Regional Environmental Change

, Volume 18, Issue 4, pp 1073–1087 | Cite as

Socioecological transition in the Cauca river valley, Colombia (1943–2010): towards an energy–landscape integrated analysis

  • Joan MarullEmail author
  • Olga Delgadillo
  • Claudio Cattaneo
  • María José La Rota
  • Fridolin Krausmann
Original Article


Agroecosystems are facing a global challenge amidst a socioecological transition that places them in a dilemma between increasing land-use intensity to meet the growing demand of food, feed, fibres and fuels, while avoiding the loss of biodiversity and ecosystem services. We applied an intermediate disturbance-complexity approach to the land-use changes of a Latin American biocultural landscape (Cauca river valley, Colombia, 1943–2010), which accounts for the joint behaviour of human appropriation of photosynthetic capacity used as a measure of disturbance, and a selection of land metrics that account for landscape ecological functionality. We also delved deeper into local land-use changes in order to identify the main socioeconomic drivers and ruling agencies at stake. The results show that traditional organic mixed-farming tended to disappear as a result of sugarcane intensification. The analysis confirms the intermediate disturbance-complexity hypothesis by showing a nonlinear relationship, where the highest level of landscape complexity (heterogeneity–connectivity) is attained when disturbance peaks at 50–60%. The study proves the usefulness of transferring the concept of intermediate disturbance to biocultural landscapes and suggests that conservation of heterogeneous and well-connected mixed-farming, with a positive interplay between intermediate level of disturbances and land-use complexity endowed with a rich intercultural heritage, will preserve a wildlife-friendly agro-ecological matrix likely to house high biodiversity and ecosystem services.


Biocultural heritage Disturbance ecology Human appropriation of net primary production Landscape agroecology Latin America Colombia 



This work has been supported by the international Partnership Grant SSHRC-895-2011-1020 on ‘Sustainable farm systems: long-term socio-ecological metabolism in western agriculture’ funded by the Social Sciences and Humanities Research Council of Canada and by the Doctoral Scholarship Grant 12010XU0401200 funded by the Pontifical Javeriana University in Colombia.


  1. Agnoletti M, Emanueli F (2016) Biocultural diversity in Europe. Springer International Publishing, Cham. ISBN 978-3-319-26315-1CrossRefGoogle Scholar
  2. Alam M, Olivier A, Paquette A, Dupras J, Revéret JP, Messier C (2014) A general framework for the quantification and valuation of ecosystem services of treebased intercropping systems. Agrofor Syst 88:679–691. doi: 10.1007/s10457-014-9681-x CrossRefGoogle Scholar
  3. Barnes B, Sidhu HS, Roxburgh SH (2006) A model integrating patch dynamics, competing species and the intermediate disturbance hypothesis. Ecol Model 194:414–420. doi: 10.1016/j.ecolmodel.2005.10.040 CrossRefGoogle Scholar
  4. Bendeck J (2013) Biocombustibles hoy. Boletín 101.
  5. Bengtsson J, Angelstam P, Elmqvist T, Emanuelsson U, Folke C, Ihse M, Moberg F, Nyström M (2003) Reserves, resilience and dynamic landscapes. Ambio 32(6):389–396. doi: 10.1579/0044-7447-32.6.389 CrossRefGoogle Scholar
  6. Benton TG, Vickery JA, Wilson JD (2003) Farmland biodiversity: is habitat heterogeneity the key? Trends Ecol Evol 18:182–188. doi: 10.1016/S0169-5347(03)00011-9 CrossRefGoogle Scholar
  7. Berrío JC, Hooghiemstra H, Marchant R, Rangel O (2002) Late-glacial and Holocene history of the dry forest area in the south Colombian Cauca Valley. Quat Sci 17(7, 2):667–682. doi: 10.1002/jqs.701 CrossRefGoogle Scholar
  8. Calow P (1987) Evolutionary physiological ecology. Cambridge University Press, Cambridge. ISBN 978-0521101653Google Scholar
  9. Cárdenas Carmona G (2013) Comparación de la composición y estructura de la avifauna en diferentes sistemas de producción Universidad del Valle. Cali, Colombia. [electronic resource] (doctoral dissertation)Google Scholar
  10. Cardinale BJ, Duffy JE, Gonzalez A, Hooper DU, Perrings Ch, Venail P, Narwani A, Mace G, Tilman D, Wardle DA, Kinzig AP, Daily GC, Loreau M, Grace JB, Larigauderie A, Srivastava DS, Naeem S (2012) Biodiversity loss and its impact on humanity. Nature 486:59–67. doi: 10.1038/nature11148 CrossRefGoogle Scholar
  11. Cassman KG (1999) Ecological intensification of cereal production systems: yield potential, soil quality, and precision agriculture. Proc Natl Acad Sci USA 96:5952–5959. doi: 10.1073/pnas.96.11.5952 CrossRefGoogle Scholar
  12. Chase TN, Pielke RA Sr, Kittel TGF, Nemani RR, Running SW (2000) Simulated impacts of historical land cover changes on global climate in northern winter. Clim Dyn 16(2–3):93–105. doi: 10.1007/s003820050007 CrossRefGoogle Scholar
  13. Chazdon RL, Harvey CA, Komar O, Griffith DM, Ferguson BG, Martínez-Ramos M, Philpott SM (2009) Beyond reserves: a research agenda for conserving biodiversity in human-modified tropical landscapes. Biotropica 41(2):142–153. doi: 10.1111/j.1744-7429.2008.00471.x CrossRefGoogle Scholar
  14. Chesson P, Huntly N (1997) The roles of disturbance, mortality, and stress in the dynamics of ecological communities. Am Nat 150:519–553. doi: 10.1086/286080 CrossRefGoogle Scholar
  15. CVC—Corporación Autónoma Regional del Valle del Cauca, Universidad del Valle (2000) Caracterización del río Cauca. Tramo Salvajina. La Virginia, CaliGoogle Scholar
  16. Delgadillo-Vargas O, García-Ruiz R, Forero-Álvarez J (2016) Fertilising techniques and nutrient balances in the agriculture industrialization transition: the case of sugarcane in the Cauca river valley (Colombia), 1943–2010. Agric Ecosyst Environ 218:150–162. doi: 10.1016/j.agee.2015.11.003 CrossRefGoogle Scholar
  17. Dupras J, Marull J, Ll Parcerisas, Coll F, Gonzalez A, Girard M, Tello E (2016) The impacts of urban sprawl on ecological connectivity in the Montreal Metropolitan Region. Environ Sci Policy 58:61–73. doi: 10.1016/j.envsci.2016.01.005 CrossRefGoogle Scholar
  18. Escobar A (1996) La invención del Tercer Mundo. Construcción y deconstrucción del desarrollo. Editorial Norma S.A., Bogotá. ISBN 978-980-396-776-5Google Scholar
  19. FAO—Food And Agriculture Organization of the United Nations (2015). FAOSTAT. Retrieved September 10, 2015, from
  20. Fischer J, Lindenmayer DB (2006) Beyond fragmentation: the continuum model for fauna research and conservation in human-modified landscapes. Oikos 112(2):473–480. doi: 10.1111/j.0030-1299.2006.14148.x CrossRefGoogle Scholar
  21. Fischer J, Brosi B, Daily GC, Ehrlich PR, Goldman R, Goldstein J, Lindenmayer DB, Manning AD, Mooney HA, Pejchar L, Ranganathan J, Tallis H (2008) Should agricultural policies encourage land sparing or wildlife-friendly farming? Front Ecol Environ 6:380–385. doi: 10.1890/070019 CrossRefGoogle Scholar
  22. Foley JA, DeFries R, Asner GP, Barford C, Bonan G, Carpenter SR, Chapin FS, Coe MT, Daily GC, Gibbs HK, Helkowski JH (2005) Global consequences of land use. Science 309(5734):570–574. doi: 10.1126/science.1111772 CrossRefGoogle Scholar
  23. Fox WF (2013) The intermediate disturbance hypothesis should be abandoned. Trends Ecol Evol 28(2):86–92. doi: 10.1016/j.tree.2012.08.014 CrossRefGoogle Scholar
  24. Franklin JF, Lindenmayer DB (2009) Importance of matrix habitats in maintaining biological diversity. Proc Natl Acad Sci 106(2):349–350. doi: 10.1073/pnas.0812016105 CrossRefGoogle Scholar
  25. Godfray HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Pretty J, Robinson S, Thomas SM, Toulmin C (2010) Food security: the challenge of feeding 9 billion people. Science 327(5967):812–818. doi: 10.1126/science.1185383 CrossRefGoogle Scholar
  26. González de Molina M, Toledo VM (2014) The social metabolism: a socio-ecological theory of historical change. Springer, New York. ISBN 978-3-319-06358-4CrossRefGoogle Scholar
  27. Grau HR, Kuemmerle T, Macchi L (2013) Beyond land sparing vs. land sharing: environmental heterogeneity, globalization and the balance between agriculture and nature conservation. Curr Opin Environ Sustain 5:477–483. doi: 10.1016/j.cosust.2013.06.001 CrossRefGoogle Scholar
  28. Green RE, Cornell SJ, Scharlemann JPW, Balmford A (2005) Farming and the fate of wild nature. Science 307:550–551. doi: 10.1126/science.1106049 CrossRefGoogle Scholar
  29. Guardiola J (1995) Avances tecnológicos entre 1950 y 1980. In: Cassalett C, Torres J, Isaacs C (eds) El cultivo de la caña en la zona azucarera de Colombia. Cenicaña, Cali, pp 9–21Google Scholar
  30. Guzmán G, Aguilera E, Soto D, Cid A, Infante J, García-Ruiz R, Herrera A, Villa I, González de Molina M (2014) Methodology and conversion factors to estimate the net primary productivity of historical and contemporary agroecosystems. Working Paper of the Sociedad Española de Historia Agraria, DT-SEHA n. 1407.
  31. Haberl H, Erb KH, Krausmann F, Gaibe V, Bondeau A, Plutzar C, Gingrich S, Lucht W, Fischer-Kowalski M (2007a) Quantifying and mapping the human appropriation of net primary production in earth’s terrestrial ecosystems. Proc Natl Acad Sci USA 104(34):12942–12947. doi: 10.1073/pnas.0704243104 CrossRefGoogle Scholar
  32. Haberl H, Erb KH, Plutzar C, Fischer-Kowalski M, Krausmann F (2007b) Human appropriation of net primary production (HANPP) as indicator for pressures on biodiversity. In: Hak T, Moldan B, Dahl AL (eds) Sustainability indicators. A scientific assessment. SCOPE, Island Press, Washington, London, pp 271–288Google Scholar
  33. Haberl H, Erb KH, Krausmann F (2014) Human appropriation of net primary production: patterns, trends, and planetary boundaries. Annu Rev Environ Resour 39:363–391. doi: 10.1146/annurev-environ-121912-094620 CrossRefGoogle Scholar
  34. Harper KA, MacDonald SE, Burton PhJ, Chen J, Brosofsfe KD, Saunders SC, Euskirchen ES, Robert D, Jaiteh MS, Esseen PA (2005) Edge influence on forest structure and composition in fragmented landscapes. Conserv Biol 19:768–782. doi: 10.1111/j.1523-1739.2005.00045.x CrossRefGoogle Scholar
  35. Hulme MF, Vickery JA, Green RE, Phalan B, Chamberlain DE, Pomeroy DE, Nalwanga D, Mushabe D, Katebaka R, Bolwig S, Atkinson PW (2013) Conserving the birds of Uganda’s banana-coffee arc: land sparing and land sharing compared. PLoS ONE. doi: 10.1371/journal.pone.0054597 Google Scholar
  36. Huston MA (2014) Disturbance, productivity, and species diversity: empiricism vs. logic in ecological theory. Ecology 95(9):2382–2396. doi: 10.1890/13-1397.1 CrossRefGoogle Scholar
  37. IAvH—Instituto de Investigación de Recursos Biológicos Alexander Von Humboldt (1998) Informe Nacional sobre el estado de la biodiversidad 1997-Colombia. Bosque seco tropical, In: Chávez ME, Arango N (eds) Tomo I: Diversidad, pp 56–71Google Scholar
  38. IGAC—Instituto Geografico Agustin Codeazzi (2012) Atlas de la Distribución de la Propiedad Rural en Colombia Imprenta Nacional de Colombia, pp 406–417Google Scholar
  39. ISO-International Sugar Organization (2012) Outlook of sugar and ethanol production in Brazil. MECAS 12:05Google Scholar
  40. Jaeger J (2000) Landscape division, splitting index, and effective mesh size: new measures of landscape fragmentation. Landsc Ecol 15(2):115–130. doi: 10.1023/A:1008129329289 CrossRefGoogle Scholar
  41. Krausmann F, Haberl H, Erb KH, Wiesinger M, Gaube V, Gingrich S (2009) What determines geographical patterns of the global human appropriation of net primary production? J Land Use Sci 4:15–34. doi: 10.1080/17474230802645568 CrossRefGoogle Scholar
  42. Krausmann F, Erb KH, Gingrich S, Haberl H, Bondeau A, Gaube V, Lauk C, Plutzar C, Searchinger T (2013) Global human appropriation of net primary production doubled in the 20th century. Proc Natl Acad Sci 110:10324–10329. doi: 10.1073/pnas.1211349110 CrossRefGoogle Scholar
  43. Lambin EF, Geist HJ, Lepers E (2003) Dynamics of land-use and land-cover change in tropical regions. Annu Rev Environ Resour 28(1):205–241. doi: 10.1146/ CrossRefGoogle Scholar
  44. Lindenmayer DB, Fischer J (2007) Tackling the habitat fragmentation panchreston. TREE 22:127–132. doi: 10.1016/j.tree.2006.11.006 Google Scholar
  45. Loreau M, Mouquet N, Gonzalez A (2010) Biodiversity as spatial insurance in heterogeneous landscapes. P Natl Acad Sci 100(22):12765–12770. doi: 10.1073/pnas.2235465100 CrossRefGoogle Scholar
  46. Lorek T (2013) Imagining the Midwest in Latin America: US Advisors and the Envisioning of an Agricultural Middle Class in Colombia’s Cauca Valley, 1943–1946. Historian 75(2):283–305. doi: 10.1111/hisn.12008 CrossRefGoogle Scholar
  47. Marull J, Font C (2017) The energy-landscape integrated analysis (ELIA) of agroecosystems. In: Fraňková E, Haas W, Singh SJ (eds) Sociometabolic perspectives on sustainability of local food systems. New insights for science, policy and practice. Springer, DordrechtGoogle Scholar
  48. Marull J, Mallarach JM (2005) A GIS methodology for assessing ecological connectivity: application to the Barcelona Metropolitan Area. Landsc Urban Plan 71:243–262. doi: 10.1016/j.landurbplan.2004.03.007 CrossRefGoogle Scholar
  49. Marull J, Tello E, Fullana N, Murray I, Jover G, Font C, Coll F, Domene E, Leoni V, Decolli T (2015) Long-term bio-cultural heritage: exploring the intermediate disturbance hypothesis in agro-ecological landscapes (Mallorca, c. 1850–2012). Biodivers Conserv 24(13):3217–3251. doi: 10.1007/s10531-015-0955-z CrossRefGoogle Scholar
  50. Marull J, Font C, Tello E, Fullana N, Domene E (2016a) Towards an energy-landscape integrated analysis? Exploring the links between socio-metabolic disturbance and landscape ecology performance (Mallorca, Spain, 1956–2011). Landsc Ecol 31:317–336. doi: 10.1007/s10980-015-0245-x CrossRefGoogle Scholar
  51. Marull J, Font C, Padró R, Tello E, Panazzolo A (2016b) Energy-landscape integrated analysis of agro-ecosystems: how the complexity of energy flows shapes landscape patterns (Barcelona province, 1860–2000). Ecol Ind 66:30–46. doi: 10.1016/j.ecolind.2016.01.015 CrossRefGoogle Scholar
  52. Matson PA, Vitousek PM (2006) Agricultural intensification: will land spared from farming be land spared for nature? Conserv Biol 20(3):709–710. doi: 10.1111/j.1523-1739.2006.00442.x CrossRefGoogle Scholar
  53. Matthews R, Selman P (2006) Landscape as a focus for integrating human and environmental processes. J Agr Econ 57:199–212. doi: 10.1111/j.1477-9552.2006.00047.x CrossRefGoogle Scholar
  54. Mayer A, Schaffartzik A, Haas W, Sepulveda AR (2015) Patterns of global biomass trade: the implications for food sovereignty and socio-environmental conflict. EJOLT Report No. 20,
  55. Parrotta JA, Trosper RL (2012) Traditional forest-related knowledge: sustaining communities, ecosystems and biocultural diversity. World For; 12:1–621. ISBN 978-94-007-2144-9Google Scholar
  56. Patiño VM (1977) Aspectos históricos sobre los recursos naturales y las plantas útiles en Colombia. Instituto Colombiano de Cultura, BogotáGoogle Scholar
  57. Perfecto I, Vandermeer J (2010) The agroecological matrix as alternative to the land-sparing/agriculture intensification model. Proc Natl Acad Sci 107(13):5786–5791. doi: 10.1073/pnas.0905455107 CrossRefGoogle Scholar
  58. Phalan B, Onial M, Balmford A, Green RE (2011) Reconciling food production and biodiversity conservation: land sharing and land sparing compared. Science 333:1289–1291. doi: 10.1126/science.1208742 CrossRefGoogle Scholar
  59. Piñeiro M, Fiorentino R, Trigo E, Balcázar A, Martínez A (1982) Articulación social y cambio técnico. La producción de azúcar en Colombia. Serie Investigación y Desarrollo (Instituto Interamericano de Cooperación para la Agricultura.). Centro Interamericano de Información y documentación Agrícola, CIDIA. San José, Costa RicaGoogle Scholar
  60. Pino J, Marull J (2012) Ecological networks: are they enough for connectivity conservation? A case study in the Barcelona Metropolitan Region (NE Spain). Land Use Policy 29:684–690. doi: 10.1016/j.landusepol.2011.11.004 CrossRefGoogle Scholar
  61. Pungetti G (2013) Biocultural diversity for sustainable ecological, cultural and sacred landscapes: the biocultural landscape approach. In: Fu B, Jones B (eds) Landscape ecology for sustainable environment and culture. Springer, Dordrecht, pp 55–76. doi: 10.1007/978-94-007-6530-6_4 CrossRefGoogle Scholar
  62. Ramírez M, Armbrecht I, Enríquez L, Lucía ML (2004) Importancia del manejo agrícola para la biodiversidad: caso de las hormigas en caña de azúcar. Rev Colomb Entomol; 30(1):115–123. ISSN: 0120-0488Google Scholar
  63. Rivera C, Naranjo L, Duque A (2007) De María a un Mar de Caña. Imaginarios de naturaleza en la transformación del paisaje vallecaucano entre, 1950 y 1970. Universidad Autónoma de Occidente, Cali. ISBN 978-958-8122-53-3Google Scholar
  64. Sala OE, Chapin FS 3rd, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Huber-Sanwald E, Huenneke LF, Jackson RB, Kinzig A, Leemans R, Lodge DM, Mooney HA, Oesterheld M, Poff NL, Sykes MT, Walker BH, Walker M, Wall DH (2000) Global biodiversity scenarios for the year 2100. Science 287(5459):1770–1774. doi: 10.1126/science.287.5459.1770 CrossRefGoogle Scholar
  65. Shreeve TG, Dennis RLH, Van Dick H (2004) Resources, habitats and metapopulations—whither reality? Oikos 106:404–408. doi: 10.1111/j.0030-1299.2004.13516.x CrossRefGoogle Scholar
  66. Swift MJ, Izac AMN, van Noordwijk M (2004) Biodiversity and ecosystem services in agricultural landscapes—are we asking the right questions? Agr Ecosyst Environ 104(1):113–134. doi: 10.1016/j.agee.2004.01.013 CrossRefGoogle Scholar
  67. Thomson AM, Calvin KV, Chini LP, Hurtt G, Edmonds JA, Bond-Lamberty B, Frolking S, Wise MA, Janetos AC (2010) Climate mitigation and the future of tropical landscapes. Proc Natl Acad Sci 107(46):19633–19638. doi: 10.1073/pnas.0910467107 CrossRefGoogle Scholar
  68. Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S (2002) Agricultural sustainability and intensive production practices. Nature 418(6898):671–677. doi: 10.1038/nature01014 CrossRefGoogle Scholar
  69. Tscharntke T, Klein AM, Kruess A, Steffan-Dewenter I, Carsten Thies C (2005) Landscape perspectives on agricultural intensification and biodiversity-ecosystem service management. Ecol Lett 8:857–874. doi: 10.1111/j.1461-0248.2005.00782.x CrossRefGoogle Scholar
  70. Tscharntke T, Clough Y, Wanger TC, Jackson L, Motzke I, Perfecto I, Vandermeer J, Whitbread A (2012) Global food security, biodiversity conservation and the future of agricultural intensification. Biol Conserv 151:53–59. doi: 10.1016/j.biocon.2012.01.068 CrossRefGoogle Scholar
  71. Van der Maarel E (1993) Some remarks on disturbance and its relations to diversity and stability. J Veg Sci 4:733–736. doi: 10.2307/3235608 CrossRefGoogle Scholar
  72. Vandermeer J, Perfecto I (2007) The agricultural matrix and a future paradigm for conservation. Conserv Biol 21(1):274–277. doi: 10.1111/j.1523-1739.2006.00582.x CrossRefGoogle Scholar
  73. Vranken I, Baudry J, Aubinet M, Visser M, Bogaert J (2015) A review on the use of entropy in landscape ecology: heterogeneity, unpredictability, scale dependence and their links with thermodynamics. Landsc Ecol 30:51–65. doi: 10.1007/s10980-014-0105-0 CrossRefGoogle Scholar
  74. Wilson JB (1990) Mechanisms of species coexistence: twelve explanations for Hutchinson’s ‘paradox of the plankton’: evidence from New Zealand plant communities. New Zeal J Ecol 13:17–42Google Scholar
  75. Wilson JB (1994) The ‘intermediate disturbance hypothesis’ of species coexistence is based in on patch dynamics. New Zeal J Ecol 18:176–181Google Scholar
  76. Zuluaga F (1992) El valle: Historia y paisaje. In: Historia regional del Valle del Cauca. Universidad del Valle, Facultad de Humanidades, Cali, pp 11–25Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Barcelona Institute of Regional and Metropolitan StudiesAutonomous University of BarcelonaBellaterraSpain
  2. 2.Department of Civil and Industrial Engineering, Engineering FacultyPontifical Javeriana UniversityCaliColombia
  3. 3.Intercultural Studies InstitutePontifical Javeriana UniversityCaliColombia
  4. 4.Institute of Social Ecology, Faculty for Interdisciplinary StudiesAlpen-Adria Universität KlagenfurtViennaAustria

Personalised recommendations