Regional Environmental Change

, Volume 17, Issue 3, pp 789–802 | Cite as

Anticipatory capacity in response to global change across an extreme elevation gradient in the Ica Basin, Peru

  • Rafael de GrenadeEmail author
  • Joshua Rudow
  • Rossi Taboada Hermoza
  • Maria Elena Adauto Aguirre
  • Christopher A. Scott
  • Bram Willems
  • Jennifer L. Schultz
  • Robert G. Varady
Original Article


Mountainous areas with extreme elevation gradients and corresponding ranges of biophysical and socioeconomic conditions are highly vulnerable to global change. We propose that the ability to anticipate changes in weather, markets, and the availability and cost of resources is crucial to livelihoods and a key component of adaptive capacity. We conducted research in the Ica Basin, an Andes–Pacific watershed in Peru, to assess farmers’ capacity to anticipate changing hydroclimatic and production scenarios as a prerequisite to alter their activities in a way that positively affects livelihoods. We employed a mixed-methods approach to understand how local impacts of global change across the gradient differentially undermine farmers’ resilience and open opportunities for anticipatory and adaptive responses. We find that most farmers have little access to modern weather forecasts or market conditions, even though weather stations are located throughout the basin and many farmers have cellphone, television, and Internet services. Meteorological and hydrologic stations often are not maintained because of difficult physical access, and extreme gradients affect the reach, reliability, and cost of telecommunication networks. Unsurprisingly, farmers who do have reliable advance information on climate, market, and extension service availability are those in the coastal lowland agro-export sector. Smallholders in the lowlands and producers upstream in the basin fare far worse in this respect. Social, political, and environmental conditions have shifted rapidly, eroding traditional knowledge and information networks, and informal social networks cannot keep pace with changing scenarios. Increasing information access and improving telecommunication services in rural areas would strengthen farmers’ proactive decision-making capacity and lead to greater adaptive capacity and more uniform social-ecological resilience over the gradient in the basin.


Anticipatory capacity Adaptive capacity Ica Basin Global change Peru 



We wish to express our gratitude to all of the farmers and communities in the Ica Basin, and the following institutions: El Gobierno Regional de Ica (GORE), Administración Local de Agua (ALA), Autoridad Nacional del Agua (ANA), Proyecto Especial Tambo Ccaracocha (PETACC), Junta de Usuarios del Rio Ica (JUDRI); Junta de Usuarios de Riego La Achirana (JURLASCH), Cooperación Alemana al Desarrollo Proyecto de Adaptación al cambio climático en Ica y Huancavelica (GIZ-ACCIH), Programa de Desarrollo Económico Sostenible y Gestión Estratégica de los Recursos Naturales (PRODERN), and the Instituto Francés de Estudios Andinos (IFEA). Funding for these projects was provided by Lloyd’s Register Foundation and the International Water Security Network through the Project, “Transboundary water security in the arid Americas”; the USAID-PEER II Project: “Strengthening Resilience of Andean River-Basin Headwaters Facing Global Change” (subgrant PGA-2000003421) linked to National Science Foundation (NSF) Grant No. DEB-1010495; the Inter-American Institute for Global Change Research CRN3056 Project “Innovative Science and Influential Policy Dialogues for Water Security in the Arid Americas” supported by NSF Grant No. GEO-1128040; and the Lozano Long Summer Research Grant. The Universidad Nacional Mayor de San Marcos, Pontificia Universidad Católica del Perú, the Udall Center for Studies in Public Policy at the University of Arizona, and the Department of Geography and the Environment at the University of Texas at Austin provided institutional facilities and support for the design, fieldwork and analysis components of this research. We would like to thank a few individuals in particular, Jaime de Grenade, Fabiola Yeckting, Maria Teresa Oré, Diego Geng, Eric Rendon, Claus Kruse, Ana Luisa Calvo, Mervin Obed, and William Doolittle. We wish to thank Robert Merideth for his close read and skillful editing.


  1. Adger N (2003) Social capital, collective action, and adaptation to climate change. Econ Geogr 79(4):387–404. doi: 10.1111/j.1944-8287.2003.tb00220.x CrossRefGoogle Scholar
  2. Adger WN, Brooks N, Bentham G, Agnew M, Eriksen S (2004) New indicators of vulnerability and adaptive capacity: Technical Report 7. Tyndallº Center for Climate Change ResearchGoogle Scholar
  3. Adger N, Arnell NW, Tompkins EL (2005) Successful adaptation to climate change across scales. Global Environ Change 15:77–86. doi: 10.1016/j.gloenvcha.2004.12.005 CrossRefGoogle Scholar
  4. ANA (Autoridad Nacional del Agua). Accessed Feb 2015
  5. Borsdorf A, Tappeiner U, Tasser E (2010) Mapping the Alps. In: Borsdorf A, Grabherr G, Stötter J (eds) Challenges for mountain regions: tackling complexity. Böhlau, Vienna, pp 186–191Google Scholar
  6. Boyd E, Nykvist B, Borgström S, Stacewicz IA (2015) Anticipatory governance for social-ecological resilience. Ambio 44:149–161. doi: 10.1007/s13280-014-0604-x CrossRefGoogle Scholar
  7. Brooks N, Adger WN, Kelly PM (2005) The determinants of vulnerability and adaptive capacity at the national level and the implications for adaptation. Global Environ Change 15:151–163. doi: 10.1016/j.gloenvcha.2004.12.006 CrossRefGoogle Scholar
  8. Buytaert W, Vuille M, Dewulf A, Urrutia R, Karmalkar A, Célleri R (2010) Uncertainties in climatic change projections and regional downscaling in the tropical Andes: implications for water resources management. Hydrol Earth Syst Sci 14:1247–1258. doi: 10.5194/hess-14-1247-2010 CrossRefGoogle Scholar
  9. Chacaltana J (2007) El “boom” del empleo en Ica. In: Chacaltana J (ed) Desafiando el Desierto: Realidad y Perspectivas del Empleo en Ica. Centro de Estudios para el Desarrollo y la Participación, Lima, pp 13–69Google Scholar
  10. Engle NL (2011) Adaptive capacity and its assessment. Global Environ Change 21:647–656. doi: 10.1016/j.gloenvcha.2011.01.019 CrossRefGoogle Scholar
  11. Foresight Program (2011) The future of food and farming: challenges and choices for global sustainability. Government Office for Science, LondonGoogle Scholar
  12. Fuerth LS (2009) Foresight and anticipatory governance. Foresight 11:14–32. doi: 10.1108/14636680910982412 CrossRefGoogle Scholar
  13. Gilles JL, Valdivia C (2009) Local forecast communication in the Altiplano. Am Meteorol Soc 90(1):85–91. doi: 10.1175/2008BAMS2183.1 CrossRefGoogle Scholar
  14. Greenfield RS, Fisher GM (2003) Improving responses to climate predictions: an introduction. Bull Am Meteorol Soc 84:1685. doi: 10.1175/BAMS-84-12-1685 CrossRefGoogle Scholar
  15. Grothmann T, Patt A (2005) Adaptive capacity and human cognition: the process of individual adaptation to climate change. Global Environ Change Hum Policy Dimens 15:199–213. doi: 10.1016/j.gloenvcha.2005.01.002 CrossRefGoogle Scholar
  16. Hepworth ND, Postigo JC, Güemes Delgado B, Kjell P (2010) Drop by drop: understanding the impacts of the UK’s water footprint through a case study of Peruvian asparagus. Progressio, Centro Peruano de Estudios Sociales (CEPES) and Water Witness International, LondonGoogle Scholar
  17. Hewitt C, Mason S, Walland D (2012) The global framework for climate services. Nat Clim Change 2(12):831–832. doi: 10.1038/nclimate1745 CrossRefGoogle Scholar
  18. Huggel C, Scheel M, Albrecht F, Andres N, Calanca P, Jurt C, Khabarov N, Mira-Salama D, Rohrer M, Salzmann N, Silva Y, Silvestre E, Vicuña L, Zappa M (2015) A framework for the science contribution in climate adaptation: experiences from science-policy processes in the Andes. Environ Sci Policy 47:80–94. doi: 10.1016/j.envsci.2014.11.007 CrossRefGoogle Scholar
  19. ICIMOD (International Centre for Integrated Mountain Development) (2010) Mountains of the world—ecosystem services in a time of global and climate change: seizing opportunities—meeting challenges. ICIMOD, KathmanduGoogle Scholar
  20. ICIMOD (International Centre for Integrated Mountain Development) (2012) Contribution of Himalayan ecosystems to water, energy, and food security in South Asia: a nexus approach. International Centre for Integrated Mountain Development, KathmanduGoogle Scholar
  21. INEI (Instituto Nacional de Estadística e Informática). Población censada, según departamento y año censal 2007. Accessed 6 Feb 2015
  22. IPCC: Intergovernmental Panel on Climate Change (2007) Climate change 2007: Impacts, adaptation, and vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) Cambridge University Press, CambridgeGoogle Scholar
  23. Jackson LE, Pulleman MM, Brussaard L, Bawa KS, Brown GG, Cardoso IM, de Ruiter PC, García-Barrios L, Hollander AD, Lavelle P, Ouédraogo E, Pascual U, Setty S, Smukler SM, Tscharntke T, Van Noordwijl M (2012) Social-ecological and regional adaptation of agrobiodiversity management across a global set of research regions. Global Environ Change 22:623–639. doi: 10.1016/j.gloenvcha.2012.05.002 CrossRefGoogle Scholar
  24. Kassam KS (2010) Pluralism, resilience, and the ecology of survival: case studies from the Pamir Mountains of Afghanistan. Ecol Soc 15(2):8.
  25. Kassam K, Bulbulshoev U, Ruelle M (2011) Ecology of Time: calendar of the Human Body in the Pamir Mountains. J Persianate Stud 4:146–170. doi: 10.1163/187471611X600369 CrossRefGoogle Scholar
  26. Kibaroglu A, Gürsoy SI (2015) Water–energy–food nexus in a transboundary context: the Euphrates-Tigris river basin as a case study. Water Int. doi: 10.1080/02508060.2015.1078577 Google Scholar
  27. Kok M, Lüdeke M, Lucas P, Sterzel T, Walther C, Janssen P, Sietz D, de Soysa I (2016) A new method for analyzing socio-ecological patterns of vulnerability. Reg Environ Change 16:229–243. doi: 10.1007/s10113-014-0746-1 CrossRefGoogle Scholar
  28. Krauss W, von Storch H (2012) Post-normal practices between regional climate services and local knowledge. Nat Cult 7(2):213–230. doi: 10.3167/nc.2012.070206 Google Scholar
  29. Kuruppu N, Willie R (2015) Barriers to reducing climate enhanced disaster risks in least developmed Country-small islands through anticipatory adaptation. Weather Clim Extrem 7:72–83. doi: 10.1016/j.wace.2014.06.001 CrossRefGoogle Scholar
  30. Lal R (2001) Managing world soils for food security and environmental quality. Adv Agron 74:155–192. doi: 10.1016/S0065-2113(01)74033-3 CrossRefGoogle Scholar
  31. Lasage R, Muis S, Sardella CSE, van Drunen MA, Verburg PH, Aerts JCJH (2015) A stepwise, participatory approach to design and implement community based asaptation to drought in the Peruvian Andes. Sustainability 7:1742–1773. doi: 10.3390/su7021742 CrossRefGoogle Scholar
  32. Lawford R, Bogardi J, Marx S, Jain S, Pahl Wostl C, Knüppe K, Ringler C, Lansigan F, Meza F (2013) Basin perspectives on the water–energy–food security nexus. Curr Opin Environ Sustain 5:607–616. doi: 10.1016/j.cosust.2013.11.005 CrossRefGoogle Scholar
  33. Leichenko RM, O’Brien KL (2008) Environmental change and globalization: double exposures. Oxford University Press, OxfordCrossRefGoogle Scholar
  34. Lemos MC, Finan TJ, Fox RW, Nelson DR, Tucker J (2002) The use of seasonal climatic forecasting in policy making: lessons from Northeast Brazil. Clim Change 55:479–507. doi: 10.1023/A:1020785826029 CrossRefGoogle Scholar
  35. Linnenluecke MK, Griffiths A, Winn M (2012) Extreme weather events and the critical importance of anticipatory adaptation and organizational resilience in responding to impacts. Bus Strategy Environ 21:17–32. doi: 10.1002/bse.708 CrossRefGoogle Scholar
  36. López-i-Gelats F, Contreras Paco JL, Huilcas Huayra R, Siguas Robles OD, Quispe Peña EC, Bartolomé Filella J (2015) Adaptation strategies of Andean pastoralist households to both climate and non-climate changes. Hum Ecol. doi: 10.1007/s10745-015-9731-7 Google Scholar
  37. Los P (2010) Las dinámicas campesinas y la seguridad hídrica en sistemas de riego de Angaraes Sur, Huancavelica, Perú. In: Riego campesino en los Andes: Seguridad hídrica y seguridad alimentaria en Ecuador, Perú y Bolivia, vol 14. IEP, Concertación (Serie Agua y Sociedad, Sección Concertación, Lima, pp. 171–190Google Scholar
  38. Lynch BD (2012) Vulnerabilities, competition and rights in a context of climate change toward equitable water governance in Peru’s Rio Santa Valley. Global Environ Change 22:364–373. doi: 10.1016/j.gloenvcha.2012.02.002 CrossRefGoogle Scholar
  39. Lynch BD (2013) Water access, food sovereignty, and Peru’s water regime. Food sovereignty: a critical dialog. Conference Paper #30. Yale UniversityGoogle Scholar
  40. McDowell JZ, Hess JJ (2012) Accessing adaptation: multiple stressors on livelihoods in the Bolivian highlands under a changing climate. Global Environ Change 22:342–352. doi: 10.1016/j.gloenvcha.2011.11.002 CrossRefGoogle Scholar
  41. MEA (Millenium Ecosystem Assessment) (2005) Ecosystems and human well-being: current status and trends. Findings of the condition and trends working group. Millenium Ecosystem Assessment, WashingtonGoogle Scholar
  42. MINAGRI (Ministerio de Agricultura y Riego) (n. d.) Accessed 21 May 2015
  43. MINAM (Ministerio del Ambiente del Perú) (2011) La desertificación en el Perú: Cuarta comunicación nacional del Perú a la convención de lucha contra la desertificación y la sequía. Ministerio del Ambiente del Perú, Lima. Google Scholar
  44. Moss RH, Meehl GA, Lemos MC, Smith JB, Arnold JR, Arnott JC, Behar D, Brasseur GP, Broomell SB, Busalacchi AJ, Dessai S, Ebi KL, Edmonds JA, Furlow J, Goddard L, Hartmann HC, Hurrell JW, Katzenberger JW, Liverman DM, Mote PW, Moser SC, Kumar A, Pulwarty RS, Seyller EA, Turner BL II, Washington WM, Wilbanks TJ (2013) Hell and high water: practice-relevant adaptation science. Science 342(6159):696–698CrossRefGoogle Scholar
  45. Muñoz I, Navas S, Milla M (2014) El problema de la disponibilidad de agua de riego: El caso de la cuenca del Río Ica. In: Oré MT, Damonte G (eds) ¿Escasez del agua?. Fondo Editorial de la Pontificia Universidad Católica del Perú, Lima, Retos para la gestión de la cuenca del RíoIca, pp 87–126Google Scholar
  46. Oré MT (2011) Las luchas por el agua en el desierto Iqueno: El ague subterránea y la reconcentración de tierras y agua. In: Boelens R, Cremers L, Zwarteveen M (eds) Justicia Hídrica Fondo Editorial PUCP. Instituto de Estudios Peruanos (Serie Agua y Sociedad 15, Sección Justicia Hídrica 1), Lima, pp 423–430Google Scholar
  47. Oré MT, Bayer D, Chiong J, Rendon E (2012) La "Guerra" por el agua en Ica, Perú: el colapso del agua subterránea. In: Isch Lopez E, Boelens R, Peña F (eds) Agua, Injusticia y Conflictos. Justicia Hídrica; Centro de Estudios Regionales Andinos Bartolomé de las Casas; Fondo Editorial PUCP. Instituto de Estudios Peruanos (Serie Agua y Sociedad, Sección Justicia Hídrica, 2.), Lima, pp 149–166Google Scholar
  48. Orlove BS, Chiang JCH, Cane MA (2000) Forecasting Andean rainfall and crop yield from the influence of El Niño on Pleiades visibility. Nature 403(6):68–71. doi: 10.1038/47456 CrossRefGoogle Scholar
  49. Pascual U, Narloch U, Nordhagen S, Drucker AD (2011) The economics of agrobiodiversity conservation for food security under climate change. Economía Agraria y Recursos Naturales 11(1):191–220CrossRefGoogle Scholar
  50. Pepin NC, Lundquist JD (2008) Temperature trends at high elevations: patterns across the globe. Geophys Res Lett 35:L14701. doi: 10.1029/2008GL034026 CrossRefGoogle Scholar
  51. Postigo JC (2014) Perception and resilience of Andean populations facing climate change. J Ethnobiol 34(3):383–400. doi: 10.2993/0278-0771-34.3.383 CrossRefGoogle Scholar
  52. Quay R (2010) Anticipatory governance: a tool for climate change adaptation. J Am Plan Assoc 76(4):496–511. doi: 10.1080/01944363.2010.508428 CrossRefGoogle Scholar
  53. Rasul G (2014) Food, water, and energy security in South Asia: a nexus perspective from the Hindu Kush Himalayan region. Environ Sci Policy 39:35–48. doi: 10.1016/j.envsci.2014.01.010 CrossRefGoogle Scholar
  54. Reynolds JF, Smith DMS, Lambin EF, Turner BL II, Mortimore M, Batterbury SPJ, Downing TE, Dowlatabadi H, Ferna´ndez RJ, Herrick JE, Huber-Sannwald E, Jiang H, Leemans R, Lynam T, Maestre FT, Ayarza M, Walker B (2007) Global desertification: building a science for dryland development. Science 316:847. doi: 10.1126/science.1131634 CrossRefGoogle Scholar
  55. Rhodes DH, Ross AM (2009) Anticipatory capacity: leveraging model-based approaches to design systems for dynamic futures. Model Based Syst Eng 2009:46–51. doi: 10.1109/MBSE.2009.5031719 Google Scholar
  56. Rickards L, Howden SM (2012) Transformational adaptation: agriculture and climate change. Crop Pasture Sci 63(3):240–250. doi: 10.1071/CP11172 CrossRefGoogle Scholar
  57. Salzmann N, Huggel C, Calanca P, Diaz A, Jonas T, Jurt C, Konzelmann T, Lagos P, Rohrer M, Silverio W et al (2009) Integrated assessment and adaptation to climate change impacts in the Peruvian Andes. Adv Geosci 22:35–39CrossRefGoogle Scholar
  58. Scott CA, Meza FJ, Varady RG, Tiessen H, McEvoy J, Garfin GM, Wilder M, Farfán LM, Pineda Pablos N, Montaña E (2013) Water security and adaptive management in the arid Americas. Ann Assoc Am Geogr 103(2):280–289. doi: 10.1080/00045608.2013.754660 CrossRefGoogle Scholar
  59. Seitz D, Mamani Choque SE, Lüdeke MKB (2012) Typical patterns of smallholder vulnerability to weather extremes with regard to food security in the Peruvian Altiplano. Reg Environ Change 12:489–505. doi: 10.1007/s10113-011-0246-5 CrossRefGoogle Scholar
  60. SENAMHI (Servicio Nacional de Meteorología e Hidrología del Perú) (2013) Cambio climático en las Cuencas de los Ríos Ica y Pisco: Proyecciones para el año 2030. Servicio Nacional de Meteorología e Hidrología del Perú (SENAMHI), Cooperación Alemana al Desarrollo (GIZ)Google Scholar
  61. Smit B, Skinner MW (2002) Adaptation options in agriculture to climate change: a typology. Mitig Adapt Strateg Global Change 7:85–114CrossRefGoogle Scholar
  62. Smit B, Wandell J (2006) Adaptation, adaptive capacity and vulnerability. Global Environ Change 16:282–292. doi: 10.1016/j.gloenvcha.2006.03.008 CrossRefGoogle Scholar
  63. Smit B, Pilifosova O, Burton I, Challenger B, Huq S, Klein RJT, Yohe G, Adger N, Downing T, Harvey E, Kane S, Parry M, Skinner M, Smith J, Wandel J (2001) Adaptation to climate change in the context of sustainable development and equity. In: McCarthy JJ, Canziani OF, Leary NA, Dokken DJ, White KS (eds) Climate change 2001: impacts, adaptation and vulnerability Contribution of Working Group II to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  64. Steffen W, Sanderson A, Tyson P, Jäger J, Matson P, Moore B, Oldfield F, Richardson K, Schellnhuber HJ, Turner BL, Wasson RJ (2005) Climate change and the earth system: a planet under pressure. Springer, BerlinGoogle Scholar
  65. Trigoso E (2007) Climate change impacts in Peru: the case of Puno and Piura. In: Fighting climate change: human solidarity in a divided world. Human Development Report 2007/2008Google Scholar
  66. Tschakert P, Dietrich KA (2010) Anticipatory learning for climate change adaptation and resilience. Ecology and Society 15:11 (online).
  67. Valdivia C, Seth A, Gilles JL, García M, Jiménez E, Cusicanqui J, Navia F, Yucra E (2010) Adapting to climate change in Andean ecosystems: landscapes, capitals, and perceptions shaping rural livelihood strategies and linking knowledge systems. Ann Assoc Am Geogr 100(4):818–834. doi: 10.1080/00045608.2010.500198 CrossRefGoogle Scholar
  68. Vaughan C, Dessai S (2014) Climate services for society: origins, institutional arrangements, and design elements for an evaluation framework. Wiley Interdiscip Rev Clim Change 5(5):587–603. doi: 10.1002/wcc.290 CrossRefGoogle Scholar
  69. Vento RB (2011) Información para la agricultura y capital social: Uso de smartphones entre pequeños agricultores en la costa peruana. Actas de la V Conferencia ACRON-REDECOM. CEPES, Lima, 19–20 May 2011Google Scholar
  70. Young KR, Lipton JK (2006) Adaptive governance and climate change in the tropical highlands of western South America. Clim Change 78:63–102. doi: 10.1007/s10584-006-9091-9 CrossRefGoogle Scholar
  71. Ziervogel G, Downing TE (2004) Stakeholder networks: improving seasonal climate forecasts. Clim Change 65:73–101. doi: 10.1023/B:CLIM.0000037492.18679.9e CrossRefGoogle Scholar
  72. Zimmerer KS (2003) Geographies of seed networks for food plants (potato, ulluco) and approaches to agrobiodiversity conservation in the Andean countries. Soc Nat Resour Int J 16(7):583–601. doi: 10.1080/08941920309185 CrossRefGoogle Scholar
  73. Zimmerer KS (2014) Conserving agrobiodiversity amid global change, migration, and nontraditional livelihood networks: the dynamic uses of cultural landscape knowledge. Ecol Soc 19(2):1. doi: 10.5751/ES-06316-190201 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Rafael de Grenade
    • 1
    Email author
  • Joshua Rudow
    • 2
  • Rossi Taboada Hermoza
    • 3
    • 6
  • Maria Elena Adauto Aguirre
    • 3
    • 4
  • Christopher A. Scott
    • 1
    • 5
  • Bram Willems
    • 3
    • 7
  • Jennifer L. Schultz
    • 8
  • Robert G. Varady
    • 1
  1. 1.Udall Center for Studies in Public PolicyUniversity of ArizonaTucsonUSA
  2. 2.Department of Geography and the EnvironmentUniversity of Texas at AustinAustinUSA
  3. 3.Laboratorio de TeledetecciónUniversidad Nacional Mayor de San MarcosLimaPeru
  4. 4.Bioscience EngineeringKatholieke Universiteit LeuvenLouvainBelgium
  5. 5.School of Geography and DevelopmentTucsonUSA
  6. 6.Gestión de los Recursos HídricosPontificia Universidad Católica del PerúLimaPeru
  7. 7.Centro de Competencias del Agua, Edificio del Laboratorio de Ingeniería AmbientalUniversidad Nacional Agraria La MolinaLimaPeru
  8. 8.Native Nations InstituteUniversity of ArizonaTucsonUSA

Personalised recommendations