Advertisement

Regional Environmental Change

, Volume 18, Issue 1, pp 63–75 | Cite as

Seeing the forest not for the carbon: why concentrating on land-use-induced carbon stock changes of soils in Brazil can be climate-unfriendly

  • Jens Boy
  • Simone Strey
  • Regine Schönenberg
  • Robert Strey
  • Oscarlina Weber-Santos
  • Claas Nendel
  • Michael Klingler
  • Charlotte Schumann
  • Korbinian Hartberger
  • Georg Guggenberger
Original Article

Abstract

Soil carbon stocks of 29 plots along a transect through tropical Brazil showed only minor soil carbon losses after land use shift, although replacement of forest-derived carbon was detectable in subsoil and topsoil, indicating that new equilibria in soil carbon stocks might not have been reached after deforestation. The proportion of carbon lost from soils was negligible as compared to the emissions from biomass reduction by deforestation itself. Industrial agriculture had the best ratio between food production and carbon loss, pointing toward a potential reduction of deforestation pressure by further agricultural intensification, which is not achieved in practice due to institutional obstacles and uneven benefit sharing. In contrast, farmers at the agricultural frontier were identified as change agents if alternative sustainable land uses, taking advantage of biodiversity-related ecosystem services, are fostered by better access to credit lines and extension management. Thus, constraining the climate change debate in agriculture to sole management of carbon stock changes in soil is misleading and draws the attention from the most urgent problems: deforestation caused by wrong incentives.

Keywords

Soil carbon Alternative land uses Climate change mitigation Food production Brazil 

Notes

Acknowledgments

This study was carried out in the framework of the interdisciplinary project CarBioCial funded by the German Ministry of Education and Research (BMBF) in the FONA-line, under the grant number 01LL0902F. We want to thank the Brazilian counterpart project Carbioma (UFMT, UFPA-NAEA, Embrapa Arroz e Feijão) for collaboration, all involved farmers, stakeholders, and Brazilian scientific colleagues for their creative contributions, support and their patience during the sampling campaign. We express our gratitude to the Kayapó people that allowed us on their territory and accompanied our research activities with interest and understanding. Without the cooperation of their Institute Kabu, important data presented here could not have been collected. Our gratitude also belongs to the anonymous reviewers for their support to improve the manuscript, and Silke Bokeloh and Steffen Söffker for their valuable technical support.

References

  1. Ahlstrom A, Xia J, Arneth A, Luo Y, Smith B (2015) Importance of vegetation dynamics for future terrestrial carbon cycling. Environ Res Lett. doi: 10.1088/1748-9326/10/5/054019 Google Scholar
  2. Anderson JR, Alexandratos N (1996) World agriculture: towards 2010: an FAO study. Am J Agric Econ 78(1):246–247. doi: 10.2307/1243795 CrossRefGoogle Scholar
  3. Angelsen A, Kaimowitz D (2001) Agricultural technologies and tropical deforestation. CIFORGoogle Scholar
  4. Ashagrie Y, Zech W, Guggenberger G (2005) Transformation of a Podocarpus falcatus dominated natural forest into a monoculture Eucalyptus globulus plantation at Munesa, Ethiopia: soil organic C, N and S dynamics in primary particle and aggregate-size fractions. Agric Ecosyst Environ 106(1):89–98. doi: 10.1016/j.agee.2004.07.015 CrossRefGoogle Scholar
  5. Barni PE, Fearnside PM, de Alencastro Lima, Graca PM (2015) Simulating deforestation and carbon loss in Amazonia: impacts in Brazil’s Roraima State from Reconstructing Highway BR-319 (Manaus-Porto Velho). Environ Manag 55(2):259–278. doi: 10.1007/s00267-014-0408-6 CrossRefGoogle Scholar
  6. Batlle-Bayer L, Batjes NH, Bindraban PS (2010) Changes in organic carbon stocks upon land use conversion in the Brazilian Cerrado: a review. Agric Ecosyst Environ 137(1–2):47–58. doi: 10.1016/j.agee.2010.02.003 CrossRefGoogle Scholar
  7. Bayer C, Martin-Neto L, Mielniczuk J, Pavinato A, Dieckow J (2006) Carbon sequestration in two Brazilian Cerrado soils under no-till. Soil Tillage Res 86(2):237–245. doi: 10.1016/j.still.2005.02.023 CrossRefGoogle Scholar
  8. Beiler KJ, Durall DM, Simard SW, Maxwell SA, Kretzer AM (2010) Architecture of the wood-wide web: rhizopogon spp. genets link multiple Douglas-fir cohorts. New Phytol 185(2):543–553. doi: 10.1111/j.1469-8137.2009.03069.x CrossRefGoogle Scholar
  9. Benatti JH (2011) Regularizacao fundiaria na Amazonia no contexto das mundancas climaticas. In: Teles da Silva S, Cureau S, Dieguez Leuzinger M (eds) Mudanca do Clima: Desafios juridicos, economicos e socioambientais., vol 2. Colecao Direito e Desenvolvimento Sustentavel. editora FiUZA, Rio de Janeiro, pp 202-214  Google Scholar
  10. Bernoux M, Cerri CC, Neill C, de Moraes JFL (1998) The use of stable carbon isotopes for estimating soil organic matter turnover rates. Geoderma 82(1–3):43–58. doi: 10.1016/s0016-7061(97)00096-7 CrossRefGoogle Scholar
  11. Bowman MS, Soares-Filho BS, Merry FD, Nepstad DC, Rodrigues H, Almeida OT (2012) Persistence of cattle ranching in the Brazilian Amazon: a spatial analysis of the rationale for beef production. Land Use Policy 29(3):558–568. doi: 10.1016/j.landusepol.2011.09.009 CrossRefGoogle Scholar
  12. Boy J, Wilcke W (2008) Tropical Andean forest derives calcium and magnesium from Saharan dust. Glob Biogeochem Cycles. doi: 10.1029/2007gb002960 Google Scholar
  13. Boy J, Rollenbeck R, Valarezo C, Wilcke W (2008a) Amazonian biomass burning-derived acid and nutrient deposition in the north Andean montane forest of Ecuador. Glob Biogeochem Cycles. doi: 10.1029/2007gb003158 Google Scholar
  14. Boy J, Valarezo C, Wilcke W (2008b) Water flow paths in soil control element exports in an Andean tropical montane forest. Eur J Soil Sci 59(6):1209–1227. doi: 10.1111/j.1365-2389.2008.01063.x CrossRefGoogle Scholar
  15. Brando PM, Coe MT, DeFries R, Azevedo AA (2013) Ecology, economy and management of an agroindustrial frontier landscape in the southeast Amazon. Philos Trans R Soc B Biol Sci. doi: 10.1098/rstb.2012.0152 Google Scholar
  16. Braz SP, Urquiaga S, Alves BJR, Jantalia CP, Guimaraes AP, dos Santos CA, dos Santos SC, Machado Pinheiro EF, Boddey RM (2013) Soil carbon stocks under productive and degraded brachiaria pastures in the Brazilian cerrado. Soil Sci Soc Am J 77(3):914–928. doi: 10.2136/sssaj2012.0269 CrossRefGoogle Scholar
  17. Brienen RJW, Phillips OL, Feldpausch TR, Gloor E, Baker TR, Lloyd J, Lopez-Gonzalez G, Monteagudo-Mendoza A, Malhi Y, Lewis SL, Vasquez Martinez R, Alexiades M, Alvarez Davila E, Alvarez-Loayza P, Andrade A, Aragao LEOC, Araujo-Murakami A, Arets EJMM, Arroyo L, Aymard C GA, Banki OS, Baraloto C, Barroso J, Bonal D, Boot RGA, Camargo JLC, Castilho CV, Chama V, Chao KJ, Chave J, Comiskey JA, Cornejo Valverde F, da Costa L, de Oliveira EA, Di Fiore A, Erwin TL, Fauset S, Forsthofer M, Galbraith DR, Grahame ES, Groot N, Herault B, Higuchi N, Coronado ENH, Keeling H, Killeen TJ, Laurance WF, Laurance S, Licona J, Magnussen WE, Marimon BS, Marimon-Junior BH, Mendoza C, Neill DA, Nogueira EM, Nunez P, Pallqui Camacho NC, Parada A, Pardo-Molina G, Peacock J, Pena-Claros M, Pickavance GC, Pitman NCA, Poorter L, Prieto A, Quesada CA, Ramirez F, Ramirez-Angulo H, Restrepo Z, Roopsind A, Rudas A, Salomao RP, Schwarz M, Silva N, Silva-Espejo JE, Silveira M, Stropp J, Talbot J, ter Steege H, Teran-Aguilar J, Terborgh J, Thomas-Caesar R, Toledo M, Torello-Raventos M, Umetsu RK, Van der Heijden GMF, Van der Hout P, Vieira ICG, Vieira SA, Vilanova E, Vos VA, Zagt RJ (2015) Long-term decline of the Amazon carbon sink. Nature 519 (7543): 344−+. doi: 10.1038/nature14283
  18. Coy M, Klingler M (2014) Frentes pioneiras em transformacao: o eixo de BR-163 e os desafios socioambentais. Rev Territ e Front 7(1):1–26CrossRefGoogle Scholar
  19. da Silva JE, Resck DVS, Corazza EJ, Vivaldi L (2004) Carbon storage in clayey Oxisol cultivated pastures in the “Cerrado” region, Brazil. Agric Ecosyst Environ 103(2):357–363. doi: 10.1016/j.agee.2003.12.007 CrossRefGoogle Scholar
  20. da Silva HA, de Moraes A, de Faccio Carvalho PC, da Fonseca AF, dos Santos Dias CT (2012) Maize and soybeans production in integrated system under no-tillage with different pasture combinations and animal categories. Rev Cienc Agron 43(4):757–765CrossRefGoogle Scholar
  21. de Moraes JFL, Volkoff B, Cerri CC, Bernoux M (1996) Soil properties under Amazon forest and changes due to pasture installation in Rondônia, Brazil. Geoderma 70(1):63–81. doi: 10.1016/0016-7061(95)00072-0 CrossRefGoogle Scholar
  22. DeFries RS, Houghton RA, Hansen MC, Field CB, Skole D, Townshend J (2002) Carbon emissions from tropical deforestation and regrowth based on satellite observations for the 1980s and 1990s. Proc Natl Acad Sci USA 99(22):14256–14261. doi: 10.1073/pnas.182560099 CrossRefGoogle Scholar
  23. Don A, Schumacher J, Freibauer A (2011) Impact of tropical land-use change on soil organic carbon stocks—a meta-analysis. Glob Change Biol 17(4):1658–1670. doi: 10.1111/j.1365-2486.2010.02336.x CrossRefGoogle Scholar
  24. Ellert BH, Bettany JR (1995) Calculation of organic matter and nutrients stored in soils under contrastin managmenet regimes. Can J soil Sci 529–538Google Scholar
  25. Exbrayat J-F, Williams M (2015) Quantifying the net contribution of the historical Amazonian deforestation to climate change. Geophys Res Lett 42(8):2968–2976. doi: 10.1002/2015gl063497 CrossRefGoogle Scholar
  26. Fankhauser S, Gennaioli C, Collins M (2015) The political economy of passing climate change legislation: evidence from a survey. Glob Environ Change 35:52–61. doi: 10.1016/j.gloenvcha.2015.08.008 CrossRefGoogle Scholar
  27. Fearnside PM (2007) Brazil’s Cuiaba-Santarem (BR-163) Highway: the environmental cost of paving a soybean corridor through the amazon. Environ Manag 39(5):601–614. doi: 10.1007/s00267-006-0149-2 CrossRefGoogle Scholar
  28. Fischer J, Abson DJ, Butsic V, Chappell MJ, Ekroos J, Hanspach J, Kuemmerle T, Smith HG, von Wehrden H (2014) Land sparing versus land sharing: moving forward. Conserv Lett 7(3):149–157. doi: 10.1111/conl.12084 CrossRefGoogle Scholar
  29. Franchini JC, Debiasi H, Balbinot Junior AA, Tonon BC, Boucas Farias JR, Neves de Oliveira MC, Torres E (2012) Evolution of crop yields in different tillage and cropping systems over two decades in southern Brazil. Field Crops Res 137:178–185. doi: 10.1016/j.fcr.2012.09.003 CrossRefGoogle Scholar
  30. Franchini JC, Balbinot Junior AA, Sichieri FR, Debiasi H, Conte O (2014) Yield of soybean, pasture and wood in integrated crop-livestock-forest system in Northwestern Parana state, Brazil. Rev Cienc Agron 45(5):1006–1013CrossRefGoogle Scholar
  31. Fujisaki K, Perrin A-S, Desjardins T, Bernoux M, Balbino LC, Brossard M (2015) From forest to cropland and pasture systems: a critical review of soil organic carbon stocks changes in Amazonia. Glob Change Biol 21(7):2773–2786. doi: 10.1111/gcb.12906 CrossRefGoogle Scholar
  32. Galford GL, Soares-Filho B, Cerri CEP (2013) Prospects for land-use sustainability on the agricultural frontier of the Brazilian Amazon. Philos Trans R Soc B Biol Sci. doi: 10.1098/rstb.2012.0171 Google Scholar
  33. Gil J, Siebold M, Berger T (2015) Adoption and development of integrated crop-livestock-forestry systems in Mato Grosso, Brazil. Agric Ecosyst Environ 199:394–406. doi: 10.1016/j.agee.2014.10.008 CrossRefGoogle Scholar
  34. Gill M, Feliciano D, Macdiarmid J, Smith P (2015) The environmental impact of nutrition transition in three case study countries. Food Secur 7(3):493–504. doi: 10.1007/s12571-015-0453-x CrossRefGoogle Scholar
  35. Godfray HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Pretty J, Robinson S, Thomas SM, Toulmin C (2010) Food security: the challenge of feeding 9 billion people. Science 327(5967):812–818. doi: 10.1126/science.1185383 CrossRefGoogle Scholar
  36. Gollnow F, Lakes T (2014) Policy change, land use, and agriculture: the case of soy production and cattle ranching in Brazil, 2001-2012. Appl Geogr 55:203–211. doi: 10.1016/j.apgeog.2014.09.003 CrossRefGoogle Scholar
  37. Grenz J, Vetouli T, Tzitzikli E, Sauerborn J (2007) The ecological consequences of the global soybean economy: resource and value flows in Argentina, Brazil, and Germany. Gaia Ecol Perspect Sci Soc 16(3):208–214Google Scholar
  38. Henri DC, Jones O, Tsiattalos A, Thebault E, Seymour CL, van Veen FJF (2015) Natural vegetation benefits synergistic control of the three main insect and pathogen pests of a fruit crop in southern Africa. J Appl Ecol 52(4):1092–1101. doi: 10.1111/1365-2664.12465 CrossRefGoogle Scholar
  39. Hohnwald S, Rischkowsky B, Camarao AP, Schultze-Kraft R, Rodrigues Filho JA, King JM (2006) Integrating cattle into the slash-and-burn cycle on smallholdings in the Eastern Amazon, using grass-capoeira or grass-legume pastures. Agric Ecosyst Environ 117(4):266–276. doi: 10.1016/j.agee.2006.04.014 CrossRefGoogle Scholar
  40. Houghton RA, House JI, Pongratz J, van der Werf GR, DeFries RS, Hansen MC, Le Quere C, Ramankutty N (2012) Carbon emissions from land use and land-cover change. Biogeosciences 9(12):5125–5142. doi: 10.5194/bg-9-5125-2012 CrossRefGoogle Scholar
  41. IBGE - Instituto Brasileiro de Geografia e Estatistica  (2012) Manual Técnico da Vegetação Brasileira. Rio de Janeiro  Google Scholar
  42. Kammerbauer J, Cordoba B, Escolan R, Flores S, Ramirez V, Zeledon J (2001) Identification of development indicators in tropical mountainous regions and some implications for natural resource policy designs: an integrated community case study. Ecol Econ 36(1):45–60. doi: 10.1016/s0921-8009(00)00206-8 CrossRefGoogle Scholar
  43. Kirby KR, Potvin C (2007) Variation in carbon storage among tree species: implications for the management of a small-scale carbon sink project. For Ecol Manage 246(2–3):208–221. doi: 10.1016/j.foreco.2007.03.072 CrossRefGoogle Scholar
  44. Koutika LS, Bartoli F, Andreux F, Cerri CC, Burtin G, Chone T, Philippy R (1997) Organic matter dynamics and aggregation in soils under rain forest and pastures of increasing age in the eastern Amazon Basin. Geoderma 76(1–2):87–112. doi: 10.1016/s0016-7061(96)00105-x CrossRefGoogle Scholar
  45. Lagerstrom A, Nilsson M-C, Wardle DA (2013) Decoupled responses of tree and shrub leaf and litter trait values to ecosystem retrogression across an island area gradient. Plant Soil 367(1–2):183–197. doi: 10.1007/s11104-012-1159-x CrossRefGoogle Scholar
  46. Lal R, Delgado JA, Groffman PM, Millar N, Dell C, Rotz A (2011) Management to mitigate and adapt to climate change. J Soil Water Conserv 66(4):276–285. doi: 10.2489/jswc.66.4.276 CrossRefGoogle Scholar
  47. Lambin EF, Geist HJ, Lepers E (2003) Dynamics of land-use and land-cover change in tropical regions. Annu Rev Environ Resour 28:205–241. doi: 10.1146/annurev.energy.28.050302.105459 CrossRefGoogle Scholar
  48. Lathuilliere MJ, Johnson MS, Galford GL, Couto EG (2014) Environmental footprints show China and Europe’s evolving resource appropriation for soybean production in Mato Grosso, Brazil. Environ Res Lett. doi: 10.1088/1748-9326/9/7/074001 Google Scholar
  49. Laurance WF, Koster H, Grooten M, Anderson AB, Zuidema PA, Zwick S, Zagt RJ, Lynam AJ, Linkie M, Anten NPR (2012) Making conservation research more relevant for conservation practitioners. Biol Conserv 153:164–168. doi: 10.1016/j.biocon.2012.05.012 CrossRefGoogle Scholar
  50. Lee JSH, Garcia-Ulloa J, Ghazoul J, Obidzinski K, Koh LP (2014) Modelling environmental and socio-economic trade-offs associated with land-sparing and land-sharing approaches to oil palm expansion. J Appl Ecol 51(5):1366–1377. doi: 10.1111/1365-2664.12286 CrossRefGoogle Scholar
  51. Lewis SL, Edwards DP, Galbraith D (2015) Increasing human dominance of tropical forests. Science 349(6250):827–832. doi: 10.1126/science.aaa9932 CrossRefGoogle Scholar
  52. Lindgren PMF, Sullivan TP (2014) Response of forage yield and quality to thinning and fertilization of young forests: implications for silvopasture management. Can J For Res Rev Can Rech For 44(4):281–289. doi: 10.1139/cjfr-2013-0248 CrossRefGoogle Scholar
  53. Lorenz K, Lal R (2014) Soil organic carbon sequestration in agroforestry systems. A review. Agron Sustain Dev 34(2):443–454. doi: 10.1007/s13593-014-0212-y CrossRefGoogle Scholar
  54. Marchao RL, Becquer T, Brunet D, Balbino LC, Vilela L, Brossard M (2009) Carbon and nitrogen stocks in a Brazilian clayey Oxisol: 13-year effects of integrated crop-livestock management systems. Soil Tillage Res 103(2):442–450. doi: 10.1016/j.still.2008.11.002 CrossRefGoogle Scholar
  55. Miranda E, Carmo J, Couto E, Camargo P (2016) Long-term changes in soil carbon stocks in the Brazilian Cerrado under commercial soybean. Land Degrad Dev. doi: 10.1002/ldr.2473 Google Scholar
  56. Mosquera-Losada MR, Rodríguez-Barreira S, López-Díaz ML, Fernández-Núñez E, Rigueiro-Rodríguez A (2009) Biodiversity and silvopastoral system use change in very acid soils. Agric Ecosyst Environ 131(3–4):315–324. doi: 10.1016/j.agee.2009.02.005 CrossRefGoogle Scholar
  57. Mota L, Boton D, Fonseca R, Silva W, Souza A (2013) Balanço hídrico climatológico e classificação climática da região de Sinop, Mato Grosso. Scie Electron Arch Sinop 3(2):38–44Google Scholar
  58. Murage EW, Voroney P, Beyaert RP (2007) Turnover of carbon in the free light fraction with and without charcoal as determined using the C-13 natural abundance method. Geoderma 138(1–2):133–143. doi: 10.1016/j.geoderma.2006.11.002 CrossRefGoogle Scholar
  59. Murty D, Kirschbaum MUF, McMurtrie RE, McGilvray A (2002) Does conversion of forest to agricultural land change soil carbon and nitrogen? A review of the literature. Glob Change Biol 8(2):105–123. doi: 10.1046/j.1354-1013.2001.00459.x CrossRefGoogle Scholar
  60. Pacheco P (2009) Agrarian reform in the Brazilian Amazon: its implications for land distribution and deforestation. World Dev 37(8):1337–1347. doi: 10.1016/j.worlddev.2008.08.019 CrossRefGoogle Scholar
  61. Pacheco P, Benatti JH (2015) Tenure security and land appropriation under changing environmental governance in lowland Bolivia and para. Forests 6(2):464–491. doi: 10.3390/f6020464 CrossRefGoogle Scholar
  62. Paul C, Knoke T (2015) Between land sharing and land sparing—what role remains for forest management and conservation? Int For Rev 17(2):210–230Google Scholar
  63. Phalan B, Bertzky M, Butchart SHM, Donald PF, Scharlemann JPW, Stattersfield AJ, Balmford A (2013) Crop expansion and conservation priorities in tropical countries. PLoS One. doi: 10.1371/journal.pone.0051759 Google Scholar
  64. Poeplau C, Don A (2013) Sensitivity of soil organic carbon stocks and fractions to different land-use changes across Europe. Geoderma 192:189–201. doi: 10.1016/j.geoderma.2012.08.003 CrossRefGoogle Scholar
  65. Porder S, Chadwick OA (2009) Climate and soil-age constraints on nutrient uplift and retention by plants. Ecology 90(3):623–636. doi: 10.1890/07-1739.1 CrossRefGoogle Scholar
  66. Powlson DS, Stirling CM, Jat ML, Gerard BG, Palm CA, Sanchez PA, Cassman KG (2014) Limited potential of no-till agriculture for climate change mitigation. Nat Clim Change 4(8):678–683. doi: 10.1038/nclimate2292 CrossRefGoogle Scholar
  67. Redondo-Brenes A, Montagnini F (2006) Growth, productivity, aboveground biomass, and carbon sequestration of pure and mixed native tree plantations in the Caribbean lowlands of Costa Rica. For Ecol Manage 232(1–3):168–178. doi: 10.1016/j.foreco.2006.05.067 CrossRefGoogle Scholar
  68. Richards PD, Walker RT, Arima EY (2014) Spatially complex land change: the Indirect effect of Brazil’s agricultural sector on land use in Amazonia. Glob Environ Change 29:1–9. doi: 10.1016/j.gloenvcha.2014.06.011 CrossRefGoogle Scholar
  69. Roscoe R, Buurman P (2003) Tillage effects on soil organic matter in density fractions of a Cerrado Oxisol. Soil Tillage Res 70(2):107–119. doi: 10.1016/s0167-1987(02)00160-5 CrossRefGoogle Scholar
  70. Rumpel C (2014) Opportunities and threats of deep soil organic matter storage. Carbon Manag 5(2):115–117CrossRefGoogle Scholar
  71. Schmidt MWI, Torn MS, Abiven S, Dittmar T, Guggenberger G, Janssens IA, Kleber M, Koegel-Knabner I, Lehmann J, Manning DAC, Nannipieri P, Rasse DP, Weiner S, Trumbore SE (2011) Persistence of soil organic matter as an ecosystem property. Nature 478(7367):49–56. doi: 10.1038/nature10386 CrossRefGoogle Scholar
  72. Schönenberg R, Hartberger K, Schumann C, Benatti JH, Fischer LdC (2015) What comes after deforestation control? Learning from three attempts of land-use planning in Southern Amazonia. Gaia Ecol Perspect Sci Soc 24(2):119–127Google Scholar
  73. Schrumpf M, Kaiser K, Guggenberger G, Persson T, Koegel-Knabner I, Schulze ED (2013) Storage and stability of organic carbon in soils as related to depth, occlusion within aggregates, and attachment to minerals. Biogeosciences 10(3):1675–1691. doi: 10.5194/bg-10-1675-2013 CrossRefGoogle Scholar
  74. Schumann C, Hartberger K, Klingler M, Schönenberg R (2015) Sempre pra, Frente edn. Olhares, Sao PauloGoogle Scholar
  75. Smilovic M, Gleeson T, Siebert S (2015) The limits of increasing food production with irrigation in India. Food Secur 7(4):835–856. doi: 10.1007/s12571-015-0477-2 CrossRefGoogle Scholar
  76. Stahl C, Herault B, Rossi V, Burban B, Brechet C, Bonal D (2013) Depth of soil water uptake by tropical rainforest trees during dry periods: does tree dimension matter? Oecologia 173(4):1191–1201. doi: 10.1007/s00442-013-2724-6 CrossRefGoogle Scholar
  77. Stockmann U, Adams MA, Crawford JW, Field DJ, Henakaarchchi N, Jenkins M, Minasny B, McBratney AB, de Courcelles VdR, Singh K, Wheeler I, Abbott L, Angers DA, Baldock J, Bird M, Brookes PC, Chenu C, Jastrow JD, Lal R, Lehmann J, O’Donnell AG, Parton WJ, Whitehead D, Zimmermann M (2013) The knowns, known unknowns and unknowns of sequestration of soil organic carbon. Agric Ecosyst Environ 164:80–99. doi: 10.1016/j.agee.2012.10.001 CrossRefGoogle Scholar
  78. Stoll-Kleemann S, O’Riordan T (2015) The sustainability challenges of our meat and dairy diets. Environment 57(3):34–48. doi: 10.1080/00139157.2015.1025644 Google Scholar
  79. Strey S, Boy J, Strey R, Weber O, Guggenberger G (2016) Response of soil organic carbon to land-use change in central Brazil: a large scale comparison of Farralsols and Acrisols. Plant Soil. doi: 10.1007/s11104-016-2901-6 Google Scholar
  80. Tremblay S, Lucotte M, Reveret J-P, Davidson R, Mertens F, Sousas Passos CJ, Romana CA (2015) Agroforestry systems as a profitable alternative to slash and burn practices in small-scale agriculture of the Brazilian Amazon. Agrofor Syst 89(2):193–204. doi: 10.1007/s10457-014-9753-y CrossRefGoogle Scholar
  81. van Schöll L, Kuyper TW, Smits MM, Landeweert R, Hoffland E, van Breemen N (2008) Rock-eating mycorrhizas: their role in plant nutrition and biogeochemical cycles. Plant Soil 303(1–2):35–47. doi: 10.1007/s11104-007-9513-0 CrossRefGoogle Scholar
  82. von Lutzow M, Kogel-Knabner I, Ludwig B, Matzner E, Flessa H, Ekschmitt K, Guggenberger G, Marschner B, Kalbitz K (2008) Stabilization mechanisms of organic matter in four temperate soils: development and application of a conceptual model. J Plant Nutr Soil Sci Z Fur Pflanzenernahr Und Bodenkunde 171(1):111–124. doi: 10.1002/jpln.200700047 CrossRefGoogle Scholar
  83. White D, Holmann F, Fujisaka S, Reategui K, Lascano C (2001) Will intensifying pasture management in Latin America protect forests – or is it the other way round? In: Angelsen A, Kaimowitz D (eds) Agricultural technologies and tropical deforestation. CAB International, Oxon, UK, pp 91–113  Google Scholar
  84. Wilcke W, Guenter S, Alt F, Geissler C, Boy J, Knuth J, Oelmann Y, Weber M, Valarezo C, Mosandl R (2009) Response of water and nutrient fluxes to improvement fellings in a tropical montane forest in Ecuador. For Ecol Manag 257(4):1292–1304. doi: 10.1016/j.foreco.2008.11.036 CrossRefGoogle Scholar
  85. Zhang K, Castanho ADdA, Galbraith DR, Moghim S, Levine NM, Bras RL, Coe MT, Costa MH, Malhi Y, Longo M, Knox RG, McKnight S, Wang J, Moorcroft PR (2015) The fate of Amazonian ecosystems over the coming century arising from changes in climate, atmospheric CO2, and land use. Glob Change Biol 21(7):2569–2587. doi: 10.1111/gcb.12903 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Jens Boy
    • 1
  • Simone Strey
    • 1
  • Regine Schönenberg
    • 2
  • Robert Strey
    • 1
  • Oscarlina Weber-Santos
    • 3
  • Claas Nendel
    • 4
  • Michael Klingler
    • 5
  • Charlotte Schumann
    • 2
  • Korbinian Hartberger
    • 2
  • Georg Guggenberger
    • 1
  1. 1.Institute of Soil ScienceLeibniz Universität HannoverHanoverGermany
  2. 2.Lateinamerika Institut (LAI)Freie Universität BerlinBerlinGermany
  3. 3.Departamento de Solos e Engenharia RuralUniversidade Federal do Mato Grosso – UFMT/FAMEVCuiabáBrazil
  4. 4.Institut für LandschaftssystemanalyseLeibniz-Zentrum für Agrarlandschaftsforschung (ZALF)MünchebergGermany
  5. 5.Geographisches InstitutUniversität InnsbruckInnsbruckAustria

Personalised recommendations