Regional Environmental Change

, Volume 17, Issue 1, pp 245–259 | Cite as

New Zealand kiwifruit growers’ vulnerability to climate and other stressors

  • Nicholas A. Cradock-HenryEmail author
Original Article


Commercial cultivation of kiwifruit in New Zealand is concentrated in a relatively small area of the North Island. Cultivation is economically significant and growing quickly. However, current understanding of vulnerability for this, and other primary sector activities in New Zealand, makes almost exclusive use of linear outcome-oriented frameworks. Drawing on in-depth, semi-structured interviews with kiwifruit growers and orchard managers, workshops and analysis of secondary data, a “bottom-up” contextual assessment of vulnerability was developed and empirically applied. The findings suggest that climate and markets are the main sources of exposure for growers, with sensitivity moderated by location. Growers employ mostly short-term, reactive adaptive strategies to manage climate exposure and sensitivity, but have less capacity to respond to market-related stressors. Warmer and drier conditions are likely to have adverse effects for kiwifruit production and compound existing vulnerabilities. An ageing population and other processes of rural change may also constrain future adaptation. In order to realise opportunities and minimise losses, longer-term strategic responses are required. The paper demonstrates the need to move beyond outcome-oriented and model-based vulnerability assessments in New Zealand, to consider the broad range of the factors that contribute to vulnerability in the nation’s agricultural sectors. It provides a basis for further consideration of multiple exogenous impacts in the industry and confirms the critical importance of qualitatively vulnerability assessments to determine spatially specific outcomes.


Kiwifruit New Zealand Vulnerability Exposure Sensitivity Adaptive strategies Climate change Resilience Multiple stressors 



The author gratefully acknowledges the financial support of the University of Canterbury, Education New Zealand, the Social Sciences and Humanities Research Council of Canada, and Landcare Research. Sincere thanks to Prof Eric Pawson and Dr Gavin Kenny who graciously ensured this work could be completed, Leah Kearns at Landcare Research for her constructive feedback, and above all to the growers and industry representatives that generously contributed their time and insights. The feedback from two anonymous reviewers and the journal’s editors is also appreciated.


  1. Adger WN (2006) Vulnerability. Glob Environ Change 16:268–281. doi: 10.1016/j.gloenvcha.2006.02.006 CrossRefGoogle Scholar
  2. Adger WN, Eakin H, Winkels A (2009) Nested and teleconnected vulnerabilities to environmental change. Front Ecol Environ 7:150–157. doi: 10.1890/070148 CrossRefGoogle Scholar
  3. Andrachuk M, Smit B (2012) Community-based vulnerability assessment of Tuktoyaktuk, NWT, Canada to environmental and socio-economic changes. Reg Environ Change 12:867–885. doi: 10.1007/s10113-012-0299-0 CrossRefGoogle Scholar
  4. Austin PT, Hall AJ, Snelgar WP, Currie MJ (2002) Modelling Kiwifruit Budbreak as a function of temperature and bud interactions. Ann Bot 89:695–706. doi: 10.1093/aob/mcf113 CrossRefGoogle Scholar
  5. Babbie ER (2012) The practice of social research, 13th edn. Wadsworth Publishing, BelmontGoogle Scholar
  6. Baird A, O’Keefe P, Westgate K, Wisner B (1975) Towards an explanation and reduction of disaster proneness. Disaster Research Unit, University of Bradford, Bradford, UKGoogle Scholar
  7. Basset-Mens C, Ledgard S, Boyes M (2009) Eco-efficiency of intensification scenarios for milk production in New Zealand. Ecol Econ 68:1615–1625. doi: 10.1016/j.ecolecon.2007.11.017 CrossRefGoogle Scholar
  8. Bay of Plenty Regional Council (2015) Long Term Plan—Te Mahere Wā-Roa 2015-2025. Bay of Plenty Regional Council, TaurangaGoogle Scholar
  9. Belliveau S, Smit B, Bradshaw B (2006) Multiple exposures and dynamic vulnerability: evidence from the grape industry in the Okanagan Valley, Canada. Glob Environ Change 16:364–378. doi: 10.1016/j.gloenvcha.2006.03.003 CrossRefGoogle Scholar
  10. Berardi G, Green R, Hammond B (2011) Stability, sustainability, and catastrophe: applying resilience thinking to U.S. agriculture. Human Ecol Rev 18:115–125Google Scholar
  11. Beston B, Fallow A (2006) Alarm erupts over climate tax on trade. In: New Zealand Herald. Accessed 30 Sep 2016
  12. Beverland M (2001) Creating value through brands: the ZESPRI kiwi fruit case. Brit Food J 103:383–399. doi: 10.1108/00070700110400389 CrossRefGoogle Scholar
  13. Bradshaw B (2007) Climate change adaptation in a wider context: conceptualizing multiple risks in primary agriculture. In: Wall SE, Smit B, Wandel J (eds) Farming in a changing climate: agricultural adaptation in Canada. UBC Press, Vancouver, pp 103–114Google Scholar
  14. Brooks N, Neil Adger W, Mick Kelly P (2005) The determinants of vulnerability and adaptive capacity at the national level and the implications for adaptation. Glob Environ Change 15:151–163. doi: 10.1016/j.gloenvcha.2004.12.006 CrossRefGoogle Scholar
  15. Brown HCP (2009) Climate change and Ontario forests: prospects for building institutional adaptive capacity. Mitig Adapt Strateg Glob Change 14:513–536. doi: 10.1007/s11027-009-9183-8 CrossRefGoogle Scholar
  16. Brown K (2013) Global Environmental Change 1: a social turn for resilience? Prog Hum Geogr 38:107–117CrossRefGoogle Scholar
  17. Bryant CR, Smit B, Brklacich M et al (2014) Adaptation in Canadian agriculture to climatic variability and change. Clim Change 45:181–201. doi: 10.1023/A:1005653320241 CrossRefGoogle Scholar
  18. Buckle RA, Kim K, Kirkham H et al (2007) A structural VAR business cycle model for a volatile small open economy. Econ Model 24:990–1017. doi: 10.1016/j.econmod.2007.04.003 CrossRefGoogle Scholar
  19. Bunce M, Rosendo S, Brown K (2010) Perceptions of climate change, multiple stressors and livelihoods on marginal African coasts. Environ Dev Sustain 12:407–440. doi: 10.1007/s10668-009-9203-6 CrossRefGoogle Scholar
  20. Burdon J, Pidakala P, Martin P et al (2014) Postharvest performance of the yellow-fleshed “Hort16A” kiwifruit in relation to fruit maturation. Postharvest Biol Technol 92:98–106. doi: 10.1016/j.postharvbio.2014.01.004 CrossRefGoogle Scholar
  21. Burton RJF, Peoples S (2014) Market liberalisation and drought in New Zealand: a case of “double exposure” for dryland sheep farmers? J Rural Stud 33:82–94. doi: 10.1016/j.jrurstud.2013.11.002 CrossRefGoogle Scholar
  22. Carter TR, Porter JH, Parry ML (1991) Climatic warming and crop potential in Europe: prospects and uncertainties. Glob Environ Change 1:291–312. doi: 10.1016/0959-3780(91)90056-Y CrossRefGoogle Scholar
  23. Clark DA, Caradus JR, Monaghan RM et al (2007) Issues and options for future dairy farming in New Zealand. New Zealand J Agric Res 50:203–221. doi: 10.1080/00288230709510291 CrossRefGoogle Scholar
  24. Clark AJ, Nottage RAC, Wilcocks L, et al (2012) Impacts of climate change on land-based sectors and adaptation options. In: Clark AJ, Nottage RAC, Hansford D (eds) Stakeholder report to the sustainable land management and climate change adaptation technical working group. Ministry for Primary Industries, WellingtonGoogle Scholar
  25. Cordell D, Neset T-SS (2014) Phosphorus vulnerability: a qualitative framework for assessing the vulnerability of national and regional food systems to the multi-dimensional stressors of phosphorus scarcity. Glob Environ Change 24:108–122. doi: 10.1016/j.gloenvcha.2013.11.005 CrossRefGoogle Scholar
  26. Cradock-Henry N (2008) Exploring perceptions of risks and vulnerability to climate change in New Zealand agriculture. Political Science 60:151–155. doi: 10.1177/003231870806000112 CrossRefGoogle Scholar
  27. Cradock-Henry N (2011) Farm-level vulnerability to climate change in the Eastern Bay of Plenty, New Zealand, in the context of multiple stressors. Dissertation, University of CanterburyGoogle Scholar
  28. Dowd A-M, Marshall N, Fleming A et al (2014) The role of networks in transforming Australian agriculture. Nat Clim Change 4:558–563. doi: 10.1038/nclimate2275 CrossRefGoogle Scholar
  29. Eakin H, Appendini K (2008) Livelihood change, farming, and managing flood risk in the Lerma Valley, Mexico. Agric Hum Values 25:555–566. doi: 10.1007/s10460-008-9140-2 CrossRefGoogle Scholar
  30. Eakin H, Winkels A, Sendzimir J (2009) Nested vulnerability: exploring cross-scale linkages and vulnerability teleconnections in Mexican and Vietnamese coffee systems. Environ Sci Policy 12:398–412. doi: 10.1016/j.envsci.2008.09.003 CrossRefGoogle Scholar
  31. Engle NL (2011) Adaptive capacity and its assessment. Glob Environ Change 21:647–656. doi: 10.1016/j.gloenvcha.2011.01.019 CrossRefGoogle Scholar
  32. Everett KR, Taylor RK, Romberg MK et al (2011) First report of Pseudomonas syringae pv. actinidiae causing kiwifruit bacterial canker in New Zealand. Aust Plant Dis Notes 6:67–71. doi: 10.1007/s13314-011-0023-9 CrossRefGoogle Scholar
  33. Fitzharris B (2007) How vulnerable is New Zealand to the impacts of climate change? NZ Geogr 63:160–168. doi: 10.1111/j.1745-7939.2007.00119.x CrossRefGoogle Scholar
  34. Flaten O, Lien G, Tveterås R (2011) A comparative study of risk exposure in agriculture and aquaculture. Food Econ Acta Agric Scandinavica 8:20–34Google Scholar
  35. Ford JD, Keskitalo ECH, Smith T et al (2010) Case study and analogue methodologies in climate change vulnerability research. Clim Change 1:374–392. doi: 10.1002/wcc.48 Google Scholar
  36. Ford JD, Berrang-Ford L, Paterson J (2011) A systematic review of observed climate change adaptation in developed nations. Clim Change 106:326–336. doi: 10.1007/s10584-011-0045-5 CrossRefGoogle Scholar
  37. Ford JD, McDowell G, Shirley J et al (2013) The dynamic multiscale nature of climate change vulnerability: an Inuit harvesting example. Ann Assoc Am Geogr 103:1193–1211. doi: 10.1080/00045608.2013.776880 CrossRefGoogle Scholar
  38. Ford JD, Champalle C, Tudge P et al (2014) Evaluating climate change vulnerability assessments: a case study of research focusing on the built environment in northern Canada. Mitig Adapt Strateg Glob Change. doi: 10.1007/s11027-014-9543-x Google Scholar
  39. Fowler A, Adams K (2004) Twentieth century droughts and wet periods in Auckland (New Zealand) and their relationship to ENSO. Int J Climatol 24:1947–1961. doi: 10.1002/joc.1100 CrossRefGoogle Scholar
  40. Fowler AM, Aiken S, Maree K (2013) Vulnerability of pastoral farming in Hawke’s Bay to future climate change: development of a pre-screening (bottom-up) methodology. NZ Geogr 69:120–135. doi: 10.1111/nzg.12015 CrossRefGoogle Scholar
  41. Goodwin RM, Steven D (1993) Behaviour of honey bees visiting kiwifruit flowers. New Zealand J Crop Horticult Sci 21:17–24. doi: 10.1080/01140671.1993.9513741 CrossRefGoogle Scholar
  42. Gray S, Le Heron R (2010) Globalising New Zealand: fonterra co-operative group, and shaping the future. NZ Geogr 66:1–13. doi: 10.1111/j.1745-7939.2010.01173.x CrossRefGoogle Scholar
  43. Griffiths F, Mullan B, Ackerley D et al (2011) An updated climate change assessment for the Bay of Plenty. NIWA, AucklandGoogle Scholar
  44. Hancock JF (ed) (2008) Temperate Fruit Crop Breeding. In: Germplasm to Genomics. Springer, Netherlands. doi: 10.1007/978-1-4020-6907-9
  45. Hardaker JB, Lien G, Anderson JR, Huirne RBM (2015) Coping With Risk in Agriculture: Applied Decision Analysis, 3rd edn. CABI, Boston, MAGoogle Scholar
  46. Harrington LJ, Rosier S, Dean SM et al (2014) The role of anthropogenic climate change in the 2013 drought over North Island, New Zealand. Explaining extremes of 2013 from a climate perspective. Bull Am Meteorol Soc 95:S45–S48Google Scholar
  47. Harwood JL, Heifner R, Coble K, et al (1999) Managing risk in farming: concepts, research, and analysis. US Department of Agriculture, Economic Research ServiceGoogle Scholar
  48. Hennessy KJ, Fitzharris B, Bates BC et al (2007) Australia and New Zealand. In: Parry ML, Canziani OF, Palutikof JP et al (eds) Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK, pp 507–540Google Scholar
  49. Hopkins D, Campbell-Hunt C, Carter L, et al (2015) Climate change and Aotearoa New Zealand. WIREs Clim Change n/a–n/a. doi: 10.1002/wcc.355
  50. Hutching G (2015) Kiwifruit on the rebound. In: New Zealand Farmer. Accessed 3 Jun 2016
  51. IPCC (2014) Summary for policymakers. In: Climate change 2014: impacts, adaptation, and vulnerability. Part A: global and sectoral aspects. contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change. Field CB, VR Barros, DJ Dokken, KJ Mach, MD Mastrandrea, TE Bilir, M Chatterjee, KL Ebi, YO Estrada, RC Genova, B Girma, ES Kissel, AN Levy, S MacCracken, PR Mastrandrea, LL White (eds) Cambridge University Press, Cambridge and New York, NYGoogle Scholar
  52. Islam MM, Sallu S, Hubacek K, Paavola J (2014) Vulnerability of fishery-based livelihoods to the impacts of climate variability and change: insights from coastal Bangladesh. Reg Environ Change 14(1):281–294. doi: 10.1007/s10113-013-0487-6 CrossRefGoogle Scholar
  53. Jackson N (2013) Demographic change in New Zealand’s Dairy Farming Industry: the need for a cohort perspective. N Z Popul Rev 39:77–99Google Scholar
  54. Kalaugher E, Bornman JF, Clark A, Beukes P (2013) An integrated biophysical and socio-economic framework for analysis of climate change adaptation strategies: The case of a New Zealand dairy farming system. Environ Model Softw 39:176–187. doi: 10.1016/j.envsoft.2012.03.018 CrossRefGoogle Scholar
  55. Kang J-H, Lee E-J, Lee S-J (2013) Wind tunnel experiment for wind breakage of Actinidia deliciosa P. shoots. J Mech Sci Technol 27:3113–3121. doi: 10.1007/s12206-013-0831-2 CrossRefGoogle Scholar
  56. Kay RD, Edwards WM, Duffy PA (2011) Farm Management, 7th edn. McGraw-Hill, New YorkGoogle Scholar
  57. Kelly PM, Adger WN (2000) Theory and practice in assessing vulnerability to climate change and facilitating adaptation. Clim Change 47:325–352. doi: 10.1023/A:1005627828199 CrossRefGoogle Scholar
  58. Kenny G (2011) Adaptation in agriculture: lessons for resilience from eastern regions of New Zealand. Clim Change 106:441–462. doi: 10.1007/s10584-010-9948-9 CrossRefGoogle Scholar
  59. Kenny GJ, Warrick RA, Campbell BD et al (2000) Investigating climate change impacts and thresholds: an application of the CLIMPACTS integrated assessment model for New Zealand Agriculture. Clim Change 46:91–113. doi: 10.1023/A:1005576910408 CrossRefGoogle Scholar
  60. Keys N, Bussey M, Thomsen DC et al (2014) Building adaptive capacity in South East Queensland, Australia. Reg Environ Change 14:501–512. doi: 10.1007/s10113-012-0394-2 CrossRefGoogle Scholar
  61. Leichenko RM, O’Brien KL (2002) The dynamics of rural vulnerability to global change: the case of southern Africa. Mitig Adapt Strat Glob Change 7:1–18. doi: 10.1023/A:1015860421954 CrossRefGoogle Scholar
  62. Leichenko R, O’Brien K (2008) Environmental change and globalization: double exposures. Oxford University Press, OxfordCrossRefGoogle Scholar
  63. Li C, Tang Y, Luo H et al (2013) Local farmers’ perceptions of climate change and local adaptive strategies: a case study from the middle Yarlung zangbo river valley, tibet, China. Environ Manage 52:894–906. doi: 10.1007/s00267-013-0139-0 CrossRefGoogle Scholar
  64. Linsley-Noakes GC (1989) Improving flowering of kiwifruit in climatically marginal areas using hydrogen cyanamide. Sci Hortic 38:247–259. doi: 10.1016/0304-4238(89)90072-1 CrossRefGoogle Scholar
  65. Liu J, Hull V, Batistella M et al (2013) Framing sustainability in a telecoupled world. Ecol Soc. doi: 10.5751/ES-05873-180226 Google Scholar
  66. Luers AL, Lobell DB, Sklar LS, Addams CL, Pa Matson (2003) A method for quantifying vulnerability, applied to the agricultural system of the Yaqui Valley, Mexico. Glob Environ Change 13:255–267. doi: 10.1016/S0959-3780(03)00054-2 CrossRefGoogle Scholar
  67. Malone EL, Engle NL (2011) Evaluating regional vulnerability to climate change: purposes and methods. Clim Change 2:462–474. doi: 10.1002/wcc.116 Google Scholar
  68. Manning M, Lawrence J, King DN, Chapman R (2014) Dealing with changing risks: a New Zealand perspective on climate change adaptation. Reg Environ Change 15:581–594. doi: 10.1007/s10113-014-0673-1 CrossRefGoogle Scholar
  69. Marshall NA (2010) Understanding social resilience to climate variability in primary enterprises and industries. Glob Environ Change 20:36–43. doi: 10.1016/j.gloenvcha.2009.10.003 CrossRefGoogle Scholar
  70. Marshall NA (2011) Assessing resource dependency on the rangelands as a measure of climate sensitivity. Soc Natl Resour 24:1105–1115. doi: 10.1080/08941920.2010.509856 CrossRefGoogle Scholar
  71. Marshall NA, Smajgl A (2013) Understanding variability in adaptive capacity on Rangelands. Rangeland Ecol Manag 66:88–94. doi: 10.2111/REM-D-11-00176.1 CrossRefGoogle Scholar
  72. Mazdiyasni O, AghaKouchak A (2015) Substantial increase in concurrent droughts and heatwaves in the United States. PNAS 112:11484–11489. doi: 10.1073/pnas.1422945112 CrossRefGoogle Scholar
  73. McDowell JZ, Hess JJ (2012) Accessing adaptation: multiple stressors on livelihoods in the Bolivian highlands under a changing climate. Glob Environ Change 22:342–352. doi: 10.1016/j.gloenvcha.2011.11.002 CrossRefGoogle Scholar
  74. Mcpherson HG, Richardson AC, Snelgar WP, Currie MB (2001) Effects of hydrogen cyanamide on budbreak and flowering in kiwifruit (Actinidia deliciosa“Hayward”). N Z J Crop Hortic Sci 29:277–285. doi: 10.1080/01140671.2001.9514189 CrossRefGoogle Scholar
  75. Meinke H, Howden SM, Struik PC et al (2009) Adaptation science for agriculture and natural resource management—urgency and theoretical basis. Curr Opin Environ Sustainab 1:69–76. doi: 10.1016/j.cosust.2009.07.007 CrossRefGoogle Scholar
  76. Miller SA, Broom FD, Thorp TG, Barnett AM (2001) Effects of leader pruning on vine architecture, productivity and fruit quality in kiwifruit (Actinidia deliciosa cv. Hayward). Sci Hortic 91:189–199. doi: 10.1016/S0304-4238(01)00259-X CrossRefGoogle Scholar
  77. Miller F, Osbahr H, Boyd E, et al. (2010). Resilience and vulnerability: complementary or conflicting concepts? Ecol Soc 15: 11.
  78. Morton JF (2007) The impact of climate change on smallholder and subsistence agriculture. Proc Natl Acad Sci USA 104:19680–19685. doi: 10.1073/pnas.0701855104 CrossRefGoogle Scholar
  79. Moser SC (2010) Communicating climate change: history, challenges, process and future directions. Clim Change 1:31–53. doi: 10.1002/wcc.11 Google Scholar
  80. Moser SC, Hart JAF (2015) The long arm of climate change: societal teleconnections and the future of climate change impacts studies. Clim Change 129:13–26. doi: 10.1007/s10584-015-1328-z CrossRefGoogle Scholar
  81. Moss RH, Meehl GA, Lemos MC, Smith JB, Arnold JR, Arnott JC et al (2013) Hell and high water: practice-relevant adaptation science. Science 342:696–698. doi: 10.1126/science.1239569 CrossRefGoogle Scholar
  82. Mullan B, Wratt D, Dean S, et al (2008) Climate change effects and impacts assessment. A guidance manual for local government in New Zealand, 2nd edn. NIWA, Wellington, NZGoogle Scholar
  83. Nelson R, Kokic P, Crimp S et al (2010) The vulnerability of Australian rural communities to climate variability and change: part I—Conceptualising and measuring vulnerability. Environ Sci Policy 13:8–17. doi: 10.1016/j.envsci.2009.09.006 CrossRefGoogle Scholar
  84. New Zealand Treasury (2014) New Zealand economic and financial overview. New Zealand Government, WellingtonGoogle Scholar
  85. Nicholas KA, Durham WH (2012) Farm-scale adaptation and vulnerability to environmental stresses: insights from winegrowing in Northern California. Glob Environ Change 22:483–494. doi: 10.1016/j.gloenvcha.2012.01.001 CrossRefGoogle Scholar
  86. O’Brien K, Eriksen S, Nygaard LP, Schjolden A (2007) Why different interpretations of vulnerability matter in climate change discourse. Clim Policy 7:73–88. doi: 10.1080/14693062.2007.9685639 CrossRefGoogle Scholar
  87. O’Keefe P, Westgate K, Wisner B (1976) Taking the naturalness out of natural disasters. Nature 260:566–567. doi: 10.1038/260566a0 CrossRefGoogle Scholar
  88. Olmstead SM (2013) Climate change adaptation and water resource management: a review of the literature. Energy Econ. doi:  10.1016/j.eneco.2013.09.005
  89. Otto FEL (2015) Climate change: attribution of extreme weather. Nat Geosci 8:581–582. doi: 10.1038/ngeo2484 CrossRefGoogle Scholar
  90. Pailly O, Habib R, Delecolle R (1995) Effect of soil and climate conditions on soluble solids evolution during maturation of kiwifruit. N Z J Crop Hortic Sci 23:145–153. doi: 10.1080/01140671.1995.9513881 CrossRefGoogle Scholar
  91. Parry ML, Carter TR (1998) Climate impact and adaptation assessment. Earthscan, LondonGoogle Scholar
  92. Pearson LJ, Nelson R, Crimp S, Langridge J (2011) Interpretive review of conceptual frameworks and research models that inform Australia’s agricultural vulnerability to climate change. Environ Model Softw 26:113–123. doi: 10.1016/j.envsoft.2010.07.001 CrossRefGoogle Scholar
  93. Pentreath R, Jenkins C (2010) Erger: a viable alternative to hi-cane for Hort16A growers? NZ Kiwifruit J, pp 27–29Google Scholar
  94. Raymond CM, Spoehr J (2013) The acceptability of climate change in agricultural communities: comparing responses across variability and change. J Environ Manage 115:69–77. doi: 10.1016/j.jenvman.2012.11.003 CrossRefGoogle Scholar
  95. Reisinger A, Wratt D, Allan S, Larsen H (2011) The role of local government in adapting to climate change: lessons from New Zealand. In: Ford JD, Berrang-Ford L (eds) Climate change adaptation in developed nations. Springer, New York, pp 303–319CrossRefGoogle Scholar
  96. Reisinger A, Kitching RL, Chiew F, et al (2014) Australasia. In: Barros VR, Field CB, Dokken DJ, et al. (eds) Climate change 2014: impacts, adaptation and vulnerability. Part B: regional aspects. Contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge and New York, NY, pp 1371–1438Google Scholar
  97. Richardson AC, Marsh KB, Boldingh HL et al (2004) High growing temperatures reduce fruit carbohydrate and vitamin C in kiwifruit. Plant Cell Environ 27:423–435. doi: 10.1111/j.1365-3040.2003.01161.x CrossRefGoogle Scholar
  98. Richardson AC, Boldingh HL, McAtee PA et al (2011) Fruit development of the diploid kiwifruit, Actinidia chinensis “Hort16A”. BMC Plant Biol 11:182. doi: 10.1186/1471-2229-11-182 CrossRefGoogle Scholar
  99. Rickards L, Howden SM (2012) Transformational adaptation: agriculture and climate change. Crop Pasture Sci 63:240–250CrossRefGoogle Scholar
  100. Risbey J, Kandlikar M, Dowlatabadi H, Graetz D (1999) Scale, context, and decision making in agricultural adaptation to climate variability and change. Mitig Adapt Strat Glob Change 4:137–165. doi: 10.1023/A:1009636607038 CrossRefGoogle Scholar
  101. Rodriguez D, deVoil P, Power B, Cox H, Crimp S, Meinke H (2011) The intrinsic plasticity of farm businesses and their resilience to change. An Australian example. Field Crops Res 124:157–170. doi: 10.1016/j.fcr.2011.02.012 CrossRefGoogle Scholar
  102. Rosin C (2013) Food security and the justification of productivism in New Zealand. J Rural Stud 29:50–58. doi: 10.1016/j.jrurstud.2012.01.015 CrossRefGoogle Scholar
  103. Rutledge DT, Price R, Ross C, Hewitt A, Webb T, Briggs C (2010) Thought for food: impacts of urbanisation trends on soil resource availability in New Zealand. Proc N Z Grasslands Assoc 72:241–246Google Scholar
  104. Sale PR, Lyford PB (1990) Cultural, management and harvesting practices for kiwifruit in New Zealand. In: Warrington I, Weston C (eds) Kiwifruit: science and management. Ray Richards Publisher, Auckland, pp 247–296Google Scholar
  105. Schilling J, Freier KP, Hertig E, Scheffran J (2012) Climate change, vulnerability and adaptation in North Africa with focus on Morocco. Agric Ecosyst Environ 156:12–26. doi: 10.1016/j.agee.2012.04.021 CrossRefGoogle Scholar
  106. Schröter D, Polsky C, Patt AG (2005) Assessing vulnerabilities to the effects of global change: an eight step approach. Mitig Adapt Strat Glob Change 10:573–595. doi: 10.1007/s11027-005-6135-9 CrossRefGoogle Scholar
  107. Smit B, Pilifosova O (2003) From Adaptation to Adaptive Capacity and Vulnerability Reduction. In: Smith JB, Klein RJT, Huq S (eds) Climate change, adaptive capacity and development. Imperial College Press, London, pp 9–28CrossRefGoogle Scholar
  108. Smit B, Skinner MW (2002) Adaptation options in agriculture to climate change: a typology. Mitig Adapt Strat Glob Change 7:85–114. doi: 10.1023/A:1015862228270 CrossRefGoogle Scholar
  109. Smit B, Wandel J (2006) Adaptation, adaptive capacity and vulnerability. Glob Environ Change 16:282–292. doi: 10.1016/j.gloenvcha.2006.03.008 CrossRefGoogle Scholar
  110. Smit B, Burton I, Klein RJT, Wandel J (2000) An anatomy of adaptation to climate change and variability. Clim Change 45:223–251. doi: 10.1023/A:1005661622966 CrossRefGoogle Scholar
  111. Smithers J, Blay-Palmer A (2001) Technology innovation as a strategy for climate adaptation in agriculture. Applied Geography 21:175–197. doi: 10.1016/S0143-6228(01)00004-2 CrossRefGoogle Scholar
  112. Snelgar WP, Hall AJ, McPherson HG (2008) Modelling flower production of kiwifruit (Actinidia deliciosa) from winter chilling. N Z J Crop Hortic Sci 36:273–284. doi: 10.1080/01140670809510244 CrossRefGoogle Scholar
  113. Stroombergen A, Tait A, Patterson K, Renwick J (2006) The relationship between New Zealand‘s climate, energy, and the economy to 2025. Kōtuitui New Zealand J Soc Sci 1:139–160Google Scholar
  114. Tanner T, Lewis D, Wrathall D, Bronen R, Cradock-Henry N, Huq S et al (2015) Livelihood resilience in the face of climate change. Nat Clim Change 5:23–26. doi: 10.1038/nclimate2431 CrossRefGoogle Scholar
  115. Tao S, Xu Y, Liu K et al (2011) Research progress in agricultural vulnerability to climate change. Adv Clim Change Res 2:203–210. doi: 10.3724/SP.J.1248.2011.00203 CrossRefGoogle Scholar
  116. Tarleton M, Ramsay D (2008) Farm-level adaptation to multiple risks: climate change and other concerns. J Rural Community Dev 3:47–63Google Scholar
  117. Taylor RG, Scanlon B, Döll P et al (2012) Ground water and climate change. Nat Clim Change. doi: 10.1038/nclimate1744 Google Scholar
  118. Timmins J (2009) Seasonal employment patterns in the horticultural industry. Statistics New Zealand, WellingtonGoogle Scholar
  119. Tynan E (2015) Viticulture: grapevines under stress. Nat Clim Change 5:718. doi: 10.1038/nclimate2749 CrossRefGoogle Scholar
  120. Usmar K (2009) Getting all flushed about Hi-Cane. Accessed September 15, 2015
  121. Vaccari DA (2009) Phosphorus: a looming crisis. Sci Am 300:54–59. doi: 10.1038/scientificamerican0609-54 CrossRefGoogle Scholar
  122. Vásquez-León M, West CT, Finan TJ (2003) A comparative assessment of climate vulnerability: agriculture and ranching on both sides of the US-Mexico border. Glob Environ Change 13:159–173. doi: 10.1016/S0959-3780(03)00034-7 CrossRefGoogle Scholar
  123. Vermeulen SJ, Challinor AJ, Thornton PK et al (2013) Addressing uncertainty in adaptation planning for agriculture. PNAS. doi: 10.1073/pnas.1219441110 Google Scholar
  124. Vogel C, Moser SC, Kasperson RE, Dabelko GD (2007) Linking vulnerability, adaptation, and resilience science to practice: pathways, players, and partnerships. Glob Environ Change 17:349–364. doi: 10.1016/j.gloenvcha.2007.05.002 CrossRefGoogle Scholar
  125. Warrick RA, Kenny GJ, Hardman JJ (eds) (2001) The effects of climate change and variation in New Zealand: an assessment using the CLIMPACTS System. International Global Change Institute, University of Waikato, HamiltonGoogle Scholar
  126. Wisner B, O’Keefe P, Westgate K (1977) Global systems and local disasters: the untapped power of peoples’ science. Disasters 1:47–57. doi: 10.1111/j.1467-7717.1977.tb00008.x CrossRefGoogle Scholar
  127. Webb NP, Stokes CJ (2012) Climate change scenarios to facilitate stakeholder engagement in agricultural adaptation. Mitig Adapt Strateg Glob Change 17:957–973. doi: 10.1007/s11027-011-9355-1 CrossRefGoogle Scholar
  128. Westerhoff L, Smit B (2009) The rains are disappointing us: dynamic vulnerability and adaptation to multiple stressors in the Afram Plains, Ghana. Mitig Adapt Strateg Glob Change 14:317–337. doi: 10.1007/s11027-008-9166-1 CrossRefGoogle Scholar
  129. Whakatane District Council (2009) Long term council community plan 2009–2019, WhakataneGoogle Scholar
  130. White PA (2005) Future use of groundwater resources in the Bay of Plenty Region. Client Report 2005/127, Institute of Geological and Nuclear Sciences, WellingtonGoogle Scholar
  131. Wilbanks TJ, Kates RW (2010) Beyond adapting to climate change: embedding adaptation in responses to multiple threats and stresses. Ann Assoc Am Geogr 100:719–728. doi: 10.1080/00045608.2010.500200 CrossRefGoogle Scholar
  132. Wilk J, Andersson L, Warburton M (2012) Adaptation to climate change and other stressors among commercial and small-scale South African farmers. Reg Environ Change 13:273–286. doi: 10.1007/s10113-012-0323-4 CrossRefGoogle Scholar
  133. Wreford A, Adger WN (2010) Adaptation in agriculture: historic effects of heat waves and droughts on UK agriculture. Int J Agric Sustain 8:278–289. doi: 10.3763/ijas.2010.0482 CrossRefGoogle Scholar
  134. Young G, Zavala H, Wandel J et al (2010) Vulnerability and adaptation in a dryland community of the Elqui Valley, Chile. Clim Change 98:245–276. doi: 10.1007/s10584-009-9665-4 CrossRefGoogle Scholar
  135. Zespri (2015) Zespri Annual Report 2014/15, Mount ManganuiGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Governance and PolicyLandcare ResearchLincolnNew Zealand

Personalised recommendations