Regional Environmental Change

, Volume 17, Issue 2, pp 389–397 | Cite as

Elevation change and the vulnerability of Rhode Island (USA) salt marshes to sea-level rise

  • Kenneth B. RaposaEmail author
  • Marci L. Cole Ekberg
  • David M. Burdick
  • Nicholas T. Ernst
  • Susan C. Adamowicz
Original Article


Salt marshes persist within the intertidal zone when marsh elevation gains are commensurate with rates of sea-level rise (SLR). Monitoring changes in marsh elevation in concert with tidal water levels is therefore an effective way to determine if salt marshes are keeping pace with SLR over time. Surface elevation tables (SETs) are a common method for collecting precise data on marsh elevation change. Southern New England is a hot spot for SLR, but few SET elevation change datasets are available for the region. Our study synthesizes elevation change data collected from 1999 to 2015 from a network of SET stations throughout Rhode Island (RI). These data are compared to accretion and water level data from the same time period to estimate shallow subsidence and determine whether marshes are tracking SLR. Salt marsh elevation increased at a mean overall rate of 1.40 mm year−1 and ranged from −0.33 to 3.36 mm year−1 at individual stations. Shallow subsidence dampened elevation gain in mid-Narragansett Bay marshes, but in other areas of coastal RI, subsurface processes may augment surface accretion. In all cases, marsh elevation gain was exceeded by the 5.26 mm year−1 rate of increase in sea levels during the study period. Our study provides the first SET elevation change data from RI and shows that most RI marshes are not keeping pace with short- or long-term rates of SLR. It also lends support to previous research that implicates SLR as a primary driver of recent changes to southern New England salt marshes.


New England Resilience Surface elevation table Accretion 



We would like to thank all the staff, students, and volunteers who helped install and read SETs and marker horizons across the RI network. In particular, this includes James Lynch, Robin Weber, Daisy Durant, Erin King, Rhonda Smith, Benjamin Gaspar, Jennifer White, Kevin Rogers, Dr. Larry Ward, and Alison Bowden. We would also like to thank Robin Weber for creating Fig. 1, Philippe Hensel for advice on SET data analysis and interpretation, Elizabeth Watson for guidance on manuscript preparation, and Jordan Mora for SET elevation change data from the Waquoit Bay National Estuarine Research Reserve. Financial support was provided in part by a grant under the Federal Coastal Zone Management Act, administered by the Office of Ocean and Coastal Management, National Oceanic and Atmospheric Administration, Silver Spring, MD. Additional funding was provided by the U.S. Fish and Wildlife Service LMRD program, Inventory and Monitoring effort and the Hurricane Sandy DOI #30 “Stronger Coast” project. The findings and conclusions in this article are those of the author(s) and do not necessarily represent the views of the US Fish and Wildlife Service.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10113_2016_1020_MOESM1_ESM.pdf (106 kb)
Supplementary material 1 (PDF 106 kb)


  1. Alber M, Swenson EM, Adamowicz SC, Mendelssohn IA (2008) Salt marsh dieback: an overview of recent events in the US. Estuar Coast Shelf Sci 80:1–11. doi: 10.1016/j.ecss.2008.08.009 CrossRefGoogle Scholar
  2. Alizad K, Hagen SC, Morris JT, Bacopoulos P, Bilskie MV, Weishampel JF, Medeiros SC (2016) A coupled, two-dimensional hydrodynamic-marsh model with biological feedback. Ecol Model 327:29–43. doi: 10.1016/j.ecolmodel.2016.01.013 CrossRefGoogle Scholar
  3. Anisfeld SC, Hill TD (2012) Fertilization effects on elevation change and belowground carbon balance in a Long Island Sound tidal marsh. Estuar Coast 35:201–211. doi: 10.1007/s12237-011-9440-4 CrossRefGoogle Scholar
  4. Anisfeld SC, Hill TD, Cahoon DR (2016) Elevation dynamics in a restored versus a submerging salt marsh in Long Island Sound. Estuar Coast Shelf Sci 170:145–154. doi: 10.1016/j.ecss.2016.01.017 CrossRefGoogle Scholar
  5. Bricker-Urso S, Nixon SW, Cochran JK, Hirschberg DJ, Hunt C (1989) Accretion rates and sediment accumulation in Rhode Island salt marshes. Estuar 12:300–317. doi: 10.2307/1351908 CrossRefGoogle Scholar
  6. Burdick DM, Peter CR (2015) Using sediment elevation tables (SETs) to analyze recent changes in surface elevation of New Hampshire salt marshes. Final report prepared for New Hampshire Department of Environmental Services: New Hampshire Coastal Program, Portsmouth, p 22Google Scholar
  7. Cahoon DR, Guntenspergen GR (2010) Climate change, sea-level rise, and coastal wetlands. Natl Wetl Newsl 32:8–12Google Scholar
  8. Cahoon DR, Reed DJ, Day JW Jr (1995) Estimating shallow subsidence in microtidal salt marshes of the southeastern United States: Kaye and Barghoorn revisited. Mar Geol 128:1–9. doi: 10.1016/0025-3227(95)00087-f CrossRefGoogle Scholar
  9. Cahoon DR, Lynch JC, Hensel P, Boumans R, Perez BC, Segura B, Day JW Jr (2002a) High-precision measurements of wetland sediment elevation: I. Recent improvements to the sedimentation-erosion table. J Sediment Res 72:730–733. doi: 10.1306/020702720730 CrossRefGoogle Scholar
  10. Cahoon DR, Lynch JC, Perez BC, Segura B, Holland R, Stelly C, Stephenson G, Hensel P (2002b) High-precision measurements of wetland sediment elevation: II. The rod surface elevation table. J Sediment Res 72:734–739. doi: 10.1306/020702720734 CrossRefGoogle Scholar
  11. Carey JC, Raposa KB, Wigand C, Warren RS (2015a) Contrasting decadal-scale changes in elevation and vegetation in two Long Island Sound salt marshes. Estuar Coast. doi: 10.1007/s12237-015-0059-8 (advance online publication) Google Scholar
  12. Carey JC, Moran SB, Kelly RP, Kolker AS, Fulweiler RW (2015b) The declining role of organic matter in New England salt marshes. Estuar Coast. doi: 10.1007/s12237-015-9971-1 (advance online publication) Google Scholar
  13. Cole Ekberg M, Ferguson W, Raposa K (2015) Results of the 1st Rhode Island salt marsh assessment: final report. Final report to the Rhode Island Coastal and Estuarine Habitat Restoration Trust Fund. p 38Google Scholar
  14. Cottam C (1938) The coordination of mosquito control with wildlife conservation. N J Mosq Exterm Assoc Proc 25:217–227. doi: 10.5962/bhl.title.67882 Google Scholar
  15. Craft C, Clough J, Ehman J, Joye S, Park R, Pennings S, Guo H, Machmuller M (2009) Forecasting the effects of accelerated sea level rise on tidal marsh ecosystem services. Front Ecol Environ 7:73–78. doi: 10.1890/070219 CrossRefGoogle Scholar
  16. DeLaune RD, Nyman JA, Patrick WH Jr (1994) Peat collapse, ponding and wetland loss in a rapidly submerging coastal marsh. J Coastal Res 10:1021–1030Google Scholar
  17. Donnelly JP, Bertness MD (2001) Rapid shoreward encroachment of salt marsh cordgrass in response to accelerated sea level rise. Proc Natl Acad Sci 98:14218–14223. doi: 10.1073/pnas.251209298 CrossRefGoogle Scholar
  18. Erwin RM, Cahoon DR, Prosser DJ, Sanders GM, Hensel P (2006) Surface elevation dynamics in vegetated Spartina marshes versus unvegetated tidal ponds along the mid-Atlantic coast, USA, with implications to waterbirds. Estuar Coast 29:96–106. doi: 10.1007/bf02784702 CrossRefGoogle Scholar
  19. Fagherazzi S, Kirwan ML, Mudd SM, Guntenspergen GR, Temmerman S, D’Alpaos A, van de Koppel J, Rybczyk JM, Reyes E, Craft C, Clough J (2012) Numerical models of salt marsh evolution: ecological, geomorphic, and climatic factors. Rev Geophys. doi: 10.1029/2011rg000359 Google Scholar
  20. Hartig EK, Gornitz V, Kolker A, Mushacke F, Fallon D (2002) Anthropogenic and climate-change impacts on salt marshes of Jamaica Bay, New York City. Wetlands 22:71–89. doi: 10.1672/0277-5212(2002)022[0071:AACCIO]2.0.CO;2 CrossRefGoogle Scholar
  21. Kennish MJ (2001) Coastal salt marsh systems in the US: a review of anthropogenic impacts. J Coast Res 17:731–748Google Scholar
  22. Kirwan ML, Megonigal JP (2013) Tidal wetland stability in the face of human impacts and sea level rise. Nature 504:53–60. doi: 10.1038/nature12856 CrossRefGoogle Scholar
  23. Kirwan ML, Mudd SM (2012) Response of salt-marsh carbon accumulation to climate change. Nature 489:550–554. doi: 10.1038/nature11440 CrossRefGoogle Scholar
  24. Kirwan ML, Guntenspergen GR, D’Alpaos A, Morris JT, Mudd SM, Temmerman S (2010) Limits on the adaptability of coastal marshes to rising sea level. Geophys Res Lett 37:L23401. doi: 10.1029/2010GL045489 CrossRefGoogle Scholar
  25. Lynch JC, Hensel P, Cahoon DR (2015) The surface elevation table and marker horizon technique: a protocol for monitoring wetland elevation dynamics. Natural Resource Report NPS/NCBN/NRR—2015/1078. Fort Collins, National Park ServiceGoogle Scholar
  26. McKinney RA, Wigand C (2006) A framework for the assessment of the wildlife habitat value of New England salt marshes. EPA/600/R-06/132. Office of Research and Development, WashingtonGoogle Scholar
  27. Miller WR, Egler FE (1950) Vegetation of the Wequetequock-Pawcatuck tidal-marshes, Connecticut. Ecol Monogr 20:143–172. doi: 10.2307/1943548 CrossRefGoogle Scholar
  28. Nicholls RJ, Cazenave A (2010) Sea-level rise and its impact on coastal zones. Science 328:1517–1520. doi: 10.1126/science.1185782 CrossRefGoogle Scholar
  29. Oczkowski A, Nixon S, Henry K, DiMilla P, Pilson M, Granger S, Buckley B, Thornber C, McKinney R, Chaves J (2008) Distribution and trophic importance of anthropogenic nitrogen in Narragansett Bay: an assessment using stable isotopes. Estuar Coast 31:53–69. doi: 10.1007/s12237-007-9029-0 CrossRefGoogle Scholar
  30. Orson RA, Warren RS, Niering WA (1998) Interpreting sea level rise and rates of vertical marsh accretion in a southern New England tidal salt marsh. Estuar Coast Shelf Sci 47:419–429. doi: 10.1006/ecss.1998.0363 CrossRefGoogle Scholar
  31. Raposa KB, Weber RLJ, Ekberg MC, Ferguson W (2015) Vegetation dynamics in Rhode Island salt marshes during a period of accelerating sea level rise and extreme sea level events. Estuar Coast. doi: 10.1007/s12237-015-0018-4 (advance online publication) Google Scholar
  32. Raposa KB, Kutcher T, Ferguson W, Ekberg MC, Weber RLJ (2016) A strategy for developing a salt marsh monitoring and assessment program for the State of Rhode Island. Final report to the Rhode Island Department of Environmental Management and the Rhode Island Coastal Resources Management Council. p 27Google Scholar
  33. RI Coastal Resources Management Council (2015) The Rhode Island Sea Level Affecting Marshes Model (SLAMM) project: Summary report. p 25Google Scholar
  34. Roman CT, Peck JA, Allen JR, King JW, Appleby PG (1997) Accretion of a New England (U.S.A.) salt marsh in response to inlet migration, storms, and sea-level rise. Estuar Coast Shelf Sci 45:717–727. doi: 10.1006/ecss.1997.0236 CrossRefGoogle Scholar
  35. Rozas LP, Reed DJ (1993) Nekton use of marsh-surface habitats in Louisiana (USA) deltaic salt marshes undergoing submergence. Mar Ecol Prog Ser 96:147–157. doi: 10.3354/meps096147 CrossRefGoogle Scholar
  36. Sallenger AH, Doran KS, Howd PA (2012) Hotspot of accelerated sea level rise on the Atlantic coast of North America. Nature Clim Change 2:884–888. doi: 10.1038/nclimate1597 CrossRefGoogle Scholar
  37. Shepard CC, Crain CM, Beck MW (2011) The protective role of coastal marshes: a systematic review and meta-analysis. PLoS ONE 6(11):e27374. doi: 10.1371/journal.pone.0027374 CrossRefGoogle Scholar
  38. Valiela I, Cole ML (2002) Comparative evidence that salt marshes and mangroves may protect seagrass meadows from land-derived nitrogen loads. Ecosystems 5:92–102. doi: 10.1007/s10021-001-0058-4 CrossRefGoogle Scholar
  39. Vincent RE, Burdick DM, Dionne M (2013) Ditching and ditch-plugging in New England salt marshes: effects on hydrology, elevation, and soil characteristics. Estuar Coast 36:610–625. doi: 10.1007/s12237-012-9583-y CrossRefGoogle Scholar
  40. Watson EB, Oczkowski AJ, Wigand C, Hanson AR, Davey EW, Crosby SC, Johnson RL, Andrews HM (2014a) Nutrient enrichment and precipitation changes do not enhance resiliency of salt marshes to sea level rise in the northeastern U.S. Clim Change 125:501–509. doi: 10.1007/s10584-014-1189-x CrossRefGoogle Scholar
  41. Watson EB, Wigand C, Andrews HM, Moran SB (2014b) Pettaquamscutt Cove Salt Marsh: environmental conditions and historical ecological change. National Health and Environmental Effects Research Laboratory, Atlantic Ecology Division contribution number ORD-007757 prepared for the Narrow River Restoration Committee. p 15Google Scholar
  42. Watson EB, Wigand C, Davey EW, Andrews HM, Bishop J (2016) Wetland loss patterns and inundation-productivity relationships prognosticate widespread salt marsh loss for southern New England. Estuar Coast. doi: 10.1007/s12237-016-0069-1 (advance online publication) Google Scholar
  43. Webb EL, Friess DA, Krauss KW, Cahoon DR, Guntenspergen GR, Phelps J (2013) A global standard for monitoring coastal wetland vulnerability to accelerated sea-level rise. Nat Clim Change 3:458–465. doi: 10.1038/nclimate1756 CrossRefGoogle Scholar
  44. Weston NB (2014) Declining sediments and rising seas: an unfortunate convergence for tidal wetlands. Estuar Coast 37:1–23. doi: 10.1007/s12237-013-9654-8 CrossRefGoogle Scholar
  45. Wright S (2012) Understanding the mechanisms behind surface elevation loss in ditched marshes. M.S. Thesis, Boston UniversityGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Narragansett Bay National Estuarine Research ReservePrudence IslandUSA
  2. 2.Save The BayProvidenceUSA
  3. 3.Jackson Estuarine LaboratoryUniversity of New HampshireDurhamUSA
  4. 4.Rhode Island National Wildlife Refuge ComplexCharlestownUSA
  5. 5.Rachel Carson National Wildlife RefugeWellsUSA

Personalised recommendations