Advertisement

Regional Environmental Change

, Volume 17, Issue 2, pp 335–349 | Cite as

A framework for habitat monitoring and climate change modelling: construction and validation of the Environmental Stratification of Estonia

  • Miguel Villoslada
  • Robert G. H. Bunce
  • Kalev Sepp
  • Rob H. G. Jongman
  • Marc J. Metzger
  • Tiiu Kull
  • Janar Raet
  • Valdo Kuusemets
  • Ain Kull
  • Aivar Leito
Original Article

Abstract

Environmental stratifications provide the framework for efficient surveillance and monitoring of biodiversity and ecological resources, as well as modelling exercises. An obstacle for agricultural landscape monitoring in Estonia has been the lack of a framework for the objective selection of monitoring sites. This paper describes the construction and testing of the Environmental Stratification of Estonia (ESE). Principal components analysis was used to select the variables that capture the most amount of variation. Seven climate variables and topography were selected and subsequently subjected to the ISODATA clustering routine in order to produce relatively homogeneous environmental strata. The ESE contains eight strata, which have been described in terms of soil, land cover and climatic parameters. In order to assess the reliability of the stratification procedure for the selection of monitoring sites, the ESE was compared with the previous map of Landscape Regions of Estonia and correlated with five environmental data sets. All correlations were significant. The stratification has therefore already been used to extend the current series of samples in agricultural landscapes into a more statistically robust series of monitoring sites. The potential for applying climate change scenarios to assess the shifts in the strata and associated ecological impacts is also examined.

Keywords

Climate Geomorphology Clustering algorithm Monitoring Stratified random sampling 

References

  1. Arold I (2005) Estonian landscapes. University of Tartu, TartuGoogle Scholar
  2. Bakkestuen V, Erikstad L, Halvorsen R (2008) Step-less models for regional environmental variation in Norway. J Biogeogr 35:1906–1922. doi: 10.1111/j.1365-2699.2008.01941.x CrossRefGoogle Scholar
  3. Barr CJ (2011) The sampling strategy for countryside survey (up to 2007). CEH Lancaster, LancasterGoogle Scholar
  4. Barredo JI, San Miguel J, Caudullo G, Busetto L (2012) A European map of living forest biomass and carbon stock. Joint Res Cent Eur Comm Ispra, Executive report. doi: 10.2788/780 Google Scholar
  5. Berry PM, Dawson TP, Harrison PA, Pearson R, Butt N (2003) The sensitivity and vulnerability of terrestrial habitats and species in Britain and Ireland to climate change. J Nat Conserv 11:15–23. doi: 10.1078/1617-1381-00030 CrossRefGoogle Scholar
  6. Breckle SW, Walter H (2002) Walter’s vegetation of the earth: the ecological systems of the geo-biosphere, 4th edn. Springer, BerlinCrossRefGoogle Scholar
  7. Brus DJ, Knotters M, Metzger MJ, Walvoort DJJ (2011) Towards a European-wide sampling design for statistical monitoring of common habitats. Alterra report 2213, WageningenGoogle Scholar
  8. Bugter RFJ, Ottburg FGWA, Roessink I, Jansman HAH, Van der Grift EA, Griffioen AJ (2011) Invasion of the turtles? Exotic turtles in the Netherlands: a risk assessment. Alterra report 2186. Alterra Wageningen UR. http://www.wageningenur.nl/en/Publication-details.htm?publicationId=publication-way-343039323632. Accessed 17 Mar 2015
  9. Bunce RGH, Smith RS (1978) An ecological survey of Cumbria. Kendal (UK): Cumbria County Council and Lake District Special Planning BoardGoogle Scholar
  10. Bunce RGH, Morrel SK, Stel HE (1975) The application of multivariate analysis to regional survey. J Environ Manag 3:151–165Google Scholar
  11. Bunce RGH, Barr CJ, Clarke RT, Howard DC, Lane AMJ (1996) Land classification for strategic ecological survey. J Environ Manag 47:37–60. doi: 10.1006/jema.1996.0034 CrossRefGoogle Scholar
  12. Bunce RGH, Carey PD, Elena-Rosello R, Orr J, Watkins J, Fuller R (2002) A comparison of different biogeographical classifications of Europe, Great Britain and Spain. J Environ Manag 65:12–134. doi: 10.1006/jema.2002.0533 CrossRefGoogle Scholar
  13. Carvalho SB, Gonçalves J, Guisan A, Honrado JP (2015) Systematic site selection for multispecies monitoring networks. J Appl Econ. doi: 10.1111/1365-2664.12505 Google Scholar
  14. Cooper A (2000) Land cover monitoring in Northern Ireland. In: Rushton BS (ed) Biodiversity: the Irish dimension. Royal Irish Academy, Dublin, pp 122–131Google Scholar
  15. de Gruijter JJ, Brus DJ, Bierkens MFP, Knotters M (2006) Sampling for natural resource monitoring. Springer, BerlinCrossRefGoogle Scholar
  16. EEA (2000) Corine land cover technical guide—addendum 2000. Report no. 40. European Environment Agency, CopenhagenGoogle Scholar
  17. Elena-Rosselló R (1997) Biogeoclimatic classification of the Spanish regions of Iberian Peninsula and Balearic islands. Ministry of Agriculture, Fisheries and Food, Madrid (in Spanish) Google Scholar
  18. European Commission (2004) The European soil database distribution version 2.0 (CD-ROM) European Commission and the European Soil Bureau Network. http://eusoils.jrc.ec.europa.eu/ESDB_Archive/ESDBv2/index.htm. Accessed 17 Mar 2015
  19. Ferrier S (2002) Mapping spatial pattern in biodiversity for regional conservation planning: where to from here? Syst Biol 51(2):331–363. doi: 10.1080/10635150252899806 CrossRefGoogle Scholar
  20. Fňukalová E, Romportl D (2014) A typology of natural landscapes of Central Europe. AUC Geogr 49(2):57–63. doi: 10.14712/23361980.2014.15 CrossRefGoogle Scholar
  21. Fuchs R, Herold M, Verburg PH, Clevers JGPW (2013) A high-resolution and harmonized model approach for reconstructing and analysing historic land changes in Europe. Biogeosciences 10:1543–1559. doi: 10.5194/bg-10-1543-2013 CrossRefGoogle Scholar
  22. Godron M (1994) The natural hierarchy of ecological systems. In: Klijn F (ed) Ecosystem classification for environmental management. Kluwer Academic Publishers, Dortdrecht, pp 69–83CrossRefGoogle Scholar
  23. Hagen A (2003) Fuzzy set approach to assessing similarity of categorical maps. Int J Geogr Inf Sci 17(3):235–249. doi: 10.1080/13658810210157822 CrossRefGoogle Scholar
  24. Haines-Young RH, Barr CJ, Black HIJ, Briggs DJ, Bunce RGH, Clarke RT, Cooper A, Dawson FH, Firbank LG, Fuller R, Furse MT, Gillespie MK, Hill R, Hornung M, Howard DC, McCann T, Morecroft MD, Petit S, Sier ARJ, Smart SM, Smith GM, Stott AP, Stuart R, Watkins JW (2000) Accounting for nature: assessing habitats in the UK countryside. DETR, LondonGoogle Scholar
  25. Haylock MR, Hofstra N, Klein Tank AMG, Klok EJ, Jones PD, New M (2008) A European daily high-resolution gridded dataset of surface temperature and precipitation. J Geophys Res (Atmospheres) 113:D20119. doi: 10.1029/2008JD10201 CrossRefGoogle Scholar
  26. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978. doi: 10.1002/joc.1276 CrossRefGoogle Scholar
  27. Jaagus J, Kaupo M (2015) Climate change scenarios for Estonia based on climate models from the IPCC fourth assessment report. Est J Earth Sci 63(3):166–180. doi: 10.3176/earth.2014.15 CrossRefGoogle Scholar
  28. Jolliffe IT (1972) Discarding variables in a principal component analysis I: artificial data. J Roy Stat Soc C-Appl 21(2):160–173. doi: 10.2307/2346488 Google Scholar
  29. Jones HE, Bunce RGH (1985) A preliminary classification of the climate of Europe from temperature and precipitation records. J Environ Manag 20:17–29Google Scholar
  30. Jones RJA, Hiederer R, Rusco E, Loveland PJ, Montanarella L (2004) The map of organic carbon in topsoils in Europe, version 1.2, September 2003: Explanation of special publication. Ispra 2004 no.72 (S.P.I.04.72). Office for Official Publications of the European Communities. http://139.191.1.96/ESDB_Archive/octop/OCtopMapBkLet76.pdf. Accessed 17 Mar 2015
  31. Jongman RHG, Bunce RGH, Metzger MJ, Mücher CA, Howard DC, Mateus VL (2006) A statistical environmental stratification of Europe: objectives and applications. Land Ecol 21:409–419. doi: 10.1007/s10980-005-6428-0 CrossRefGoogle Scholar
  32. King JR, Jackson DA (1999) Variable selection in large environmental data sets using principal components analysis. Environmetrics 10:67–77. doi: 10.1002/(sici)1099-095x(199901/02)10:1<67::aid-env3363.0.co;2-0 CrossRefGoogle Scholar
  33. Klijn F, de Haes HAU (1994) A hierarchical approach to ecosystems and its implications for ecological land classification. Land Ecol 9(2):89–104. doi: 10.1007/BF00124376 CrossRefGoogle Scholar
  34. Klotz M, Kemper T, Geiß C, Esch T, Taubenböck H (2016) How good is the map? A multi-scale cross-comparison framework for global settlement layers: evidence from Central Europe. Remote Sens Environ 178:191–212. doi: 10.1016/j.rse.2016.03.001 CrossRefGoogle Scholar
  35. Krzanowski WJ (1987) Selection of variables to preserve multivariate data structure, using principal components. J Roy Stat Soc C-Appl 36(1):22–33. doi: 10.2307/2347842 Google Scholar
  36. Kukk T, Kull T (2005) Atlas of the Estonian flora. Estonian University of Life Sciences, Institute of Agricultural and Environmental Sciences, Tartu (in Estonian) Google Scholar
  37. Kull T, Kukk T, Leht M, Krall H, Kukk Ü, Kull K, Kuusk V (2002) Distribution trends of rare vascular plant species in Estonia. Biodivers Conserv 11:171–196. doi: 10.1023/A:1014564521151 CrossRefGoogle Scholar
  38. Laasimer L (1965) Plant cover of Estonian. S. S. R. Valgus, Tallinn (in Estonian) Google Scholar
  39. Landis JR, Koch GC (1977) The measurement of observer agreement for categorical data. Biometrics 33:159–174. doi: 10.2307/2529310 CrossRefGoogle Scholar
  40. Leito A, Bunce RGH, Külvik M, Ojaste I, Raet J, Villoslada M, Leivits M, Kull A, Kuusemets V, Kull T, Metzger MJ, Sepp K (2015) The potential impacts of changes in ecological networks, land use and climate on the Eurasian crane population in Estonia. Land Ecol 30(5):887–904. doi: 10.1007/s10980-015-0161-0 CrossRefGoogle Scholar
  41. Liivamägi A, Kuusemets V, Luig J, Kask K (2013) Changes in the distribution of Clouded Apollo Parnassius mnemosyne (Lepidoptera: Papilionidae) in Estonia. Entomol Fennica 24(3):186–192Google Scholar
  42. Lippmaa T (1935) Main features of Estonian geobotany. University of Tartu, Tartu (in Estonian) Google Scholar
  43. Luhamaa A, Kallis A, Mändla K, Männik A, Pedusaar T, Rosin K (2014) Eesti tuleviku kliima stsenaariumid aastani 2100. Estonian Environment AgencyGoogle Scholar
  44. Mander Ü, Palang H (1994) Changes of landscape structure in Estonia during the Soviet period. GeoJournal 33(1):45–54. doi: 10.1007/BF00810135 CrossRefGoogle Scholar
  45. Mateus VL (2004) Countryside land cover: strategic sample survey. Universidade de Évora, ÉvoraGoogle Scholar
  46. McCabe GP (1984) Principal variables. Technometrics 26(2):137–144. doi: 10.1080/00401706.1984.10487939 CrossRefGoogle Scholar
  47. Memarsadeghi N, Mount DM, Netanyahu NS, le Moigne J (2007) A fast implementation of the Isodata clustering algorithm. Int J Comput Geom Appl 17(1):71–103CrossRefGoogle Scholar
  48. Metzger MJ, Bunce RGH, Jongman RHG, Mücher CA, Watkins JW (2005) A climatic stratification of the environment of Europe. Global Ecol Biogeogr 14:549–563. doi: 10.1111/j.1466-822X.2005.00190.x CrossRefGoogle Scholar
  49. Metzger MJ, Rounsevell MDA, Leemans R, Schröter D (2006) The vulnerability of ecosystem services to land use change. Agr Ecosyst Environ 114:69–85. doi: 10.1016/j.agee.2005.11.025 CrossRefGoogle Scholar
  50. Metzger MJ, Bunce RGH, Leemans R, Viner D (2008) Projected environmental shifts under climate change: European trends and regional impacts. Environ Conserv 35(1):64–75. doi: 10.1017/S0376892908004529 CrossRefGoogle Scholar
  51. Metzger MJ, Bunce RGH, Jongman RHG, Sayre R, Trabucco A, Zomer R (2012) A high-resolution bioclimate map of the world: a unifying framework for global biodiversity research and monitoring. Global Ecol Biogeogr 22(5):630–638. doi: 10.1111/geb.12022 CrossRefGoogle Scholar
  52. Metzger MJ, Brus DJ, Bunce RGH, Carey PD, Gonçalves J, Honrado JP, Jongman RHG, Trabucco A, Zomer R (2013) Environmental stratifications as the basis for national, European and global ecological monitoring. Ecol Indic 33:26–35. doi: 10.1016/j.ecolind.2012.11.009 CrossRefGoogle Scholar
  53. Mücher CA, Hennekens SM, Bunce RGH, Schaminée JHJ, Schaepman ME (2009) Modelling the spatial distribution of Natura 2000 habitats across Europe. Land Urb Plan 92(2):148–159. doi: 10.1016/j.landurbplan.2009.04.003 CrossRefGoogle Scholar
  54. Nakicenovic N, Alcamo J, Davis G, de Vries HJM, Fenhann J, Gaffin S, Gregory K, Grübler A, Jung TY, Kram T, La Rovere EL, Michaelis L, Mori S, Morita T, Pepper W, Pitcher H, Price L, Riahi K, Roehrl A, Rogner HH, Sankovski A, Schlesinger ME, Shukla P, Smith S, Swart R, van Rooijen S, Victor N, Dadi Z (2000) Special report on emissions scenarios, international panel on climate change. Cambridge University Press, Cambridge, UKGoogle Scholar
  55. New M, Lister D, Hulme M, Makin I (2002) A high-resolution data set of surface climate over global land areas. Climate Res 21:1–25. doi: 10.3354/cr021001 CrossRefGoogle Scholar
  56. Ortega M, Metzger MJ, Bunce RGH, Wrbka T, Allard A, Jongman RHG, Elena-Roselló R (2011) The potential for integration of environmental data from regional stratifications into a European monitoring framework. J Environ Plann Man 55(1):39–57. doi: 10.1080/09640568.2011.575698 CrossRefGoogle Scholar
  57. Palo A, Linder M, Truu J, Mander Ü (2008) The influence of biophysical factors and former land use on forest floristic variability on Saaremaa and Muhu islands, Estonia. J Nat Conserv 16:123–134. doi: 10.1016/j.jnc.2008.08.001 CrossRefGoogle Scholar
  58. Panagos P, Borrelli P, Meusburger B, Alewell C, Lugato E, Montanarella L (2015) Estimating the soil erosion cover-management factor at European scale. Land Use Policy 48(c):38–50. doi: 10.1016/j.landusepol.2015.05.021 CrossRefGoogle Scholar
  59. Peterseil J, Wrbka T, Plutzar C, Schmitzberger I, Kiss A, Szerencsits E, Reiter K, Schneider W, Suppan F, Beissmann H (2004) Evaluating the ecological sustainability of Austrian agricultural landscapes-the SINUS approach. Land Use Pol 21:307–320. doi: 10.1016/j.landusepol.2003.10.011 CrossRefGoogle Scholar
  60. Petit S, Firbank L, Wyatt B, Howard D (2001) MIRABEL: models for integrated review and assessment of biodiversity in European landscapes. Ambio 30:81–88. doi: 10.1579/0044-7447-30.2.81 CrossRefGoogle Scholar
  61. Regato P, Castejón M, Tella G, Giménez S, Barrera I, Elena-Rosselló R (1999) Cambios recientes en los paisajes de los sistemas forestales de España. Investig Agric Sist Recur For 1:383–398Google Scholar
  62. Saxon E, Baker B, Hargrove W, Hoffman F, Zganjar C (2005) Mapping environments at risk under different global climate change scenarios. Ecol Lett 8:53–60. doi: 10.1111/j.1461-0248.2004.00694.x CrossRefGoogle Scholar
  63. Sheail J, Bunce RGH (2003) The development and scientific principles of an environmental classification for strategic ecological survey in Great Britain. Environ Conserv 30:147–159. doi: 10.1017/S0376892903000134 CrossRefGoogle Scholar
  64. Ståhl G, Allard A, Esseen PA, Glimskär A, Ringvall A, Svensson J, Sture Sundquist S, Christensen P, Gallegos Torell Å, Högström M, Lagerqvist K, Marklund L, Nilsson B, Inghe O (2011) National inventory of landscapes in Sweden (NILS)—scope, design, and experiences from establishing a multi-scale biodiversity monitoring system. Environ Monit Assess 173:579–595. doi: 10.1007/s10661-010-1406-7 CrossRefGoogle Scholar
  65. Ter Braak CJF (1986) Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradients analysis. Ecology 67(5):1167–1179. doi: 10.2307/1938672 CrossRefGoogle Scholar
  66. Ter Braak CJF, Šmilauer P (2012) CANOCO reference manual and user’s guide: software for ordination (version 5.0). Microcomputer power, Ithaca, New YorkGoogle Scholar
  67. Thuiller W, Albert C, Araujo MB, Berry PM, Cabeza M, Guisan A, Hickler T, Midgley GF, Paterson J, Schurr FM, Sykes MT, Zimmermann NE (2008) Predicting global change impacts on plant species’ distributions: future challenges. Perspect Pant Ecol 9:137–152. doi: 10.1016/j.ppees.2007.09.004 CrossRefGoogle Scholar
  68. Tou JT, Gonzalez RC (1974) Pattern recognition principles. Addison-Wesley Publishing Company, MassachusettsGoogle Scholar
  69. Van der Sluis T, Pedroli B, Kristensen SBP, Lavinia Cosor G, Pavlis E (2015) Changing land use intensity in Europe—recent processes in selected case studies. Land Use Policy. doi: 10.1016/j.landusepol.2014.12.005 Google Scholar
  70. Visser H (2004) The map comparison kit: methods, software and applications. RIVM report 550002005/2004. RIVM (National Institute for Public Health and the Environment, the Netherlands). http://www.pbl.nl/sites/default/files/cms/publicaties/550002005.pdf. Accessed 17 Mar 2015

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Miguel Villoslada
    • 1
  • Robert G. H. Bunce
    • 1
  • Kalev Sepp
    • 1
  • Rob H. G. Jongman
    • 2
  • Marc J. Metzger
    • 3
  • Tiiu Kull
    • 1
  • Janar Raet
    • 1
  • Valdo Kuusemets
    • 1
  • Ain Kull
    • 4
  • Aivar Leito
    • 1
  1. 1.Estonian University of Life SciencesTartuEstonia
  2. 2.AlterraWageningen URWageningenThe Netherlands
  3. 3.School of GeoSciencesThe University of EdinburghEdinburghUK
  4. 4.University of TartuTartuEstonia

Personalised recommendations