Advertisement

Regional Environmental Change

, Volume 17, Issue 1, pp 299–308 | Cite as

Water temperature increases in the river Rhine in response to climate change

  • Paulin Hardenbicker
  • Carsten Viergutz
  • Annette Becker
  • Volker Kirchesch
  • Enno Nilson
  • Helmut Fischer
Original Article

Abstract

The present study analyzes climate change effects on the water temperature of the Rhine, one of the largest rivers in Central Europe. Simulation calculations were performed based on a range of climate and river flow projections for the near (2021–2050) and for the far future (2071–2100) compared to a reference period (1961–1990). Changes in mean annual water temperature in the near future range between +0.6 and +1.4 °C and between +1.9 and +2.2 °C in the far future (average of nine stations). Monthly mean values of the far future change in a more differentiated way by +0.4 to +1.3 °C in spring and +2.7 to +3.4 °C in late summer. The length of periods of high water temperature, expressed as successive days with water temperatures over 27 °C, increases by a factor of four until 2100. These prolonged durations of periods with unusually high water temperatures may provoke changes in the food web and in the rates of biological processes in the Rhine.

Keywords

Climate change Water quality model Large river Water temperature Discharge 

Notes

Acknowledgments

This study is part of the research program “Impacts of climate change on waterways and navigation” (KLIWAS) funded by the German Federal Ministry of Transport and Digital Infrastructure (BMVI). We acknowledge the E-OBS dataset from the EU-FP6 project ENSEMBLES (http://ensembles-eu.metoffice.com) and the data providers in the ECA&D project (http://eca.knmi.nl). We thank Dr. Florian Imbery and Sabrina Plagemann (German Weather Service—DWD) for providing the meteorological data within the KLIWAS Project 1.01 (Hydrometeorological reference data for river basins) and 1.02 (Provision of application-oriented and evaluated climate projection data). For preparing the hydrological input data, we want to thank Maria Carambia (BfG) from the KLIWAS Project 4.01 (Impacts of climate change on hydrology and management options for the economy and inland navigation). We thank Dr. Tanja Bergfeld-Wiedemann (BfG) for helping to improve the model. Current water level and discharge data were derived from the Federal Waterways and Shipping Administration (WSV, provided by the BfG). For support with the figures (Figs. 1, 2), we thank Beatrix Konz (BfG).

References

  1. Arhonditsis GB, Brett MT (2004) Evaluation of the current state of mechanistic aquatic biogeochemical modeling. Mar Ecol Prog Ser 271:13–26. doi: 10.3354/meps271013 CrossRefGoogle Scholar
  2. Basu BK, Pick FR (1996) Factors regulating phytoplankton and zooplankton biomass in temperate rivers. Limnol Oceanogr 41:1572–1577CrossRefGoogle Scholar
  3. Bergström S (1995) The HBV model. In: Singh VP (ed) Computer models of watershed hydrology, Chapter 13. Water Resources Publications, Highlands Ranch, Colorado, USA, pp 443–476Google Scholar
  4. Bronstert A, Kolokotronis V, Schwandt D, Straub H (2007) Comparison and evaluation of regional climate scenarios for hydrological impact analysis: general scheme and application example. Int J Climatol 27:1579–1594. doi: 10.1002/joc.1621 CrossRefGoogle Scholar
  5. BUND (2009) Studie: Abwärmelast Rhein. http://www.rhein.bund-rlp.de
  6. Christensen JH, Hewitson B, Busuioc A, Chen A, Gao X, Held I, Jones R, Kolli RK, Kwon W-T, Laprise R, Magaña Rueda V, Mearns L, Menéndez CG, Räisänen J, Rinke A, Sarr A, Whetton P (2007) Regional climate projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, New YorkGoogle Scholar
  7. Cohen AN, Carlton JT (1998) Accelerating invasion rate in a highly invaded estuary. Science 279:555–558. doi: 10.1126/science.279.5350.555 CrossRefGoogle Scholar
  8. Eberle M, Buitefeld H, Wilke K, Krahe P (2005) Hydrological modelling in the River Rhine Basin, Part III-Daily HBV Model for the Rhine Basin, BfG-Reports, BfG-1451. Federal Institute of Hydrology, KoblenzGoogle Scholar
  9. Elliott JM (1994) Quantitative ecology and the brown trout. Oxford University Press, OxfordGoogle Scholar
  10. EU 2006: Directive 2006/44/EC of the European Parliament and of the Council of 6 September 2006 on the quality of fresh waters needing protection or improvement in order to support fish life (codified version). Off J Eur Union L 264/20. http://rod.eionet.europa.eu/instruments/626
  11. Friedrich G, Pohlmann M (2009) Long-term plankton studies at the lower Rhine/Germany. Limnologica 39:14–39. doi: 10.1016/j.limno.2008.03.006 CrossRefGoogle Scholar
  12. Hardenbicker P, Rolinski S, Weitere M, Fischer H (2014) Contrasting shifts and long-term trends in phytoplankton dynamics in two large rivers. Int Rev Hydrobiol 99:287–299. doi: 10.1002/iroh.201301680 CrossRefGoogle Scholar
  13. Hardenbicker P, Weitere M, Ritz S, Schöll F, Fischer H (2015) Longitudinal plankton dynamics in the rivers Rhine and Elbe. River Res Appl (early view). doi: 10.1002/rra.2977 Google Scholar
  14. Hattermann FF, Huang S, Koch H (2015) Climate change impacts on hydrology and water resources. Met Z 24:201–211. doi: 10.1127/metz/2014/0575 CrossRefGoogle Scholar
  15. Haylock MR, Hofstra N, Klein Tank AMG, Klok EJ, Jones PD, New M (2008) A European daily high-resolution gridded dataset of surface temperature and precipitation. J Geophys Res 113:D20119. doi: 10.1029/2008JD10201 CrossRefGoogle Scholar
  16. Hilton J, O’Hare M, Bowes MJ, Jones JI (2006) How green is my river? A new paradigm of eutrophication in rivers. Sci Total Environ 365:66–83. doi: 10.1016/j.scitotenv.2006.02.055 CrossRefGoogle Scholar
  17. Hollweg H-D, Böhm U, Fast I, Hennemuth B, Keuler K, Keup-Thiel E, Lautenschlager M, Legutke S, Radtke K, Rockel B, Schubert M, Will A, Woldt M, Wunram C (2008) Ensemble simulations over Europe with the regional climate model CLM forced with IPCC AR4 global scenarios. Technical report No. 3, Models & Data, Max-Planck Institute for Meteorology, Hamburg, pp 150, ISSN 1619-2257Google Scholar
  18. Huang S, Hattermann FF, Krysanova V, Bronstert A (2012) Projections of climate change impacts on river flood conditions in Germany by combining three different RCMs with a regional eco-hydrological model. Clim Change 116:631–663. doi: 10.1007/s10584-012-0586-2 CrossRefGoogle Scholar
  19. ICPR (2006) Vergleich der Wärmeeinleitungen 1989 und 2004 entlang des Rheins. International Commission for the Protection of the Rhine, ICPR-Report No. 151Google Scholar
  20. ICPR (2011) Study of scenarios for the discharge regime of the Rhine. International Commission for the Protection of the Rhine, ICPR-Report No. 188. http://www.iksr.org/uploads/media/188_e.pdf
  21. ICPR (2013a) Development of Rhine water temperatures based on validated temperature measurements between 1978 and 2011. International Commission for the Protection of the Rhine, ICPR-Report No. 209. http://www.iksr.org/uploads/media/209_e.pdf
  22. ICPR (2013b) Present state of knowledge on possible consequences of changes of the discharge pattern and water temperature on the Rhine ecosystem and possible perspectives for action. International Commission for the Protection of the Rhine, ICPR-Report No. 204. http://www.iksr.org/uploads/media/204ae.pdf
  23. ICPR (2014) Estimation of the effects of climate change scenarios on future Rhine water temperature development. International Commission for the Protection of the Rhine, ICPR-Report No. 214, Appendix D. http://www.iksr.org/uploads/media/214_en_01.pdf
  24. Imbery F, Plagemann S, Namyslo J (2013) Processing and analysing an ensemble of climate projections for the joint research project KLIWAS. Adv Sci Res 10:91–98. doi: 10.5194/asr-10-91-2013 CrossRefGoogle Scholar
  25. IPCC (2007) Summary for Policymakers. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: The physical science basis. Contribution of working group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USAGoogle Scholar
  26. Jacob D (2006) REMO climate of the 20th century run and A1B scenario run, UBA project, 0.088 degree resolution. World Data Center for Climate. CERA-DatabaseGoogle Scholar
  27. Jacob D, Nilson E, Tomassini L, Bülow K (2009) REMO climate of the 20th century run and A1B scenario run, BfG project, 0.088 degree resolution. World Data Center for Climate. CERA-DatabaseGoogle Scholar
  28. Kirchesch V, Schöl A (1999) The water quality model QSim: a tool for simulation and prediction of water quality and plankton dynamics in rivers. Hydrol Wasserbewirtsch 43:302–312Google Scholar
  29. Koch H, Vögele S, Hattermann FF, Huang S (2015) The impact of climate change and variability on the generation of electrical power. Met Z 24:173–188. doi: 10.1127/metz/2015/0530 CrossRefGoogle Scholar
  30. Langan SJ, Johnston L, Donaghy MJ, Youngson AF, Hay DW, Soulsby C (2001) Variation in river water temperatures in an upland stream over a 30-year period. Sci Total Environ 265:195–207. doi: 10.1016/s0048-9697(00)00659-8 CrossRefGoogle Scholar
  31. LAWA-AO 2007: Rahmenkonzeption Monitoring. Teil B Bewertungsgrundlagen und Methodenbeschreibungen. Arbeitspapier II Hintergrund- und Orientierungswerte für physikalisch-chemische Komponenten. – Länderarbeitsgemeinschaft Wasser. http://www.vsvisachsen.de/Beitr%E4ge%20aus%20unseren%20Veranst/17.09.2008%20Tausalz%20Recht%20RAKONArbeitspapierII_Stand_07_03_2007.pdf
  32. Lenderink G, Buishand TA, Van Deursen W (2007) Estimates of future discharges of the River Rhine using two scenario methodologies: direct versus delta approach. Hydrol Earth Syst Sci 11:1145–1159CrossRefGoogle Scholar
  33. Loague K, Green RE (1991) Statistical and graphical methods for evaluating solute transport models: overview and application. J Contam Hydrol 7:51–73CrossRefGoogle Scholar
  34. Luo YZ, Ficklin DL, Liu XM, Zhang MH (2013) Assessment of climate change impacts on hydrology and water quality with a watershed modeling approach. Sci Total Environ 450:72–82. doi: 10.1016/j.scitotenv.2013.02.004 CrossRefGoogle Scholar
  35. Middelkoop H, Daamen K, Gellens D, Grabs W, Kwadijk JCJ, Lang H, Parmet B, Schadler B, Schulla J, Wilke K (2001) Impact of climate change on hydrological regimes and water resources management in the Rhine basin. Clim Change 49:105–128. doi: 10.1023/a:1010784727448 CrossRefGoogle Scholar
  36. Moriasi DN, Arnold JG, Van Liew MW, Bingner RL, Harmel RD, Veith TL (2007) Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans Asae 50:885–900CrossRefGoogle Scholar
  37. Morrison J, Quick MC, Foreman MGG (2002) Climate change in the Fraser River watershed: flow and temperature projections. J Hydrol 263:230–244. doi: 10.1016/s0022-1694(02)00065-3 CrossRefGoogle Scholar
  38. Moser H, Cullmann J, Kofalk S, Mai S, Nilson E (2012) An integrated climate service for the transboundary river basin and coastal management of Germany. In: Climate exchange, World Meteorological Organization, Tudor Rose, Leicester, pp 88–93Google Scholar
  39. Mouthon J, Daufresne M (2006) Effects of the 2003 heatwave and climatic warming on mollusc communities of the Saone: a large lowland river and of its two main tributaries (France). Glob Change Biol 12:441–449. doi: 10.1111/j.1365-2486.2006.01095.x CrossRefGoogle Scholar
  40. Nakicenovic N, Davidson O, Davis G, Grübler A, Kram T, Lebre La Rovere E, Metz B, Morita T, Pepper W, Pitcher H, Sankovski A, Shukla P, Swart R, Watson R, Dadi Z (2000) IPCC Special report on emission scenarios. Summary for policymakers, pp 27Google Scholar
  41. Nilson E, Carambia M, Krahe P (2010a) Low flow changes in the Rhine River basin. In: Görgen K, Beersma J, Bahmer G, Buiteveld H, Carambia M, de Keuter O, Krahe P, Nilson E, Lammersen R, Perrin C, Volken D (eds) Assessment of climate change impacts on discharge in the Rhine River Basin: Results of the RheinBlick2050 Project, CHR Report No. I-23, pp 115–119Google Scholar
  42. Nilson E, Perrin C, Beersma J, Carambia M, Krahe P, de Keizer O, Görgen K (2010b) Evaluation of data and processing procedures. In: Görgen K, Beersma J, Bramer G, Buiveld H, Carambia M, de Keizer O, Krahe P, Nilson E, Lammersen R, Perrin C, Volken D (eds) Assessment of climate change impacts on discharge in the Rhine River Basin: Results of the RheinBlick2050 Project, CHR Report I-23, pp 51–95. http://www.chr-khr.org/en/publications?field_publication_code_start_value=c
  43. Nilson E, Krahe P, Lingemann I, Horsten T, Klein B, Carambia M, Larina M (2014) Auswirkungen des Klimawandels auf das Abflussgeschehen und die Binnenschifffahrt in Deutschland. KLIWAS-43/2014. doi:  10.5675/Kliwas_43/2014_4.01
  44. Oppermann R, Schumacher F, Kirchesch V (2015) HYDRAX: Ein hydrodynamisches 1-D Modell. BfG-Bericht. doi: 10.5675/HYDRAX Google Scholar
  45. Orlowsky B, Seneviratne SI (2011) Investigating spatial climate relations using CARTs: an application to persistent hot days in a multimodel ensemble. J Geophys Res 116:D14106. doi: 10.1029/2010jd015188 CrossRefGoogle Scholar
  46. Plagemann S, Imbery F, Namyslo J (2014) Validierung und Bewertung von Klimaprojektionen: Bereitstellung von Klimaszenarien für den Binnenbereich. KLIWAS-29/2014. doi:  10.5675/Kliwas_29/2014_1.02
  47. Poff N, Brinson MM, Day JW (2002) Potential impacts on inland freshwater and coastal wetland ecosystems in the United States. http://www.pewclimate.org/docUploads/aquatic.pdf
  48. Sand-Jensen K, Pedersen NL (2005) Differences in temperature, organic carbon and oxygen consumption among lowland streams. Freshwater Biol 50:1927–1937. doi: 10.1111/j.1365-2427.2005.01436.x CrossRefGoogle Scholar
  49. Sand-Jensen K, Pedersen NL, Søndergaard M (2007) Bacterial metabolism in small temperate streams under contemporary and future climates. Freshwater Biol 52:2340–2353. doi: 10.1111/j.1365-2427.2007.01852.x CrossRefGoogle Scholar
  50. Schär C, Vidale PL, Luthi D, Frei C, Haberli C, Liniger MA, Appenzeller C (2004) The role of increasing temperature variability in European summer heatwaves. Nature 427:332–336. doi: 10.1038/nature02300 CrossRefGoogle Scholar
  51. Schöl A, Kirchesch V, Bergfeld T, Müller D (1999) Model-based analysis of oxygen budget and biological processes in the regulated rivers Moselle and Saar: modelling the influence of benthic filter feeders on phytoplankton. Hydrobiologia 410:167–176. doi: 10.1023/a:1003858713999 CrossRefGoogle Scholar
  52. Schöll F (2013) Verbreitung der Körbchenmuschel Corbicula fluminea (O. F. Müller 1774) in Abhängigkeit von der Wassertemperatur in deutschen Bundeswasserstraßen. Lauterbornia 76:85–90, D-86424 DinkelscherbenGoogle Scholar
  53. Stott PA, Stone DA, Allen MR (2004) Human contribution to the European heatwave of 2003. Nature 432:610–614. doi: 10.1038/nature03089 CrossRefGoogle Scholar
  54. Van der Linden P, Mitchell JFB (2009) ENSEMBLES: Climate change and its impacts: summary of research and results from the ENSEMBLES project. Met Office Hadley Centre, Fitz Roy Road, Exeter EX1 3 PB, UK, pp 160. http://ensembles-eu.metoffice.com/
  55. Van Vliet MTH, Franssen WHP, Yearsley JR, Ludwig F, Haddeland I, Lettenmaier DP, Kabat P (2013) Global river discharge and water temperature under climate change. Glob Environ Change-Hum Policy Dimens 23:450–464. doi: 10.1016/j.gloenvcha.2012.11.002 CrossRefGoogle Scholar
  56. Viergutz C, Kathol M, Norf H, Arndt H, Weitere M (2007) Control of microbial communities by the macrofauna: a sensitive interaction in the context of extreme summer temperatures? Oecologia 151:115–124. doi: 10.1007/s00442-006-0544-7 CrossRefGoogle Scholar
  57. Ward JV (1992) Aquatic insect ecology 1. Biology and habitat. Wiley, New YorkGoogle Scholar
  58. Webb BW, Hannah DM, Moore RD, Brown LE, Nobilis F (2008) Recent advances in stream and river temperature research. Hydrol Process 22:902–918. doi: 10.1002/hyp.6994 CrossRefGoogle Scholar
  59. Weitere M, Arndt H (2002) Top-down effects on pelagic heterotrophic nanoflagellates (HNF) in a large river (River Rhine): do losses to the benthos play a role? Freshwater Biol 47:1437–1450. doi: 10.1046/j.1365-2427.2002.00875.x CrossRefGoogle Scholar
  60. Weitere M, Vohmann A, Schulz N, Linn C, Dietrich D, Arndt H (2009) Linking environmental warming to the fitness of the invasive clam Corbicula fluminea. Glob Change Biol 15:2838–2851. doi: 10.1111/j.1365-2486.2009.01925.x CrossRefGoogle Scholar
  61. Woodward G, Perkins DM, Brown LE (2010) Climate change and freshwater ecosystems: impacts across multiple levels of organization. Philos Trans R Soc B-Biol Sci 365:2093–2106. doi: 10.1098/rstb.2010.0055 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Paulin Hardenbicker
    • 1
  • Carsten Viergutz
    • 1
  • Annette Becker
    • 1
  • Volker Kirchesch
    • 1
  • Enno Nilson
    • 1
  • Helmut Fischer
    • 1
  1. 1.Federal Institute of Hydrology (BfG)KoblenzGermany

Personalised recommendations