Regional Environmental Change

, Volume 17, Issue 4, pp 1165–1177 | Cite as

Predicting species dominance shifts across elevation gradients in mountain forests in Greece under a warmer and drier climate

  • Nikolaos M. Fyllas
  • Anastasia Christopoulou
  • Alexandros Galanidis
  • Chrysanthi Z. Michelaki
  • Christos Giannakopoulos
  • Panayiotis G. Dimitrakopoulos
  • Margarita Arianoutsou
  • Manuel Gloor
Original Article

Abstract

The Mediterranean Basin is expected to face warmer and drier conditions in the future, following projected increases in temperature and declines in precipitation. The aim of this study is to explore how forests dominated by Abies borisii-regis, Abies cephalonica, Fagus sylvatica, Pinus nigra and Quercus frainetto will respond under such conditions. We combined an individual-based model (GREFOS), with a novel tree ring data set in order to constrain tree diameter growth and to account for inter- and intraspecific growth variability. We used wood density data to infer tree longevity, taking into account inter- and intraspecific variability. The model was applied at three 500-m-wide elevation gradients at Taygetos in Peloponnese, at Agrafa on Southern Pindos and at Valia Kalda on Northern Pindos in Greece. Simulations adequately represented species distribution and abundance across the elevation gradients under current climate. We subsequently used the model to estimate species and functional trait shifts under warmer and drier future conditions based on the IPCC A1B scenario. In all three sites, a retreat of less drought-tolerant species and an upward shift of more drought-tolerant species were simulated. These shifts were also associated with changes in two key functional traits, in particular maximum radial growth rate and wood density. Drought-tolerant species presented an increase in their average maximal growth and decrease in their average wood density, in contrast to less drought-tolerant species.

Keywords

Mediterranean mountainous forests Greece Forest gap models Modelling Drought Climate change Trait plasticity 

Notes

Acknowledgements

We acknowledge the E-OBS data set from the EU-FP6 Project ENSEMBLES (http://ensembles-eu.metoffice.com) and the data providers in the ECA&D Project (http://www.ecad.eu). This work was financed by the “Mediterranean Forests in Transition/MEDIT” Grant to NF. The research project is implemented within the framework of the Action “Supporting Postdoctoral Researchers” of the Operational Program “Education and Lifelong Learning” (Action’s Beneficiary: General Secretariat for Research and Technology) and is co-financed by the European Social Fund (ESF) and the Greek State (PE10 (927)).

Supplementary material

10113_2016_1093_MOESM1_ESM.pdf (2.2 mb)
Supplementary material 1 (PDF 2269 kb)

References

  1. Allen CD, Breshears DD (1998) Drought-induced shift of a forest–woodland ecotone: rapid landscape response to climate variation. PNAS 95:14839–14842CrossRefGoogle Scholar
  2. Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Kitzberger T, Rigling A, Breshears D, Hogg EH (2010) A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manag 259:660–684. doi: 10.1016/j.foreco.2009.09.001 CrossRefGoogle Scholar
  3. Archibold OW (1995) Ecology of world vegetation. Chapman & Hall Ltd, LondonCrossRefGoogle Scholar
  4. Barbero M, Bonin G, Loisel R, Quézel P (1990) Changes and disturbances of forest ecosystems caused by human activities in the western part of the Mediterranean basin. Vegetatio 87:151–173. doi: 10.1007/BF00042952 CrossRefGoogle Scholar
  5. Blondel J, Aronson J (1999) Biology and wildlife of the Mediterranean region. Oxford University Press, OxfordGoogle Scholar
  6. Bonan GB (2008) Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320:1444–1449. doi: 10.1126/science.1155121 CrossRefGoogle Scholar
  7. Bragg DC (2001) Potential relative increment (PRI): a new method to empirically derive optimal tree diameter growth. Ecol Model 137:77–92CrossRefGoogle Scholar
  8. Bugmann H (2001) A review of forest gap models. Clim Change 51:259–305. doi: 10.1023/A:1012525626267 CrossRefGoogle Scholar
  9. Christopoulou A, Fulé PZ, Andriopoulos P, Sarris D, Arianoutsou M (2013) Dendrochronology-based fire history of Pinus nigra forests in Mount Taygetos, Southern Greece. For Ecol Manag 293:132–139. doi: 10.1016/j.foreco.2012.12.048 CrossRefGoogle Scholar
  10. Chrysopolitou V, Apostolakis A, Avtzis D, Avtzis N, Diamandis S, Kemitzoglou D, Papadimos D, Perlerou C, Tsiaoussi V, Dafis S (2013) Studies on forest health and vegetation changes in Greece under the effects of climate changes. Biodivers Conserv 22:1133–1150. doi: 10.1007/s10531-013-0451-2 CrossRefGoogle Scholar
  11. Desprez-Loustau M-L, Marçais B, Nageleisen L-M, Piou D, Vannini A (2006) Interactive effects of drought and pathogens in forest trees. Ann For Sci 63:597–612. doi: 10.1051/forest:2006040 CrossRefGoogle Scholar
  12. Fyllas NM, Troumbis AY (2009) Simulating vegetation shifts in north-eastern Mediterranean mountain forests under climatic change scenarios. Glob Ecol Biogeogr 18:64–77. doi: 10.1111/j.1466-8238.2008.00419.x CrossRefGoogle Scholar
  13. Fyllas NM, Phillips OL, Kunin WE, Matsinos YG, Troumbis AY (2007) Development and parameterization of a general forest gap dynamics simulator for the North-eastern Mediterranean Basin (GREekFOrest Species). Ecol Model 204:439–456. doi: 10.1016/j.ecolmodel.2007.02.006 CrossRefGoogle Scholar
  14. Fyllas NM, Dimitrakopoulos PG, Troumbis AY (2008) Regeneration dynamics of a mixed Mediterranean pine forest in the absence of fire. For Ecol Manag 256:1552–1559CrossRefGoogle Scholar
  15. Fyllas NM, Politi PI, Galanidis A, Dimitrakopoulos PG, Arianoutsoy M (2010) Simulating regeneration and vegetation dynamics in Mediterranean coniferous forests. Ecol Model 221:1494–1504. doi: 10.1016/j.ecolmodel.2010.03.003 CrossRefGoogle Scholar
  16. Fyllas NM, Quesada CA, Lloyd J (2012) Deriving plant functional types for Amazonian forests for use in vegetation dynamics models. Perspect Plant Ecol Evol Syst 14:97–110. doi: 10.1016/j.ppees.2011.11.001 CrossRefGoogle Scholar
  17. Fyllas NM, Gloor E, Mercado LM, Sitch S, Quesada CA, Domingues TF, Galbraith DR, Torre-Lezama A, Villanova E, Ramirez-Angulo H, Higuchi N, Neil DA, Silveira M, Ferreira L, Aymard GA, Malhi Y, Phillips OL, Lloyd J (2014) Analysing Amazonian forest productivity using a new individual and trait-based model (TFS v. 1). Geosci Model Dev 7:1251–1269. doi: 10.5194/gmd-7-1251-2014 CrossRefGoogle Scholar
  18. Fyllas NM, Christopoulou A, Galanidis A, Michelaki CZ, Dimitrakopoulos A, Fulé PZ, Arianoutsou M (2017) Tree growth-climate relationships in mountainous Mediterreanean forests. Sci Total Environ (in review)Google Scholar
  19. Giorgi F, Lionello P (2008) Climate change projections for the Mediterranean region. Glob Planet Change 63:90–104. doi: 10.1016/j.gloplacha.2007.09.005 CrossRefGoogle Scholar
  20. Granier A, Bréda N, Biron P, Villette S (1999) A lumped water balance model to evaluate duration and intensity of drought constraints in forest stands. Ecol Model 116:269–283. doi: 10.1016/S0304-3800(98)00205-1 CrossRefGoogle Scholar
  21. Grimm V, Berger U, Bastiansen F, Eliassen S, Ginot V, Giske J, Goss-Custard J, Grand T, Heinz SK, Huse G (2006) A standard protocol for describing individual-based and agent-based models. Ecol Model 198:115–126. doi: 10.1016/j.ecolmodel.2006.04.023 CrossRefGoogle Scholar
  22. Grissino-Mayer HD (2001) Evaluating crossdating accuracy: a manual and tutorial for the computer program COFECHA. Tree-Ring Res 57(2):205–221Google Scholar
  23. Gualdi S, Somot S, Li L, Li L, Artale V, Adani M, Belluci A, Braun A, Calmanti S, Carillo A, Dell’Aquila A (2013) The CIRCE simulations: regional climate change projections with realistic representation of the Mediterranean Sea. Bull Am Meteorol Soc 94:65–81. doi: 10.1175/BAMS-D-11-00136.1 CrossRefGoogle Scholar
  24. Hacke UG, Sperry JS, Pockman WT, Davis SD, McCulloh KA (2001) Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure. Oecologia 126:457–461. doi: 10.1007/s004420100628 CrossRefGoogle Scholar
  25. Haylock MR, Hofstra N, Klein Tank AMG, Klok EJ, Jones PD, New M (2008) A European daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006. J Geophys Res 113:D20119. doi: 10.1029/2008JD010201 CrossRefGoogle Scholar
  26. Hickler T, Vohland K, Feehan J, Miller PA, Smith B, Costa L, Giesecke T, Fronzek S, Carter TR, Cramer W (2012) Projecting the future distribution of European potential natural vegetation zones with a generalized, tree species-based dynamic vegetation model. Glob Ecol Biogeogr 21:50–63. doi: 10.1111/j.1466-8238.2010.00613.x CrossRefGoogle Scholar
  27. Hoffmann WA, Marchin RM, Abit P, Lau OL (2011) Hydraulic failure and tree dieback are associated with high wood density in a temperate forest under extreme drought. Glob Change Biol 17:2731–2742. doi: 10.1111/j.1365-2486.2011.02401.x CrossRefGoogle Scholar
  28. Jump AS, Hunt JM, Penuelas J (2006) Rapid climate change-related growth decline at the southern range edge of Fagus sylvatica. Glob Change Biol 12:2163–2174. doi: 10.1111/j.1365-2486.2006.01250.x CrossRefGoogle Scholar
  29. Keenan T, Maria Serra J, Lloret F, Ninyerola M, Sabate S (2011) Predicting the future of forests in the Mediterranean under climate change, with niche-and process-based models: CO2 matters! Glob Change Biol 17:565–579. doi: 10.1111/j.1365-2486.2010.02254.x CrossRefGoogle Scholar
  30. Kint V, Aertsen W, Fyllas NM, Trabucco A, Janssen E, Ozkan K, Muys B (2014) Ecological traits of Mediterranean tree species as a basis for modelling forest dynamics in the Taurus mountains, Turkey. Ecol Model 286:53–65. doi: 10.1016/j.ecolmodel.2014.04.023 CrossRefGoogle Scholar
  31. Koutsias N, Xanthopoulos G, Founda D, Xystrakis F, Foula N, Pleniou M, Mallinis G, Arianoutsou A (2013) On the relationships between forest fires and weather conditions in Greece from long-term national observations (1894–2010). Int J Wildland Fire 22:493–507. doi: 10.1071/WF12003 CrossRefGoogle Scholar
  32. Linares JC, Tíscar PA (2010) Climate change impacts and vulnerability of the southern populations of Pinus nigra subsp. salzmannii. Tree Physiol 30:795–806. doi: 10.1093/treephys/tpq052 CrossRefGoogle Scholar
  33. Lopez-Iglesias B, Villar R, Poorter L (2014) Functional traits predict drought performance and distribution of Mediterranean woody species. Acta Oecol 56:10–18. doi: 10.1016/j.actao.2014.01.003 CrossRefGoogle Scholar
  34. Martínez-Vilalta J, Adell N, López BC, Adell N, Badiella L, Busquets L, Ninyerola M (2008) Twentieth century increase of Scots pine radial growth in NE Spain shows strong climate interactions. Glob Change Biol 12:2868–2881. doi: 10.1111/j.1365-2486.2008.01685.x CrossRefGoogle Scholar
  35. Martínez-Vilalta J, Mencuccini M, Vayreda J, Retana J (2010) Interspecific variation in functional traits, not climatic differences among species ranges, determines demographic rates across 44 temperate and Mediterranean tree species. J Ecol 6:1462–1495. doi: 10.1111/j.1365-2745.2010.01718.x CrossRefGoogle Scholar
  36. Moore AD (1989) On the maximum growth equation used in forest gap simulation models. Ecol Model 45:63–67. doi: 10.1016/0304-3800(89)90100-2 CrossRefGoogle Scholar
  37. Morales P, Hickler T, Rowell DP, Smith B, Sykes MT (2007) Changes in European ecosystem productivity and carbon balance driven by regional climate model output. Glob Change Biol 13:108–122. doi: 10.1111/j.1365-2486.2006.01289.x CrossRefGoogle Scholar
  38. Moriondo M, Good P, Durao R, Bindi M, Giannakopoulos C, Corte Real J (2006) Potential impact of climate change on fire risk in the Mediterranean area. Clim Res 31:85–95. doi: 10.3354/cr031085 CrossRefGoogle Scholar
  39. Moser B, Temperli C, Schneiter G, Wohlgemuth T (2010) Potential shift in tree species composition after interaction of fire and drought in the Central Alps. Eur J For Res 129:625–633. doi: 10.1007/s10342-010-0363-6 CrossRefGoogle Scholar
  40. Ngugi MR, Botkin DB, Doley D, Cant M, Kelley J (2013) Restoration and management of Callitris forest ecosystems in eastern Australia: simulation of attributes of growth dynamics, growth increment and biomass accumulation. Ecol Model 263:152–161. doi: 10.1016/j.ecolmodel.2013.05.004 CrossRefGoogle Scholar
  41. Pauli H, Gottfried M, Dullinger S, Abdaladze O, Akhalkatsi M, Alonso JLB, Coldea G, Dick J, Erschbamer B, Calzado RF, Ghosn D, Holten JI, Kanka R, Kazakis G, Kollár J, Larsson P, Moiseev P, Moiseev D, Molau U, Mesa JM, Nagy L, Pelino G, Puşcaş M, Rossi G, Stanisci A, Syverhuset AO, Theurillat J-P, Tomaselli M, Unterluggauer P, Villar L, Vittoz P, Grabherr G (2012) Recent plant diversity changes on Europe’s mountain summits. Science 336:353–355. doi: 10.1126/science.1219033 CrossRefGoogle Scholar
  42. Pausas JG (1999) Mediterranean vegetation dynamics: modelling problems and functional types. Plant Ecol 140:27–39. doi: 10.1023/A:1009752403216 CrossRefGoogle Scholar
  43. Pausas JG (2004) Changes in fire and climate in the eastern Iberian Peninsula (Mediterranean basin). Clim Change 63:337–350. doi: 10.1023/B:CLIM.0000018508.94901.9c CrossRefGoogle Scholar
  44. Pausas JG, Fernández-Muñoz S (2012) Fire regime changes in the Western Mediterranean Basin: from fuel-limited to drought-driven fire regime. Clim Change 110:215–226. doi: 10.1007/s10584-011-0060-6 CrossRefGoogle Scholar
  45. Peñuelas J, Boada M (2003) A global change-induced biome shift in the Montseny mountains (NE Spain). Glob Change Biol 9:131–140. doi: 10.1046/j.1365-2486.2003.00566.x CrossRefGoogle Scholar
  46. Piedallu C, Gégout J-C, Perez V, Lebourgeois F (2013) Soil water balance performs better than climatic water variables in tree species distribution modelling. Glob Ecol Biogeogr 22:470–482. doi: 10.1111/geb.12012 CrossRefGoogle Scholar
  47. Poorter L, Markesteijn L (2008) Seedling traits determine drought tolerance of tropical tree species. Biotropica 40:321–331. doi: 10.1111/j.1744-7429.2007.00380.x CrossRefGoogle Scholar
  48. Preston KA, Cornwell WK, DeNoyer JL (2006) Wood density and vessel traits as distinct correlates of ecological strategy in 51 California coast range angiosperms. New Phytol 170:807–818. doi: 10.1111/j.1469-8137.2006.01712.x CrossRefGoogle Scholar
  49. Priestley CHB, Taylor RJ (1972) On the assessment of surface heat flux and evaporation using large-scale parameters. Mon Weather Rev 100:81–92. doi: 10.1175/1520-0493(1972)100<0081:OTAOSH>2.3.CO;2 CrossRefGoogle Scholar
  50. R Development Core Team (2015) R: a language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria. http://www.R-project.org
  51. Reich PR (2014) The world-wide ‘fast–slow’ plant economic spectrum: a traits manifesto. J Ecol 102:275–301. doi: 10.1111/1365-2745.12211 CrossRefGoogle Scholar
  52. Reyer CP, Flechsig M, Lasch-Born P, van Oijen M (2016) Integrating parameter uncertainty of a process-based model in assessments of climate change effects on forest productivity. Clim Change. doi: 10.1007/s10584-016-1694-1 Google Scholar
  53. Rinn F (2003) TSAP-Win: time series analysis and presentation for dendrochronology and related applications. Version 0.55 user reference: RinnTechGoogle Scholar
  54. Risch AC, Heiri C, Bugmann H (2005) Simulating structural forest patterns with a forest gap model: a model evaluation. Ecol Model 181:161–172. doi: 10.1016/j.ecolmodel.2004.06.029 CrossRefGoogle Scholar
  55. Sakschewski B, von Bloh W, Boit A, Rammig A, Kattge J, Poorter L, Peñuelas J, Thonicke K (2015) Leaf and stem economics spectra drive diversity of functional plant traits in a dynamic global vegetation model. Glob Change Biol 21:2711–2725. doi: 10.1111/gcb.12870 CrossRefGoogle Scholar
  56. Sánchez-Gómez D, Valladares F, Zavala MA (2006) Performance of seedlings of Mediterranean woody species under experimental gradients of irradiance and water availability: trade-offs and evidence for niche differentiation. New Phytol 170:795–806. doi: 10.1111/j.1469-8137.2006.01711.x CrossRefGoogle Scholar
  57. Sardans J, Peñuelas J (2013) Plant–soil interactions in Mediterranean forest and shrublands: impacts of climatic change. Plant Soil 365:1–33. doi: 10.1007/s11104-013-1591-6 CrossRefGoogle Scholar
  58. Sarris D, Christodoulakis D, Körner C (2011) Impact of recent climatic change on growth of low elevation eastern Mediterranean forest trees. Clim Change 106:203–223. doi: 10.1007/s10584-010-9901-y CrossRefGoogle Scholar
  59. Scarascia-Mugnozza G, Oswald H, Piussi P, Radoglou K (2000) Forests of the Mediterranean region: gaps in knowledge and research needs. For Ecol Manag 132:97–109. doi: 10.1016/S0378-1127(00)00383-2 CrossRefGoogle Scholar
  60. Scheiter S, Langan L, Higgins SI (2013) Next-generation dynamic global vegetation models: learning from community ecology. New Phytol 198:957–969. doi: 10.1111/nph.12210 CrossRefGoogle Scholar
  61. Shugart HH (1984) A theory of forest dynamics: the ecological implications of forest succession models. The Blackburn Press, Caldwell. doi: 10.1007/978-1-4419-8748-8 CrossRefGoogle Scholar
  62. Sitch S, Huntingford C, Gedney N, Levy PE, Lomas M, Piao SL, Betts R, Ciais P, Cox P, Friedlingstein P (2008) Evaluation of the terrestrial carbon cycle, future plant geography and climate-carbon cycle feedbacks using five Dynamic Global Vegetation Models (DGVMs). Glob Change Biol 14:2015–2039. doi: 10.1111/j.1365-2486.2008.01626.x CrossRefGoogle Scholar
  63. Touchan R, Baisan C, Mitsopoulos ID, Dimitrakopoulos AP (2012) Fire history in European black pine (Pinus nigra Arn.) forests of the Valia Kalda, Pindus mountains, Greece. Tree-Ring Res 68:45–50. doi: 10.3959/2011-12.1 CrossRefGoogle Scholar
  64. Van Bodegom PM, Douma JC, Verheijen LM (2014) A fully traits-based approach to modeling global vegetation distribution. Proc Natl Acad Sci 111:13733–13738. doi: 10.1073/pnas.1304551110 CrossRefGoogle Scholar
  65. Van Mantgem PJ, Stephenson NL, Byrne JC, Daniels LD, Franklin JF, Fule PZ, Harmon ME, Larson AJ, Smith JM, Taylor AH (2009) Widespread increase of tree mortality rates in the western United States. Science 323:521–524. doi: 10.1126/science.1165000 CrossRefGoogle Scholar
  66. Wösten JHM, Lilly A, Nemes A, Le Bas C (1999) Development and use of a database of hydraulic properties of European soils. Geoderma 90:169–185. doi: 10.1016/S0016-7061(98)00132-3 CrossRefGoogle Scholar
  67. Yamaguchi DK (1991) A simple method for cross-dating increment cores from living trees. Can J For Res 21:414–416. doi: 10.1139/x91-053 CrossRefGoogle Scholar
  68. Zeide B (1993) Analysis of growth equations. For Sci 39:594–616Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Nikolaos M. Fyllas
    • 1
  • Anastasia Christopoulou
    • 1
  • Alexandros Galanidis
    • 2
  • Chrysanthi Z. Michelaki
    • 2
  • Christos Giannakopoulos
    • 3
  • Panayiotis G. Dimitrakopoulos
    • 2
  • Margarita Arianoutsou
    • 1
  • Manuel Gloor
    • 4
  1. 1.Department of Ecology and Systematics, Faculty of BiologyNational and Kapodistrian University of AthensAthensGreece
  2. 2.Biodiversity Conservation Laboratory, Department of EnvironmentUniversity of the AegeanMytileneGreece
  3. 3.Institute for Environmental Research and Sustainable DevelopmentNational Observatory of AthensAthensGreece
  4. 4.Ecology and Global Change, School of GeographyUniversity of LeedsLeedsUK

Personalised recommendations