg Environ Chang 7:209–221. doi: 10.1007/s10113-007-0039-z
  165. Torriani DS, Calanca P, Schmid S, Beniston M (2007b) Potential effects of changes in mean climate and climate variability on the yield of winter and spring crops in Switzerland. Clim Res 34:59–69. doi: 10.3354/cr034059 CrossRefGoogle Scholar
  166. Tzedakis PC, Andrieu V, de Beaulieu JL, Birks HJB, Crowhurst S, Follieri M, Hooghiemstra H, Magri D, Reille M, Sadori L, Shackleton NJ, Wijmstra TA (2001) Establishing a terrestrial chronological framework as a basis for biostratigraphical comparisons. Quat Sci Rev 20:1583–1592. doi: 10.1016/S0277-3791(01)00025-7
  167. Walther G-R, Post E, Convey P, Menzel A, Parmesan C, Beebee TJC, Fromentin J-M, Hoegh-Guldberg O, Bairlein F (2002) Ecological responses to recent climate change. Nature 416:389–395. doi: 10.1038/416389a
  168. Walther G-R, Beissner S, Burga CA (2005) Trends in the upward shift of alpine plants. J Veg Sci 16:541–548. doi: 10.1111/j.1654-1103.2005.tb02394.x CrossRefGoogle Scholar
  169. Weber F-A, Voegelin A, Kretzschmar R (2009) Multi-metal contaminant dynamics in temporarily flooded soil under sulfate limitation. Geochim Cosmochim Acta 73:5513–5527. doi: 10.1016/j.gca.2009.06.011
  170. Weber P, Bugmann H, Pluess AR, Walthert L, Rigling A (2013) Drought response and changing mean sensitivity of European beech close to the dry distribution limit. Trees 27:171–181. doi: 10.1007/s00468-012-0786-4
  171. Wegmüller S (1992) Vegetationsgeschichtliche und stratigraphische Untersuchungen an Schieferkohlen des nördlichen Alpenvorlandes. Birkhauser, BaselCrossRefGoogle Scholar
  172. Weigl PD, Knowles TW (2014) Temperate mountain grasslands: a climate-herbivore hypothesis for origins and persistence. Biol Rev 89:466–476. doi: 10.1111/brv.12063 CrossRefGoogle Scholar
  173. Weingartner R, Pfister C (2007) Wie ausserordentlich war das Niedrigwasser im Winter 2005 / 06? – Eine hydrologisch-historische Betrachtung des Rheinabflusses in Basel. Hydrol Wasserbewirtsch 51:22–26Google Scholar
  174. Wermelinger B, Rigling A, Schneider Mathis D, Dobbertin M (2008) Assessing the role of bark- and wood-boring insects in the decline of Scots pine (Pinus sylvestris) in the Swiss Rhone valley. Ecol Entomol 33:239–249. doi: 10.1111/j.1365-2311.2007.00960.x CrossRefGoogle Scholar
  175. Wetter O, Pfister C (2013) An underestimated record breaking event &ndash; why summer 1540 was likely warmer than 2003. Clim Past 9:41–56. doi: 10.5194/cp-9-41-2013 CrossRefGoogle Scholar
  176. Wetter O, Pfister C, Weingartner R, Luterbacher J, Reist T, Trösch J (2011) The largest floods in the High Rhine basin since 1268 assessed from documentary and instrumental evidence. Hydrol Sci J 56:733–758. doi: 10.1080/02626667.2011.583613
  177. Wetter O, Pfister C, Werner JP, Zorita E, Wagner S, Seneviratne SI, Herget J, Grünewald U, Luterbacher J, Alcoforado M-J, Barriendos M, Bieber U, Brázdil R, Burmeister KH, Camenisch C, Contino A, Dobrovolný P, Glaser R, Himmelsbach I, Kiss A, Kotyza O, Labbé T, Limanówka D, Litzenburger L, Nordl Ø, Pribyl K, Retsö D, Riemann D, Rohr C, Siegfried W, Söderberg J, Spring J-L (2014) The year-long unprecedented European heat and drought of 1540—a worst case. Clim Chang 125:349–363. doi: 10.1007/s10584-014-1184-2
  178. Willis KJ, McElwain JC (2002) The evolution of plants. Oxford University Press, OxfordGoogle Scholar
  179. Windmaisser T, Reisch C (2013) Long-term study of an alpine grassland: local constancy in times of global change. Alp Bot 123:1–6. doi: 10.1007/s00035-013-0112-9 CrossRefGoogle Scholar
  180. Wipf S, Stöckli V, Herz K, Rixen C (2013) The oldest monitoring site of the Alps revisited: accelerated increase in plant species richness on Piz Linard summit since 1835. Plant Ecol Divers 6:1–9. doi: 10.1080/17550874.2013.764943 CrossRefGoogle Scholar
  181. Zumbrunnen T, Bugmann H, Conedera M, Burgi M (2009) Linking forest fire regimes and climate—a historical analysis in a dry inner Alpine Valley. Ecosystems 12:73–86. doi: 10.1007/s10021-008-9207-3 CrossRefGoogle Scholar
  182. Zumbrunnen T, Menéndez P, Bugmann H, Conedera M, Gimmi U, Bürgi M (2012) Human impacts on fire occurrence: a case study of hundred years of forest fires in a dry alpine valley in Switzerland. Reg Environ Chang 12:935–949. doi: 10.1007/s10113-012-0307-4
  183. Zweifel R, Rigling A, Dobbertin M (2009) Species-specific stomatal response of trees to drought—a link to vegetation dynamics? J Veg Sci 20:442–454. doi: 10.1111/j.1654-1103.2009.05701.x

Copyright information

© US Government (outside the USA) 2017

Authors and Affiliations

  • Paul D. Henne
    • 1
    • 2
    • 3
    Email author
  • Moritz Bigalke
    • 4
  • Ulf Büntgen
    • 5
    • 6
    • 7
  • Daniele Colombaroli
    • 2
    • 3
  • Marco Conedera
    • 8
  • Urs Feller
    • 2
    • 3
  • David Frank
    • 3
    • 6
  • Jürg Fuhrer
    • 3
    • 9
  • Martin Grosjean
    • 3
    • 4
  • Oliver Heiri
    • 2
    • 3
  • Jürg Luterbacher
    • 10
  • Adrien Mestrot
    • 4
  • Andreas Rigling
    • 6
  • Ole Rössler
    • 3
    • 4
  • Christian Rohr
    • 3
    • 11
  • This Rutishauser
    • 3
    • 4
    • 12
  • Margit Schwikowski
    • 3
    • 13
  • Andreas Stampfli
    • 3
    • 14
  • Sönke Szidat
    • 3
    • 15
  • Jean-Paul Theurillat
    • 16
  • Rolf Weingartner
    • 3
    • 4
  • Wolfgang Wilcke
    • 4
    • 17
  • Willy Tinner
    • 2
    • 3
  1. 1.Geosciences and Environmental Change Science CenterU.S. Geological SurveyDenverUSA
  2. 2.Institute of Plant SciencesUniversity of BernBernSwitzerland
  3. 3.Oeschger Centre for Climate Change ResearchUniversity of BernBernSwitzerland
  4. 4.Institute of GeographyUniversity of BernBernSwitzerland
  5. 5.Department of GeographyUniversity of CambridgeCambridgeEngland
  6. 6.Swiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorfSwitzerland
  7. 7.Global Change Research Centre and Masaryk UniversityBrnoCzech Republic
  8. 8.Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Insubric Ecosystems Research GroupCadenazzoSwitzerland
  9. 9.Climate and Air Pollution GroupAgroscopeZurichSwitzerland
  10. 10.Department of Geography, Climatology, Climate Dynamics and Climate Change, and Centre for International Development and Environmental ResearchJustus Liebig University of GiessenGiessenGermany
  11. 11.Institute of HistoryUniversity of BernBernSwitzerland
  12. 12.Swiss Academies of Arts and SciencesBernSwitzerland
  13. 13.Paul Scherrer InstitutVilligenSwitzerland
  14. 14.School of Agricultural, Forest and Food SciencesBern University of Applied SciencesZollikofenSwitzerland
  15. 15.Department of Chemistry and BiochemistryUniversity of BernBernSwitzerland
  16. 16.Centre Alpien de Phytogéographie Fondation J.-M. Aubert, & Section of BiologyUniversity of GenevaGenevaSwitzerland
  17. 17.Karlsruhe Institute of Technology, Institute of Geography & GeoecologyKarlsruheGermany

Personalised recommendations