Advertisement

Regional Environmental Change

, Volume 18, Issue 7, pp 1999–2004 | Cite as

Management of sludge from fish ponds at the edge of the Itaparica Reservoir (Brazil): an alternative to improve agricultural production

  • Jorge Luiz Araújo da Silva
  • Maria do Socorro B. AraújoEmail author
  • Everardo Valadares de Sá Barretto Sampaio
  • Jorge Vitor Ludke
  • Dário Costa Primo
Original Article

Abstract

Sludge generated in intensively managed tilapia fingerling breeding ponds near the Itaparica Dam in the semi-arid Brazilian northeastern region was tested as a soil conditioner to produce lettuce in an effort to mitigate the present environmental impact of the deposition of this sludge, thereby giving it a productive destiny. A greenhouse experiment was performed by mixing the sludge with a Haplic Planosol topsoil, a characteristic soil of the region, so that the sludge corresponded to 0, 25, 50, 75, and 100% of the mixture (substrate). The experiment was set up as a randomized block design with five blocks, each with three pots (5-kg substrate per pot) of the five sludge proportion treatments. One lettuce plant was transplanted into each pot, maintained under greenhouse conditions, and harvested 35 days after transplanting. Sludge, soil, and the substrates were evaluated for nutrient concentration and physical characteristics. Green and dry weights, stem diameter, and nitrogen, phosphorus, and potassium concentrations in the aboveground parts of the lettuce plants were determined. Sludge incorporation into the substrate improved its chemical and physical characteristics. The lettuce plants grew best in the substrate with 75% sludge, increasing its biomass production by 50% and more than doubling its nitrogen uptake.

Keywords

Semi-arid Brazilian northeastern region Haplic Planosol Lactuca sativa NPK concentrations Sustainable aquiculture-agriculture consortium 

Notes

Acknowledgments

The authors thank Prof. Jarcilene Cortez and her staff at CCB, UFPE; Prof. Rômulo Menezes at DEN, UFPE; Wellington V. Alves, Agropecuária Estrela da Manhã, Chã Grande, PE; Gustavo Cabral; and Romero M. Ledo, Secretaria de Meio Ambiente da Prefeitura Municipal de Itacuruba, PE for their help with the laboratory and field work. They also thank CNPq for financial support and the research grants of Prof. Maria do Socorro B. Araújo and Everardo V.S.B. Sampaio and Jonah Landor-Yamagata, American student at Technische Universität Berlin, for providing language help.

References

  1. Andrade CWL, Montenegro SMGL, Montenegro AAA, Assis FMCV (2014) Adsorção e deslocamento do íon potássio em Planossolo Háplico no semiárido pernambucano. XII Simpósio de Recursos Hídricos do Nordeste, 2014, NatalGoogle Scholar
  2. Araújo Filho JC (2011) Relação solo e paisagem no bioma caatinga. Simpósio Brasileiro de Geografia Física Aplicada, 2011, Recife, PE. Anais... XIV–SBGFA, RecifeGoogle Scholar
  3. Araújo MSB, Schaefer CER, Sampaio EVSB (2003) Plant phosphorus availability in Latosols and Luvisols from northeastern semi-arid Brazil. Commun Soil Sci Plan 34:407–425. doi: 10.1081/CSS-120017829 CrossRefGoogle Scholar
  4. Araújo MSB, Schaefer CER, Sampaio EVSB (2004a) Phosphorus fractions after successive resin extractions and incubation in semi-arid soils of Pernambuco State, Brazil. Rev Bras ci Solo 28:259–268. doi: 10.1590/S0100-06832004000200004 CrossRefGoogle Scholar
  5. Araújo MSB, Schaefer CER, Sampaio EVSB (2004b) Soil phosphorus fractions from toposequences of semi-arid Latosols and Luvisols in northeastern Brazil. Geoderma 119:309–321. doi: 10.1016/j.Geoderma.2003.07.002 CrossRefGoogle Scholar
  6. Araújo MSB, Schaefer CER, Sampaio EVSB (2006) O processo de formação dos espodossolos e o transporte do fósforo associado. Rev Geografia (Recife) 23:37–44Google Scholar
  7. Avnimelech Y, Ritvo G (2003) Shrimp and fish pond soils: processes and management. Aquaculture 220:549–567. doi: 10.1016/S0044-8486(02)00641-5 CrossRefGoogle Scholar
  8. Azeem M, Riaz A, Chaudhary AN, Hayat R, Hussain Q, Tahir MI, Imran M (2015) Microbial phytase activity and their role in organic P mineralization. Arch Agron Soil Sci 61:751–766. doi: 10.1080/03650340.2014.963796 CrossRefGoogle Scholar
  9. Bernardi ACC, Verruma-Bernardi MR, Werneck CG, Haim PG, Monte MBM (2005) Yield, appearance and content of nitrogen, phosphorus and potassium in lettuce grown in substrate with zeolite. Hort Bras 23:920–924. doi: 10.1590/S0102-05362005000400011 CrossRefGoogle Scholar
  10. Biondi CM, Nascimento CWA, Fabricio Neta AB, Ribeiro MR (2011) Concentrations of Fe, Mn, Zn, Cu, Ni and Co in benchmark soils of Pernambuco, Brazil. Rev Bras Ci Solo 35:1057–1066. doi: 10.1590/S0100-06832011000300039 CrossRefGoogle Scholar
  11. Bottomley PJ (2004) Microbial Ecology. In: Sylvia DM, Fuhrmann JJ, Hartel PG, Zuberer DA (eds) Principles and applications of soil microbiology, 2nd edn. Prentice-Hall Inc., New JerseyGoogle Scholar
  12. Briggs MRP, Fvnge-Smith SJ (1994) A nutrient budget of some intensive marine shrimp ponds in Thailand. Aquac res 25:789–811. doi: 10.1111/j.1365-2109.1994.tb00744.x CrossRefGoogle Scholar
  13. EMBRAPA-Empresa Brasileira de Pesquisa Agropecuária (1997) Manual de métodos de análise de solo. EMBRAPA/CNPS, Rio de JaneiroGoogle Scholar
  14. EMBRAPA-Empresa Brasileira de Pesquisa Agropecuária (1999) Manual de análises químicas de solos, plantas e fertilizantes. Embrapa Solos/Embrapa Informática Agropecuária/Embrapa Comunicação para Transferência de Tecnologia, BrasíliaGoogle Scholar
  15. EMBRAPA-Empresa Brasileira de Pesquisa Agropecuária (2013) Sistema Brasileiro de Classificação de Solos. Embrapa Informação Tecnológica, BrasíliaGoogle Scholar
  16. Farias DR, Oliveira FHT, Santos D, Arruda JA, Hoffmann RB, Novais RF (2009) Phosphorus in representative soils of the state of Paraiba. I. Adsorption isotherms and indicators of the phosphorus capacity factor. Rev Bras ci Solo 33:623–632. doi: 10.1590/S0100-06832009000300015 CrossRefGoogle Scholar
  17. Figueiredo MSFV (2011) Exílio: Pertencimentos e Reconhecimentos em Populações Deslocadas—O Caso de Itacuruba. Tese de Doutorado, Universidade Federal de Pernambuco, Centro de Filosofia e Ciências Humanas, 234 pGoogle Scholar
  18. Freire MBGS, Ruiz HA, Ribeiro MR, Ferreira PA, Alvarez VHAV, Freire FJ (2003) Estimation of sodification risks of Pernambuco soils in response to saline water. Rev Bras Eng Agríc Ambient 7:227–232. doi: 10.1590/S1415-43662003000200007 CrossRefGoogle Scholar
  19. Lin CK, Yi Y (2003) Minimizing environmental impacts of freshwater aquaculture and reuse of pond effluents and mud. Aquaculture 226:57–68. Special issue: Management of Aquaculture Effluents. doi: 10.1016/S0044-8486(03)00467-8 CrossRefGoogle Scholar
  20. Martin JLM, Veran Y, Guelorget O, Pham D (1998) Shrimp rearing: stocking density, growth, impact on sediment, waste output and their relationships studied through the nitrogen budget in rearing ponds. Aquaculture 164:135–149. doi: 10.1016/S0044-8486(98)00182-3 CrossRefGoogle Scholar
  21. Maureen Reilly BA (2001) The case against land application of sewage sludge pathogens. Can J Infect dis 12:205–207. PMCID: PMC2094820Google Scholar
  22. Mizanur R, Yakupitiyage A, Ranamukhaarachchi SL (2004) Agricultural use of fishpond sediment for environmental amelioration. Thammasat Int J Sci Tech 9:1–12Google Scholar
  23. Muendo PN, Stoorvogel JJ, Verdegem MCJ, Gamal EN, Verreth JAJ (2006) The role of fish ponds in farm’s nutrient balances. In: Proceedings of the Fish Ponds in Farming Systems’ Symposium Can Tho, VietnamGoogle Scholar
  24. Ostrensky A, Borghetti JR, Soto ED (2008) Aquiculture in Brazil: the challenge is to grow. SEAP/FAO, BrasíliaGoogle Scholar
  25. Paez-Osuna F, Guerrero-Galvan SR, Ruiz-Fernandez AC (1999) Discharge of nutrients from shrimp farming to coastal waters of the Gulf of California. Mar Pollut Bull 3:585–592. doi:10.1016/S0025-326X(98)00116-7
  26. Pereira OCN, Bertonha A, Freitas PSL, Gonçalves ACA, Rezende R, Silva FF (2003) Lettuce production to water and nitrogen levels. Acta Sci Agron 25:381–386. doi: 10.4025/actasciagron.v25i2.1987 CrossRefGoogle Scholar
  27. Primo DC, Menezes RSC, Garrido MS, Dubeux JCB Jr, Sampaio EVSB, Souza CS (2014) Recovery of N applied as 15N-manure or 15N-gliricidia biomass by maize, cotton and cowpea. Nutr Cycl Agroecosyst 100:205–214. doi: 10.1007/s10705-014-9638-5 CrossRefGoogle Scholar
  28. Rodal MJNF, Sampaio EVSB (2002) A vegetação do bioma caatinga. In: EVSB S, Giulietti AM, Virgínio J, CFL G-R (eds) Vegetação e flora da caatinga, 1st edn. CNIP: Associação Plantas do Nordeste, Recife, pp 11–14Google Scholar
  29. Rodrigues ET, Casali VWD (1998) Response of lettuce to organic fertilizing. II. Concentration, content and utilization of macronutrients in cultivars. Rev Ceres 45:437–449Google Scholar
  30. Salcedo IH, Sampaio EVSB (2008) Matéria orgânica do solo no bioma caatinga. In: Santos GA, Silva LS, Canellas LP, Camargo FAO (eds) Fundamentos da matéria orgânica no solo: ecossistemas tropicais e sub-tropicais, 2nd edn. Metrópole, Porto Alegre, pp 419–441Google Scholar
  31. Sampaio EVSB, Tiessen H, Antonino ACD, Salcedo IH (2004) Residual N and P fertilizer effect and fertilizer recovery on intercropped and sole-cropped corn and beans in semiarid northeast Brazil. Nutr Cycl Agroecosys 70:1–11. doi: 10.1023/B:FRES.0000049356.83427.93
  32. Sampaio EVSB, Araújo MSB, Sampaio YSB (2005) Propensão à desertificação no semiárido brasileiro. Rev Geografia (Recife) 22:67–80Google Scholar
  33. Sampaio EVSB, Araújo MSB, Salcedo IH, Menezes RSC (2009) Manejo sustentável do semi-árido nordestino. Editora Universitária-UFPE, RecifeGoogle Scholar
  34. Sanchez SV (2007) Avaliação de cultivares de alface crespa produzidas em hidroponia tipo NFT em dois ambientes protegidos em Ribeirão Preto. Dissertação de Mestrado, Universidade Estadual Paulista, Faculdade de Ciências Agrárias e Veterinárias, 63 pGoogle Scholar
  35. Santos ES, Santi A, Dallacort R, Melo FS, Faria Junior CA (2015) Coeficiente de cultura da alface para a região de Tangará da Serra, MT. Enciclopédia Biosfera 11:566–577Google Scholar
  36. Singh R, Gautam N, Mishra A, Gupta R (2011) Heavy metals and living systems: an overview. Indian J Pharmacol 43:246–253. doi: 10.4103/0253-7613.81505 CrossRefGoogle Scholar
  37. Smith PT (1996) Physical and chemical characteristics of sediments from prawn farms and mangrove habitats on the Clarence River, Australia. Aquaculture 146:47–83. doi: 10.1016/S0044-8486(96)01361-0 CrossRefGoogle Scholar
  38. Sousa AR, Albuquerque SF, Lopes GMB, Silva AB, Nunes Filho J (2013) Description and interpretation of a Eutrophic Haplic Planosol in the Agreste of Pernambuco, Brazil. An Acad Pernambucana ci Agron 10:271–279Google Scholar
  39. Valenti WC, Poli CR, Pereira JA, Borghetti JR (2000) Aquiculture in Brazil: foundations for sustainable development. Brasília, CNPq, Ministério da Ciência e Tecnologia, BrasíliaGoogle Scholar
  40. Vieira RMSP, Cunha APMA, Alvalá RCS, Carvalho VC, Ferraz Neto S, Sestini MF (2013) Land use and land cover map of a semiarid region of Brazil for meteorological and climatic models. Rev Bras Meteorol 28:129–138. doi: 10.1590/S0102-77862013000200002 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Jorge Luiz Araújo da Silva
    • 1
  • Maria do Socorro B. Araújo
    • 2
    Email author
  • Everardo Valadares de Sá Barretto Sampaio
    • 3
  • Jorge Vitor Ludke
    • 4
  • Dário Costa Primo
    • 3
  1. 1.Development and Environment Posgraduate ProgramUniversidade Federal de Pernambuco-UFPERecifeBrazil
  2. 2.Department of Geographical SciencesUniversidade Federal de Pernambuco-UFPERecifeBrazil
  3. 3.Department of Nuclear EnergyUniversidade Federal de Pernambuco-UFPERecifeBrazil
  4. 4.Embrapa Suínos e AvesConcórdiaBrazil

Personalised recommendations