Regional Environmental Change

, Volume 18, Issue 3, pp 623–636 | Cite as

Mediterranean forests, land use and climate change: a social-ecological perspective

  • Thierry GauquelinEmail author
  • Geneviève Michon
  • Richard Joffre
  • Robin Duponnois
  • Didier Génin
  • Bruno Fady
  • Magda Bou Dagher-Kharrat
  • Arezki Derridj
  • Said Slimani
  • Wadi Badri
  • Mohamed Alifriqui
  • Laurent Auclair
  • Romain Simenel
  • Mohamed Aderghal
  • Ezekiel Baudoin
  • Antoine Galiana
  • Yves Prin
  • Hervé Sanguin
  • Catherine Fernandez
  • Virginie Baldy
Original Article


Mediterranean forests are found in the Mediterranean basin, California, the South African Cape Province, South and southwestern Australia and parts of Central Chile. They represent 1.8 % of the world forest areas of which the vast majority is found in the Mediterranean basin, where historical and paleogeographic episodes, long-term human influence and geographical and climatic contrasts have created ecosystemic diversity and heterogeneity. Even if evergreen is dominant, deciduous trees are also represented, with different forest types including dense stands with a closed canopy (forests sensu stricto) and pre-forestal or pre-steppic structures with lower trees density and height. The Mediterranean basin is also a hot spot of forest species and genetic diversity, with 290 woody species versus only 135 for non-Mediterranean Europe. However, the characteristics of the Mediterranean area (long-standing anthropogenic pressure, significant current human activity and broad biodiversity) make it one of the world’s regions most threatened by current changes. Four examples of Mediterranean forest types, present in south and north of the Mediterranean basin and more or less threatened, are developed in order to show that linking “hard sciences” and humanities and social sciences is necessary to understand these complex ecosystems. We show also that these forests, in spite of specific climatic constraints, can also be healthy and productive and play a major ecological and social role. Furthermore, even if the current human activity and global change constitute a risk for these exceptional ecosystems, Mediterranean forests represent a great asset and opportunities for the future of the Mediterranean basin.


Mediterranean basin Forest Quercus Pinus Juniperus Biodiversity Functioning Sustainability Socio-ecological systems 



We dedicate this paper to the memory of Pierre Quézel, who played a key role in the knowledge of Mediterranean forests. The authors gratefully acknowledge the programme MISTRALS (Mediterranean Integrated STudies at Regional And Local Scales), particularly the axes SICMED and BioDivMeX, and also the programme ENVIMED. Finally, we are grateful to two reviewers and the guest editor for valuable comments.


  1. Acherar M, Lepart J, Debussche M (1984) La colonisation des friches par le pin dAlep (Pinus halepensis) en Languedoc méditerranéen. Acta Oecol Oecol Plant 5:179–189Google Scholar
  2. Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Kizberger T, Rigling A, Breshears DD, Hogg EH, Gonzalez P, Fensham R, Zhang Z, Castro J, Demidova N, Lim JH, Allard G, Running SW, Semerci A, Cobb N (2010) A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manage 259:660–684. doi: 10.1016/j.foreco.2009.09.001 CrossRefGoogle Scholar
  3. Aubert PM (2013) Les évolutions de la politique forestière au Maroc: entre réappropriation du modèle forestier français e et idéalisation de la tribu. Rev For Fr LXV-4-2013:305–316Google Scholar
  4. Auclair L, Alifriqui M (eds) (2012) Agdal: Patrimoine socio-écologique de l’Atlas marocain. IRCAM-IRD, Rabat, Maroc, 546 pGoogle Scholar
  5. Auclair L, Michon G (2009) La forêt rurale méditerranéenne entre deux paradigmes—étude comparée des constructions patrimoniales de l’arganeraie marocaine et de la châtaigneraie corse. Forêt Méditerranéenne 30(2):123–133Google Scholar
  6. Bahuguna VK (2000) Forests in the economy of the rural poor: an estimation of the dependency level. Ambio 29:126–129. doi: 10.1579/0044-7447-29.3.126 CrossRefGoogle Scholar
  7. Barbero M, Quézel P (1990) La déprise rurale et ses effets sur les superficies forestières dans la région Provence-Alpes-Côte d’Azur. Bull Soc Linn Prov 41:77–88Google Scholar
  8. Barbero M, Bonin G, Loisel R, Quézel P (1990) Changes and disturbances of forest ecosystems caused by human activities in the western part of the Mediterranean basin. Vegetatio 87:151–173CrossRefGoogle Scholar
  9. Barbero M, Lebreton Ph, Quezel P (1994) Sur les affinités biosystématiques et phytoécologiques de Juniperus thurifera L et de Juniperus excelsa Bieb. Ecol Mediterr 20(3/4):21–37Google Scholar
  10. Barto EK, Weidenhamer JD, Cipollini D, Rillig MC (2012) Fungal superhighways: do common mycorrhizal networks enhance below ground communication? Trends Plant Sci 17:633–637. doi: 10.1016/j.tplants.2012.06.007 CrossRefGoogle Scholar
  11. Benabid A (2000) Flore et écosystèmes du Maroc. Evaluation et préservation de la biodiversité. Ibis Press, Paris 360 pGoogle Scholar
  12. Blondel J (2006) The “design” of Mediterranean landscapes: a millennial story of human and ecological systems during the historic period. Hum Ecol 34:713–730. doi: 10.1007/s10745-006-9030-4 CrossRefGoogle Scholar
  13. Blondel J, Aronson J (1999) Biology and wildlife of the mediterranean region. Oxford University Press, OxfordGoogle Scholar
  14. Blondel J, Aronson J, Bodiou JY, Boeuf G (2010) The mediterranean region: biological diversity in space and time. Oxford University Press, OxfordGoogle Scholar
  15. Bonanomi G, Sicurezza MG, Caporaso S, Esposito A, Mazzoleni S (2006) Phytotoxicity dynamics of decaying plant materials. New Phytol 169(3):571–578. doi: 10.1111/j.1469-8137.2005.01611.x CrossRefGoogle Scholar
  16. Bou Dagher-Kharrat M, Mariette S, Lefèvre F, Grenier G, Plomion C, Savouré A (2007) Geographical diversity and genetic relationships among Cedrus species estimated by AFLP. Tree Genet Genomes 3:275–285. doi: 10.1007/s11295-006-0065-x CrossRefGoogle Scholar
  17. Chaves N, Escudero JC (1999) Variation of flavonoid synthesis induced by ecological factors. In: Inderjit, Dakshini KMM, Foy CL (eds) Principles and practices in plant ecology: allelochemical interaction. CRC Press publication, Boca Raton, pp 267–285Google Scholar
  18. Chomel M, Fernandez C, Bousquet-Mélou A, Monnier Y, Santonja M, Gauquelin T, Gros R, Lecareux C, Dupouyet S, Baldy V (2014) Secondary metabolites of Pinus halepensis alter decomposer organisms and litter decomposition during afforestation of abandoned agricultural zones. J Ecol 102(2):411–424. doi: 10.1111/1365-2745.12205 CrossRefGoogle Scholar
  19. Conord C, Gurevich J, Fady B (2012) Large-scale longitudinal gradients of genetic diversity: a meta-analysis across six phyla in the Mediterranean basin. Ecol Evol 2(10):2595–2609. doi: 10.1002/ece3.350 CrossRefGoogle Scholar
  20. Coûteaux MM, Bottner P, Berg B (1995) Litter decomposition, climate and litter quality. Tree 10:63–66Google Scholar
  21. Criquet S, Ferre E, Farnet AM, Le Petit J (2004) Annual dynamics of phosphatase activities in an evergreen oak litter: influence of biotic and abiotic factors. Soil Biol Biochem 36:1111–1118CrossRefGoogle Scholar
  22. Daskalakou E, Thanos C (1996) Aleppo Pine (Pinus halepensis) postfire regeneration: the role of canopy and soil seed banks. Int J Wildland Fire 6:59–66CrossRefGoogle Scholar
  23. De Nicola C, Zanella A, Testi A, Fanelli G, Pignatti S (2014) Humus forms in a Mediterranean area (Castelporziano Reserve, Rome, Italy): classification, functioning and organic carbon storage. Geoderma 235–236:90–99. doi: 10.1016/j.geoderma.2014.06.033 CrossRefGoogle Scholar
  24. Debussche M, Lepart J (1992) Establishment of woody-plants in Mediterranean old fields—opportunity in space and time. Landsc Ecol 6:133–145CrossRefGoogle Scholar
  25. Douaihy B, Vendramin GG, Boratynski A, Machon N, Bou Dagher-Kharrat M (2011) High genetic diversity with moderate differentiation in Juniperus excelsa from Lebanon and the eastern Mediterranean region. AoB Plants. doi: 10.1093/aobpla/plr003 Google Scholar
  26. Duponnois R, Ouahmane L, Kane A, Thioulouse J, Hafidi M, Boumezzough A, Prin Y, Baudoin E, Galiana A, Dreyfus B (2011) Nurse shrubs increased the early growth of Cupressus seedlings by enhancing belowground mutualism and soil microbial activity. Soil Biol Biochem 43:2160–2168. doi: 10.1016/j.soilbio.2011.06.020 Google Scholar
  27. EEA (2006) European forest types categories and types for sustainable forest management. In: Reporting and policy. Technical reportGoogle Scholar
  28. El Wahidi F, Bellefontaine R, Ponette Q, Defourny P (2014) Dynamique de changement de l’arganeraie entre sur-usage et mutations sociales: une opportunité d’équilibre socio-écologique? J Agric Environ Inter Dev 108(2):109–133. doi: 10.12895/jaeid.20142.210 Google Scholar
  29. Fady B (2005) Is there really more biodiversity in Mediterranean forest ecosystems? Taxon 54(4):905–910. doi: 10.2307/25065477 CrossRefGoogle Scholar
  30. Fady B, Conord C (2010) Macroecological patterns of species and genetic diversity in vascular plants of the Mediterranean Basin. Divers Distrib 16(1):53–64. doi: 10.1111/j.1472-4642.2009.00621.x CrossRefGoogle Scholar
  31. Fady B, Médail F (2004) Mediterranean AS. In: Burley J, Evans J, Youngquist JA (eds) Encyclopedia of forest science. Elsevier, Londres, pp 1403–1414CrossRefGoogle Scholar
  32. FAO (2010) Global forest resources assessment 2010. Main report. FAO Forestry paper no. 163 RomeGoogle Scholar
  33. FAO (2013) State of Mediterranean forests. Rome, pp 1–177Google Scholar
  34. Fernandes PM, Rego FC, Rigolot E (2011) The FIRE PARADOX project: towards science-based fire management in Europe. For Ecol Manage 261:2177–2178. doi: 10.1016/j.foreco.2010.12.024) CrossRefGoogle Scholar
  35. Fernandez C, Lelong B, Vila B, Mévy JP, Robles C, Greff S, Dupouyet S, Bousquet-Mélou A (2006) Potential allelopathic effect of Pinus halepensis in the secondary succession: an experimental approach. Chemoecology 16:97–105. doi: 10.1007/s00049-006-0334-z CrossRefGoogle Scholar
  36. Fernandez C, Voiriot S, Mevy JP, Vila B, Ormeño E, Dupouyet S, Bousquet-Melou A (2008) Regeneration failure of Pinus halepensis Mill.: the role of autotoxicity and some abiotic environmental parameters. For Ecol Manag 255:2928–2936. doi: 10.1016/j.foreco.2008.01.072 CrossRefGoogle Scholar
  37. Fernandez C, Monnier Y, Ormeño E, Baldy V, Greff S, Pasqualini V, Mévy JP, Bousquet-Melou A (2009) Variations in allelochemical composition of leachates of different organs and maturity stages of Pinus halepensis. J Chem Ecol 35:970–979. doi: 10.1007/s10886-009-9667-8 CrossRefGoogle Scholar
  38. Fernandez C, Bousquet-Mélou A, Prévosto B (2013a) Répartition dans le bassin méditerranéen et en France. In: Prévosto B (ed) Le pin d’Alep en France. Editions Quæ, Versailles, pp 23–27Google Scholar
  39. Fernandez C, Santonja M, Gros R, Monnier Y, Chomel M, Baldy V, Bousquet-Mélou A (2013b) Allelochemicals of Pinus halepensis as drivers of biodiversity in Mediterranean open mosaic habitats during the colonization stage of secondary succession. J Chem Ecol 39(2):298–311. doi: 10.1007/s10886-013-0239-6 CrossRefGoogle Scholar
  40. Fioretto A, Di Nardo C, Papa S, Fuggi A (2005) Lignin and cellulose degradation and nitrogen dynamics during decomposition of three leaf litter species in a Mediterranean ecosystem. Soil Biol Biochem 37:1083–1091. doi: 10.1016/j.soilbio.2004.11.007 CrossRefGoogle Scholar
  41. Ganatsas P, Tsakaldimi M (2013) A comparative study of desiccation responses of seeds of three drought-resistant Mediterranean oaks. For Ecol Manage 305:189–194. doi: 10.1016/j.foreco.2013.05.042 CrossRefGoogle Scholar
  42. Gauquelin T (2011) Specificity and universality of Forestal Mediterranean ecosystems. In: Hafidi M, Duponnois R (eds) The mycorrhizal symbiosis in Mediterranean environment: importance in ecosystem stability and in soil rehabilitation strategies. Nova Science Publishers, New York, pp 1–5Google Scholar
  43. Gauquelin T, Dutoit T (2013) Actes du IVe colloque international sur le Genévrier thurifère 5–8 octobre 2011. Numéro spécial Ecologia Mediterranea 39(1):218Google Scholar
  44. Gauquelin T, Fromard F, Badri W, Dagnac J (1992) Apports d’éléments minéraux au sol par l’intermédiaire de la litière, des pluies et des pluviolessivats dans un peuplement à genévrier thurifère (Juniperus thurifera L.) du Haut Atlas occidental (Maroc). Ann Scie For 49:599–614CrossRefGoogle Scholar
  45. Gauquelin T, Bertaudiere V, Montes N, Badri W, Asmode JF (1999) Endangered stands of thuriferous juniper in the western Mediterranean basin. Biodivers Conserv 8:1479–1498CrossRefGoogle Scholar
  46. Gauquelin T, Chondroyannis P, Boukhdoud N, Bouyssou M, Brunel C, Danneyrolles V, Delforge Q, Guiraud M, Marchand C, Mathaux C, Orighoni H, Quent M, Sbeiti A, Sinet R (2012) Le Genévrier thurifère, espèce partagée au Nord et au Sud de la Méditerranée Exemple d’une approche d’écologie globale à l’occasion du IVe colloque international de Saint-Crépin et Mont-Dauphin (5-8 octobre 2011). For Méditerr 33:227–240Google Scholar
  47. Gea-Izquierdo G, Guibal F, Joffre R, Ourcival JM, Simioni G, Guiot J (2015) Modelling the climatic drivers determining photosynthesis and carbon allocation in evergreen Mediterranean forests using multiproxy long time series. Biogeosciences 12(12):3695–3712. doi: 10.5194/bg-12-3695-2015 CrossRefGoogle Scholar
  48. Genard AC, Boissard C, Fernandez C, Kalokridis C, Gros V, Lathière J, Bonnaire N, Ormeño E (2015) BVOC (isoprene) emissions from a Mediterranean Quercus pubescens and Acer monspessulanum canopy under mild drought. Atmos Chem Phys 15:43–446. doi: 10.5194/acp-15-431-2015 Google Scholar
  49. Genin D, Simenel R (2011) Endogenous Berber management and the shaping of rural forests in Southern Morocco: implications for shared forest management options. Hum Ecol 39:257–269. doi: 10.1007/s10745-011-9390-2 CrossRefGoogle Scholar
  50. Genin D, Kerautret L, Hammi S, Cordier JB, Alifriqui M (2012) Biodiversité et pratiques d’agdal. Un élément de l’environnement à l’épreuve de ses fonctions d’utilité pour les sociétés du Haut Atlas central. In: Auclair L, Alifriqui M (eds) Agdal: patrimoine socio-écologique de l’Atlas marocain. IRCAM-IRD, Rabat, pp 93–121Google Scholar
  51. Genin D, Aumeerudy-Thomas Y, Balent G, Nasi R (2013) The multiple dimensions of rural forests: lessons from a comparative analysis. Ecol Soc 18(1):27. doi: 10.5751/ES-05429-180127 CrossRefGoogle Scholar
  52. Giorgi F, Lionello P (2008) Climate change projections for the Mediterranean region. Glob Planet Change 63(2–3):90–104. doi: 10.1016/j.gloplacha.2007.09.005 CrossRefGoogle Scholar
  53. Hafidi M, Qaddoury A, Duponnois R, Wipf D, Hijri M, Bâ A (2015) International Congress on Mycorrhizae: mycorrhizal symbiosis a key factor for improving plant productivity and ecosystems restoration. Mycorrhiza 25:673–674. doi: 10.1007/s00572-015-0637-4 CrossRefGoogle Scholar
  54. Hammi S, Simonneaux V, Cordier JB, Genin D, Alifriqui M, Montes N, Auclair L (2010) Can traditional forest management buffer forest depletion? Dynamics of Moroccan High Atlas Mountain forests using remote sensing and vegetation analysis. For Ecol Manage 260(10):1861–1872. doi: 10.1016/j.foreco.2010.08.033 CrossRefGoogle Scholar
  55. IF, Le supplement d’IGN Magazine sur l’information forestière (2013) Un siècle expansion des forêts françaises. Numéro 31, 8 pGoogle Scholar
  56. Jactel H, Brockerhoff EG (2007) Tree diversity reduces herbivory by forest insects. Ecol Lett 10:835–848. doi: 10.1111/j.1461-0248.2007.01073.x CrossRefGoogle Scholar
  57. Jactel H, Menassieu P, Vétillard F, Gaulier A, Samalens JC, Brockerhoff EG (2006) Tree species diversity reduces the invasibility of maritime pine stands by the bast scale, Matsucoccus feytaudi (Homoptera: Margarodidae). Can J For Res 36:314–323. doi: 10.1139/x05-251 CrossRefGoogle Scholar
  58. Joffre R, Rambal S (1988) Soil water improvement by trees in the rangelands of southern Spain. Acta Oecol 9(4):405–422Google Scholar
  59. Joffre R, Rambal S (1993) How tree cover influences the water balance of Mediterranean rangelands. Ecology 74:570–582. doi: 10.2307/1939317 CrossRefGoogle Scholar
  60. Joffre R, Rambal S (2002) Mediterranean ecosystems. In: Nature Publishing Group (ed) Encyclopedia of life sciences. Macmillan Publishers Ltd, LondonGoogle Scholar
  61. Joffre R, Vacher J, De Los Llanos C, Long G (1987) The dehesa : an agrosilvopastoral system of the Mediterranean region with special reference to the Sierra Morena area of Spain. Agrofor Syst 6:71–96. doi: 10.1007/BF02220110 CrossRefGoogle Scholar
  62. Joffre R, Rambal S, Ratte JP (1999) The dehesa system of southern Spain and Portugal as a natural ecosystem mimic. Agrofor Syst 45:57–79. doi: 10.1023/A:1006259402496 CrossRefGoogle Scholar
  63. Joffre R, Rambal S, Damesin C (2008) Functional attributes in Mediterranean-type ecosystems. In: Pugnaire FI, Valladares F (eds) Handbook of functional plant ecology, 2nd edn. CRC Press Books, Boca RatonGoogle Scholar
  64. Johnson NC, Angelard C, Sanders IR, Kiers ET (2013) Predicting community and ecosystem outcomes of mycorrhizal responses to global change. Ecol Lett 16:140–153. doi: 10.1111/ele.12085 CrossRefGoogle Scholar
  65. Jonsson LM, Dighton J, Lussenhop J, Koide RT (2006) The effect of mixing ground leaf litters to soil on the development of pitch pine ectomycorrhizal and soil arthropod communities in natural soil microcosm systems. Soil Biol Biochem 38(1):134–144. doi: 10.1016/j.soilbio.2005.04.027 CrossRefGoogle Scholar
  66. Kherchouche D, Kalla M, Gutiérrez EM, Attalah S, Bouzghaia M (2012) Impact of droughts on Cedrus atlantica forests dieback in the Aurès (Algeria). J Life Sci 6:1262–1269Google Scholar
  67. Kherchouche D, Kalla M, Gutierrez E, Briki A, Hamachi A (2013) La sécheresse et le dépérissement du cèdre de l’Atlas (Cedrus atlantica Manetti) dans le massif du Belezma (Algérie). Sécheresse 24(2):129–137. doi: 10.5424/fs/2014233-05175 Google Scholar
  68. Lefèvre F, Boivin T, Bontemps A, Courbet F, Davi H, Durand-Gillmann M, Fady B, Gauzere J, Gidoin C, Karam M-J, Lalagüe H, Oddou-Muratorio S, Pichot C (2014) Considering evolutionary processes in adaptive forestry. Ann For Sci 71:723–739. doi: 10.1007/s13595-013-0272-1 CrossRefGoogle Scholar
  69. Lepart J, Escarré J (1983) La succession végétale, mécanismes et modèles: analyse bibliographique. Bull Écol 14:133–178Google Scholar
  70. Limousin JM, Rambal S, Ourcival JM, Joffre R (2008) Modelling rainfall interception in a Mediterranean Quercus ilex ecosystem: lesson from a throughfall exclusion experiment. J Hydrol 357:57–66. doi: 10.1016/j.jhydrol.2008.05.001 CrossRefGoogle Scholar
  71. Limousin JM, Rambal S, Ourcival JM, Rocheteau A, Joffre R, Rodriguez-Cortina R (2009) Long-term transpiration change with rainfall decline in a Mediterranean Quercus ilex forest. Glob Change Biol 15:2163–2175. doi: 10.1111/j.1365-2486.2009.01852.x CrossRefGoogle Scholar
  72. Limousin JM, Rambal S, Ourcival JM, Rodríguez-Calcerrada J, Pérez-Ramos I, Rodríguez-Cortina R, Misson L, Joffre R (2012) Morphological and phenological shoot plasticity in a Mediterranean evergreen oak facing long-term increased drought. Oecologia 169:565–577. doi: 10.1007/s00442-011-2221-8 CrossRefGoogle Scholar
  73. Linares JC, Taïqui L, Camarero JL (2011) Increasing drought sensitivity and decline of Atlas cedar (Cedrus atlantica) in the Moroccan Middle Atlas forests. Forests 2(3):777–796. doi: 10.3390/f2030777 CrossRefGoogle Scholar
  74. Lindner M, Maroschek M, Netherer S, Kremer A, Barbati A, Garcia-Gonzalo J, Seidl R, Delzon S, Corona P, Kolström M, Lexer MJ, Marchetti M (2010) Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. For Ecol Manage 259:698–709. doi: 10.1016/j.foreco.2009.09.023 CrossRefGoogle Scholar
  75. M’hirit O, Benzyane M, Benchekroun F, El Yousfi SM, Bendaanoun M (1998) L’arganier, une espèce fruitière-forestière à usages multiples, Mardaga, Sprimont, Belgique, BelgiqueGoogle Scholar
  76. Macchioni F, Cioni PL, Flamini G, Morelli I, Maccioni S, Ansaldi M (2003) Chemical composition of essential oils from needles, branches and cones of Pinus pinea, P. halepensis, P. pinaster and P. nigra from central Italy. Flavour Fraganc J 18:139–143. doi: 10.1002/ffj.1178 CrossRefGoogle Scholar
  77. Maestre FT, Cortina J (2004) Are Pinus halepensis plantations useful as a restoration tool in semiarid Mediterranean areas? For Ecol Manage 198:303–317. doi: 10.1016/j.foreco.2004.05.040 CrossRefGoogle Scholar
  78. Médail F, Diadema K (2009) Glacial refugia influence plant diversity patterns in the Mediterranean Basin. J Biogeogr 36:1333–1345. doi: 10.1111/j.1365-2699.2008.02051.x CrossRefGoogle Scholar
  79. Médail F, Quézel P (1997) Hot-spots analysis for conservation of plant biodiversity in the Mediterranean Basin. Ann Mo Bot Gard 84:112–127. doi: 10.2307/2399957 CrossRefGoogle Scholar
  80. Michon G (2015) Agriculteurs à l’ombre des forêts du monde. Arles, Actes SudGoogle Scholar
  81. Michon G, Nasi R, Balent G (2013) Public policies and management of rural forests: lasting alliance or fool’s dialogue? Ecol Soc 18(1):30. doi: 10.5751/ES-05706-180130 CrossRefGoogle Scholar
  82. Michon G, de Foresta H, Levang P, Verdeaux F (2007) Domestic forests: a new paradigm for integrating local communities’ forestry into tropical forest science. Ecol Soc 12(2):1.
  83. Michon G, Romagny B, Auclair L, Deconchat M (2012) Forests as patrimonies? From theory to tangible processes at various scales. Ecol Soc 17(3):7. doi: 10.5751/ES-04896-170307 CrossRefGoogle Scholar
  84. Michon G, Genin D, Romagny B, Alifriqui M, Auclair L (2016) Autour de l’arganier : jusqu’où peut-on « faire son marché » dans les savoirs locaux ? Autrepart 83 « Savoirs autochtones et développement » (in press)Google Scholar
  85. Ministry of Agriculture (MOA), Directorate of Rural Development and Natural Resources (DRDNR) (2005) National forest and tree assessment and inventory tcp/leb/2903. Food and Agriculture Organisation of the United Nations FAO, BeirutGoogle Scholar
  86. Moriondo M, Good P, Durao R, Bindi M, Giannakopoulos C, CorteReal J (2006) Potential impact of climate change on fire risk in the Mediterranean area. Clim Res 31:85–95. doi: 10.3354/cr031085 CrossRefGoogle Scholar
  87. Ne’eman G, Goubitz S, Nathan R (2004) Reproductive traits of Pinus halepensis in the light of fire—a critical review. Plant Ecol 171:69–79. doi: 10.1023/B:VEGE.0000029380.04821.99 CrossRefGoogle Scholar
  88. Pasqua G, Monacelli B, Manfredini C, Loreto F, Perez G (2002) The role of isoprenoid accumulation and oxidation in sealing wounded needles of Mediterranean pines. Plant Sci 163:355–359. doi: 10.1016/S0168-9452(02)00139-5 CrossRefGoogle Scholar
  89. Pausas JG, Bladé C, Valdecantos A, Seva JP, Fuentes D, Alloza JA, Vilagrosa A, Bautista S, Cortina J, Vallejo R (2004) Pines and oaks in the restoration of Mediterranean landscapes of Spain: new perspectives for an old practice-a review. Plant Ecol 171:209–220. doi: 10.1023/B:VEGE.0000029381.63336.20 CrossRefGoogle Scholar
  90. Pausas JC, Llovet J, Rodrigo A, Vallejo R (2008) Are wildfires a disaster in the Mediterranean basin? A review. Int J Wildland Fire 17:713–723. doi: 10.1071/WF07151oi CrossRefGoogle Scholar
  91. Pellissier F, Gallet C, Souto XC (2002) Allelopathic interaction in forest ecosystems. In:, Reigosa MJ, Pedorl N (eds) Allelopathy: from molecules to ecosystems, Proceedings of the 1st European Allelopathy Symposium, pp 257–269Google Scholar
  92. Petit RJ, Aguinagalde I, de Beaulieu JL, Bittkau C, Brewer S, Cheddadi R, Ennos R, Fineschi S, Grivet D, Lascoux M, Mohanty A, Muller-Starck GM, Demesure-Musch B, Palme A, Martin JP, Rendell S, Vendramin GG (2003) Glacial refugia: Hotspots but not melting pots of genetic diversity. Science 300:1563–1565. doi: 10.1126/science.1083264 CrossRefGoogle Scholar
  93. Phillips RP, Meier IC, Bernhardt ES, Grandy AS, Wickings K, Finzi AC (2012) Roots and fungi accelerate carbon and nitrogen cycling in forests exposed to elevated CO2. Ecol Lett 15:1042–1049. doi: 10.1111/j.1461-0248.2012.01827.x CrossRefGoogle Scholar
  94. Polade SD, Pierce DW, Cayan DR, Gershunov A, Dettinger MD (2014) The key role of dry days in changing regional climate and precipitation regimes. Sci Rep 4:4364. doi: 10.1038/Srep04364 CrossRefGoogle Scholar
  95. Pons A, Quézel P (1998) A propos de la mise en place du climat méditerranéen. CR Acad Sci Paris 327:755–760Google Scholar
  96. Quézel P, Médail F (2003) Ecologie et biogéographie des forêts du bassin méditerranéen. Elsevier, ParisGoogle Scholar
  97. Sanchez de Dios RS, Benito-Garzon M, Sainz-Ollero H (2009) Present and future extension of the Iberian submediterranean territories as determined from the distribution of marcescent oaks. Plant Ecol 204:189–205. doi: 10.1007/s11258-009-9584-5 CrossRefGoogle Scholar
  98. Sandberg A (2007) Property rights and ecosystem properties. Land Use Policy 24:613–623. doi: 10.1016/j.landusepol.2006.01.002 CrossRefGoogle Scholar
  99. Santonja M, Baldy V, Fernandez C, Balesdent J, Gauquelin T, Baldy V (2015a) Potential shift in plant communities with climate change: outcome on litter decomposition and nutrient release in a Mediterranean oak forest. Ecosystems 18:1253–1268. doi: 10.1007/s10021-015-9896-3 CrossRefGoogle Scholar
  100. Santonja M, Fernandez C, Gauquelin T, Baldy V (2015b) Climate change effects on litter decomposition: intensive drought leads to a strong decrease of litter mixture interactions. Plant Soil 393:69–82. doi: 10.1007/s11104-015-2471-z CrossRefGoogle Scholar
  101. Sattout E, Talhouk S, Kabbani N (2005) Lebanon. In: Merlo M, Croitoru L (eds) Valuing Mediterranean Forests : towards total economic value. CABI Publishing, OxfordshireGoogle Scholar
  102. Schroter D, Cramer W, Leemans R, Prentice IC, Araujo MB, Arnell NW, Bondeau A, Bugmann H, Carter TR, Gracia CA, de la Vega-Leinert AC, Erhard M, Ewert F, Glendining M, House JI, Kankaanpää S, Klein RJ, Lavorel S, Lindner M, Metzger MJ, Meyer J, Mitchell TD, Reginster I, Rounsevell M, Sabaté S, Sitch S, Smith B, Smith J, Smith P, Sykes MT, Thonicke K, Thuiller W, Tuck G, Zaehle S, Zierl B (2005) Ecosystem service supply and vulnerability to global change in Europe. Science 310:1333–1337. doi: 10.1126/science.1115233 CrossRefGoogle Scholar
  103. Sheffield J, Wood EF (2008) Projected changes in drought occurrence under future global warming from multi-model, multi-scenario, IPCC AR4 simulations. Clim Dyn 31(1):79–105. doi: 10.1007/s00382-007-0340-z CrossRefGoogle Scholar
  104. Slimani S (2014) Reconstitutions dendrochronologiques du climat et de l’historique des incendies dans les régions des Aurès et de Kabylie, nord de l’Algérie. Doctoral Thesis. The University Mouloud Mammeri, Tizi Ouzou, Algeria. 171 pGoogle Scholar
  105. Slimani S, Derridj A, Gutiérrez E (2014) Ecological response of Cedrus atlantica to climate variability in the Massif of Guetiane (Algeria). For Syst 23(3):448–460. doi: 10.5424/fs/2014233-05175 Google Scholar
  106. Somot S, Sevault F, Déqué M, Crépon M (2008) 21st century climate change scenario for the Mediterranean using a coupled atmosphere-ocean regional climate model. Global Planet Change 63(2–3):112–126. doi: 10.1016/j.gloplacha.2007.10.003 CrossRefGoogle Scholar
  107. Staudt M, Rambal S, Joffre R, Kesselmeier J (2002) Impact of drought on seasonal monoterpene emissions from Quercus ilex in southern France. J Geophys Res 107(21):4602. doi: 10.1029/2001JD002043 Google Scholar
  108. Staudt M, Joffre R, Rambal S (2003) How growth conditions affect the capacity of Quercus ilex leaves to emit monoterpenes. New Phytol 158:61–73. doi: 10.1046/j.1469-8137.2003.00722.x CrossRefGoogle Scholar
  109. Tedersoo L, Bahram M, Põlme S, Kõljalg U, Yorou NS, Wijesundera R, Villarreal Ruiz L, Vasco-Palacios AM, Quang Thu P, Suija A, Smith ME, Sharp C, Saluveer E, Saitta A, Ratkowsky D, Pritsch K, Riit T, Põldmaa K, Piepenbring M, Phosri C, Peterson M, Parts K, Pärtel K, Otsing E, Nouhra E, Njouonkou AL, Nilsson RH, Morgado LN, Mayor J, May TW, Kohout P, Hosaka K, Hiiesalu I, Henkel TW, Harend H, Guo L, Greslebin A, Grelet G, Geml J, Gates G, Dunstan W, Dunk C, Drenkhan R, Dearnaley J, De Kesel A, Dang T, Chen X, Buegger F, Brearley FQ, Bonito G, Anslan S, Abell S, Abarenkov K (2014) Global diversity and geography of soil fungi. Science 346:1256688. doi: 10.1126/science.1256688 CrossRefGoogle Scholar
  110. Touchan R, Anchukaitis KJ, Meko DM, Attalah S, Baisan C, Aloui A (2008) Long term context for recent drought in northwestern Africa. Geophys Res Lett 35:L13705. doi: 10.1029/2008GL034264 CrossRefGoogle Scholar
  111. Touchan R, Anchukaitis KJ, Meko DM, Sabir M, Attalah S, Aloui A (2010) Spatiotemporal drought variability in northwestern Africa over the last nine centuries. J Clim Dyn 37:237–252. doi: 10.1007/s00382-010-0804-4 CrossRefGoogle Scholar
  112. Wiersum KF (1997) Indigenous exploitation and management of tropical forest resources: an evolutionary continuum in forest–people interactions. Agric Ecosyst Environ 63:1–16CrossRefGoogle Scholar
  113. Yachi S, Loreau M (1999) Biodiversity and ecosystem productivity in a fluctuating environment: The insurance hypothesis. Proc Natl Acad Sci USA 96:1463–1468CrossRefGoogle Scholar
  114. Yazaki K (2006) ABC transporters involved in the transport of plant secondary metabolites. FEBS Lett 580(4):1183–1191. doi: 10.1016/j.febslet.2005.12.009 CrossRefGoogle Scholar
  115. Zine El Abidine AZ (2003) Forest decline in Morocco: causes and control strategy. Science et changements planétaires. Sécheresse 14:209–218Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Thierry Gauquelin
    • 1
    Email author
  • Geneviève Michon
    • 2
  • Richard Joffre
    • 3
  • Robin Duponnois
    • 4
  • Didier Génin
    • 5
    • 6
  • Bruno Fady
    • 7
  • Magda Bou Dagher-Kharrat
    • 8
  • Arezki Derridj
    • 9
  • Said Slimani
    • 9
  • Wadi Badri
    • 10
  • Mohamed Alifriqui
    • 11
  • Laurent Auclair
    • 5
    • 6
  • Romain Simenel
    • 5
    • 6
  • Mohamed Aderghal
    • 12
  • Ezekiel Baudoin
    • 4
  • Antoine Galiana
    • 4
  • Yves Prin
    • 4
  • Hervé Sanguin
    • 4
  • Catherine Fernandez
    • 1
  • Virginie Baldy
    • 1
  1. 1.CNRS, IRD, Institut Méditerranéen de Biodiversité et d’Ecologie Marine et Continentale IMBEAix Marseille Université - Avignon UniversitéMarseille Cedex 03France
  2. 2.Laboratoire Mixte International MEDITER “Terroirs Méditerranéens” IRDUMR GRED Gouvernance Risque Environnement Développement IRD MarocRabat AgdalMorocco
  3. 3.Centre d’Ecologie Fonctionnelle et Evolutive CEFE, UMR 5175, CNRSUniversité de Montpellier, Université Paul-Valéry Montpellier 3Montpellier Cedex 5France
  4. 4.Laboratoire des Symbioses Tropicales et Méditerranéennes-UMR 113IRDMontpellier Cedex 5France
  5. 5.LPED - Laboratoire “Population Environnement Développement”UMR151 – AMU / IRD Centre St CharlesMarseille Cedex 3France
  6. 6.Laboratoire Mixte International MEDITER “Terroirs Méditerranéens” IRDUMR151 – AMU / IRD Centre St CharlesMarseille Cedex 3France
  7. 7.INRA, UR629 Ecologie des Forêts Méditerranéennes (URFM)Domaine St PaulAvignon Cedex 9France
  8. 8.Département Sciences de la Vie et de la TerreUniversité Saint JosephRiad el Solh, BeyrouthLebanon
  9. 9.Faculté des Sciences Biologiques et des Sciences AgronomiquesUniversité Mouloud MammeriTizi-OuzouAlgeria
  10. 10.Laboratoire Ecologie et Environnement Département de Biologie, Faculté des Sciences Ben M’sikUniversité Hassan II-Mohammedia-CasablancaCasablancaMorocco
  11. 11.Laboratoire Ecologie et Environnement Unité associée au CNRST - URAC 32, Département de Biologie, Faculté des Sciences SemlaliaUniversité Cadi AyyadMarrakechMorocco
  12. 12.Laboratoire Mixte International MEDITER “Terroirs Méditerranéens” UM5A, E3R – Equipe de Recherche sur la Région et la Régionalisation – CERGéoUniversité Mohammed V AgdalRabat-Chellah, RabatMorocco

Personalised recommendations