Regional Environmental Change

, Volume 17, Issue 5, pp 1381–1396 | Cite as

Rewilding-inspired transhumance for the restoration of semiarid silvopastoral systems in Chile

  • Meredith Root-Bernstein
  • Matías Guerrero-Gatica
  • Luis Piña
  • Cristián Bonacic
  • Jens-Christian Svenning
  • Fabián M. Jaksic
Original Article


Nomadic pastoralism and transhumance are ancient human adaptations to the movements of large herbivores, which themselves migrate to follow favorable environmental conditions. Free-ranging livestock production has been criticized as less water efficient than factory farming and crop production. This fails to take into account both the additional ecosystem services made possible by rainfall over rangelands, and the ability of free-ranging animals to track water availability across environmental gradients. By analogy to transhumance, we propose a model of “transhumant rewilding,” or species reintroduction with managed herding of wild ungulates for the ecological restoration and sustainability of food production in (silvo)pastoral systems. We consider preliminary evidence for the feasibility of this model with a case study from central Chile in which guanacos (Lama guanicoe) could be used to help restore a silvopastoral savanna (“espinal”) via browsing and endozoochory. First, we present preliminary data on guanaco foraging in espinal. Second, we use a GIS analysis to identify least-cost paths between areas of high and low espinal condition in central Chile and assess the feasibility of using them as migratory pathways. Finally, we consider the relative ecosystem service advantages and costs of the transhumant rewilding scenario compared to other restoration and agricultural development scenarios for central Chile. We conclude that transhumant rewilding has the potential to be a useful model for rewilding-inspired land management in cultural landscapes and can contribute to food security and sustainable agricultural production.


Rewilding Transhumance Lama guanicoe Ecosystem services Food security Silvopastoral 



Thanks to Joaquín Solo de Zaldivar, Fernanda Romero Gárate, and Francisco Novoa de la Maza for their cooperation with Proyecto REGenera; Jorge Ramos for guanaco behavior data collection; Samira Kolyaie for valuable GIS assistance; and Magdalena Bennett and Brody Sandel for GIS data preparation. MR-B was funded by Fondo Nacional de Desarrollo Cientifico y Tecnológico Post Doctoral Fellowship No. 3130336 and Danish National Research Foundation Niels Bohr professorship project Aarhus University Research on the Anthropocene (AURA). FMJ was funded by FB 0002-2014.

Supplementary material

10113_2016_981_MOESM1_ESM.docx (27 kb)
Supplementary material 1 (DOCX 123 kb)


  1. Alvard MS, Kuznar L (2001) Deferred harvests: the transition from hunting to animal husbandry. Am Anthropol 103(2):295–311CrossRefGoogle Scholar
  2. Armesto JJ, Manuschevich D, Mora A, Smith-Ramirez C, Rozzi R, Abarzúa AR, Marquet PA (2009) From the Holocene to the Anthropocene: a historical framework for land cover change in southwestern South America in the past 15,000 years. Land Use Policy 27:148–160. doi: 10.1016/j.landusepol.2009.07.006 CrossRefGoogle Scholar
  3. Asner GP, Elmore AJ, Olander LP, Martin RE, Harris AT (2004) Grazing systems, ecosystem responses, and global change. Ann Rev Environ Res 29:261–299. doi: 10.1146/ CrossRefGoogle Scholar
  4. Baldi B, Lichtenstein G, González B, Funes M, Cuéllar E, Villalba L, Hoces D, Puig S (2008) Lama guanicoe. The IUCN red list of threatened species. Version 2015.2. Accessed 23 July 2015
  5. Bar-Oz G, Zeder M, Hole F (2011) Role of mass-kill hunting strategies in the extirpation of Persian gazelle (Gazella subgutturosa) in the northern Levant. Proc Natl Acad Sci USA 108:7345–7350. doi: 10.1073/pnas.1017647108 CrossRefGoogle Scholar
  6. Bond WJ, Lee WG, Craine JM (2004) Plant structural defenses against browsing birds: a legacy of New Zealand’s extinct moas. Oikos 104:500–508. doi: 10.1111/j.0030-1299.2004.12720.x CrossRefGoogle Scholar
  7. Bosire CK, Ogutu JO, Said MY, Krol MS, de Leeuw J, Hoekstra AY (2015) Trends and spatial variation in water and land footprints of meat and milk production systems in Kenya. Agric Ecosyst Environ 205:36–47. doi: 10.1016/j.agee.2015.02.015 CrossRefGoogle Scholar
  8. Budds J (2004) Power, nature and neoliberalism: the political ecology of water in Chile. Singap J Trop Geogr 25(3):322–342. doi: 10.1111/j.0129-7619.2004.00189.x CrossRefGoogle Scholar
  9. Campos Paciullo DS, Tavares de Castro CR, de Miranda Gomide CA, Martins Maurício R, MdeF Ávila Pires, Dias Muller M, Ferreira Xavier D (2011) Performance of dairy heifers in a silvopastoral system. Livest Sci 141:166–172. doi: 10.1016/j.livsci.2011.05.012 CrossRefGoogle Scholar
  10. Capone R, Iannetta M, El Bilali H, Colonna N, Debs P, Dernini S, Maiani G, Intorre F, Polito A, Turrini A, Cardone G, Lorusso F, Belsanti V (2013) A preliminary assessment of the environmental sustainability of the current Italian dietary pattern: water footprint related to food consumption. J Food Nutr Res 1(4):59–67. doi: 10.12691/jfnr-1-4-5 Google Scholar
  11. Cavieres LA, Fajardo A (2005) Guanaco (Lama guanicoe) on Nothofagus pumilio forest gaps in tierra del Fuego, chile. Forest Ecol Manage 204:237–248CrossRefGoogle Scholar
  12. Cromsigt JPGM, Kuijper DPJ (2011) Revisiting the browsing lawn concept: evolutionary interactions or pruning herbivores? Perspect Plant Ecol Evol Syst 13:207–215. doi: 10.1016/j.ppees.2011.04.004 CrossRefGoogle Scholar
  13. Cronon W (1996) The trouble with wilderness: or, getting back to the wrong nature. Environ Hist 1:7–28.
  14. Dangerfield JM, Modukanele B (1996) Overcompensation by Acacia erubescens in response to simulated browsing. J Trop Ecol 12(6):905–908. doi: 10.1017/S0266467400010178 CrossRefGoogle Scholar
  15. De Groot RS, Alkemade R, Braat L, Hein L, Willemen L (2010) Challenges in integrating the concept of ecosystem services and values in landscape planning, management and decision making. Ecol Complex 7(3):260–272CrossRefGoogle Scholar
  16. Diffenbaugh NS, Swain DL, Touma D (2015) Anthropogenic warming has increased drought risk in California. Proc Natl Acad Sci 12(13):3931–3936. doi: 10.1073/pnas.1422385112 CrossRefGoogle Scholar
  17. Doughty CE, Faurby S, Svenning J-C (2016) The impact of megafauna extinctions on savanna woody cover in South America. Ecography 39:213–222CrossRefGoogle Scholar
  18. Dube F, Sotomayor A, Loewe V, Müller-Using B, Stolpe N, Zagal E, Doussoulin M (2016) Silvopastoral systems in temperate zones of Chile. In: Peri PL et al (eds) Silvopastoral systems in Southern South America, Adv Agrofor 11. doi: 10.1007/978-3-319-24109-8_8
  19. Eriksen PJ, Ingram JSI, Liverman DM (2009) Food security and global environmental change: emerging challenges. Environ Sci Policy 12:373–377. doi: 10.1016/j.envsci.2009.04.007 CrossRefGoogle Scholar
  20. FAO (1996) Declaration of the world summit on food security. Downloaded from Accessed 2015
  21. FAO (Food and Agriculture Organization of the United Nations) (2001) Pastoralism in the new millennium. FAO animal production and health paper 150, Rome, Italy. Accessed 2015
  22. Fornara DA, du Toit JT (2007) Browsing lawns? Responses of Acacia nigrescens to ungulate browsing in an African savanna. Ecology 88(1):200–209. doi:10.1890/0012-9658(2007)88[200:BLROAN]2.0.CO;2Google Scholar
  23. Fuentes ER, Avilés R, Segura A (1989) Landscape change under indirect effects of human use: the Savanna of Central Chile. Landscape Ecol 2(2):73–80. doi: 10.1007/BF00137151 CrossRefGoogle Scholar
  24. Gadd ME, Young TP, Palmer TM (2001) Effects of simulated shoot and leaf herbivory on vegetative growth and plant defense in Acacia drepanolobium. Oikos 92:515–521. doi: 10.1034/j.1600-0706.2001.920312.x CrossRefGoogle Scholar
  25. Gerbens-Leenes PW, Mekonnen MM, Hoekstra AY (2013) The water footprint of poultry, pork and beef: a comparative study in different countries and production systems. Water Resour Ind 1–2:25–36CrossRefGoogle Scholar
  26. Gerstmann C, Miranda M, Condal A (2010) Description of space-time variability of the potential productivity of Acacia caven espinales based on MODIS images and the Enhanced Vegetation Index. Cien Invest Agrar 37(1):63–73. doi: 10.1016/j.wri.2013.03.001 Google Scholar
  27. Giraldo C, Escobar F, Chará JD, Calle Z (2011) The adoption of silvopastoral systems promotes the recovery of ecological processes regulated by dung beetles in the Colombian Andes. Insect Cons Div 4:115–122CrossRefGoogle Scholar
  28. González BA, Palma RE, Zapata B, Marín JC (2006) Taxonomic and biogeographical status of guanaco Lama guanicoe (Artiodactyla, Camelidae). Mamm Rev 36(2):157–178. doi: 10.1111/j.1365-2907.2006.00084.x CrossRefGoogle Scholar
  29. Gordon IJ, Hester AJ, Festa-Bianchet M (2004) The management of wild large herbivores to meet economic, conservation and environmental objectives. J App Ecol 41:1021–1031.
  30. Gowda JH (1997) Physical and chemical response of juvenile Acacia tortilis trees to browsing. Experimental evidence. Funct Ecol 11:106–111. doi: 10.1046/j.1365-2435.1997.00065.x CrossRefGoogle Scholar
  31. Gutiérrez JR, Armesto JJ (1981) El rol del ganado en la dispersión de las semillas de Acacia caven (Leguminosae). Cien Invest Agrar 8:3–8Google Scholar
  32. Hernández A, Miranda M, Arellano EC, Saura S, Ovalle C (2015) Landscape dynamics and their effect on the functional connectivity of a Mediterranean landscape in Chile. Ecol Indic 48:198–206. doi: 10.1016/j.ecolind.2014.08.010 CrossRefGoogle Scholar
  33. Hoffman T, Boerma D (2014) Ecosystem services provided by livestock species and breeds, with special consideration to the contributions of small-scale livestock keepers and pastoralists. FAO Commission on genetic resources for food and agriculture. Background study paper 66(1).
  34. Hughes FMR, Stroh PA, Adams WM, Kirby KJ, Mountford JO, Warrington S (2011) Monitoring and evaluating large-scale, ‘open-ended’ habitat creation projects: a journey rather than a destination. J Nat Conserv 19:245–253. doi: 10.1016/j.jnc.2011.02.003 CrossRefGoogle Scholar
  35. Hughes FMR, Adams WM, Stroh PA (2012) When is open-endedness desirable in restoration projects? Rest Ecol 20:291–295. doi: 10.1111/j.1526-100X.2012.00874.x CrossRefGoogle Scholar
  36. Ingram J (2011) A food systems approach to researching food security and its interactions with global environmental change. Food Sec 3:417–431. doi: 10.1007/s12571-011-0149-9 CrossRefGoogle Scholar
  37. Jepson P (2016) A rewilding agenda for Europe: creating a network of experimental reserves. Ecography 39:117–124. doi: 10.1111/ecog.01602 CrossRefGoogle Scholar
  38. Kratli S, Huelsebusch C, Brooks S, Kaufmann B (2013) Pastoralism: a critical asset for food security under global climate change. Anim Front 3(1):42–50. doi: 10.2527/af.2013-0007 CrossRefGoogle Scholar
  39. Lindon A, Root-Bernstein M (2015) Pheonix flagships: conservation values and guanaco reintroduction in an anthropogenic landscape. Ambio 44(5):458–471. doi: 10.1007/s13280-014-0608-6 CrossRefGoogle Scholar
  40. Lorimer J, Driessen C (2014) Wild experiments at the Oosvardersplassen: rethinking environmentalism in the Anthropocene. Trans Inst Br Geogr 39:169–181. doi: 10.1111/tran.12030 CrossRefGoogle Scholar
  41. Manzano Baena P, Casas R (2010) Past, present and future of transhumancia in Spain: Nomadism in a developed country. Pastoralism 1:72–90. doi: 10.3362/2041-7136.2010.005 Google Scholar
  42. Marino A Baldi R (2014) Ecological correlates of group-size variation in a resource-defense ungulate, the sedentary guanaco. PloS one 9(2):e89060CrossRefGoogle Scholar
  43. Medina ME, Rivero DE (2007) Zooarqueología, Lama guanicoe y dinamica evolutiva del Chaco Serrano.  Mundo de antes 5:211–234Google Scholar
  44. Mekonnen MM, Hoekstra AY (2012) A global assessment of the water footprint of farm animal products. Ecosystems 15:401–415. doi: 10.1007/s10021-011-9517-8 CrossRefGoogle Scholar
  45. Miller S (1980) Human influence on the distribution and abundance of wild Chilean mammals: prehistoric-present. PhD thesis, University of WashingtonGoogle Scholar
  46. Monger C, Sala OE, Duniway MC, Goldfus H, Meir IA, Poch RM, Throop HL, Vivoni ER (2015) Legacy effects in linked ecological–soil–geomorphic systems of drylands. Frontiers Ecology Environ 13(1):13–9 CrossRefGoogle Scholar
  47. Montagnini F, Finney C (2011) Payments for environmental services in Latin America as a tool for restoration and rural development. Ambio 40(3):285–297CrossRefGoogle Scholar
  48. Montes MC, Carmanchahi PD, Rey A, Funes MC (2006) Live shearing free-ranging guanacos (Lama guanicoe) in Patagonia for sustainable use. J Arid Environ 64:616–625. doi: 10.1016/j.jaridenv.2005.05.008 CrossRefGoogle Scholar
  49. Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858. doi: 10.1038/35002501 CrossRefGoogle Scholar
  50. Navarro Gutiérrez RA (1995) Efecto de Intervenciones Silviculturales Sobre El Crecimiento y La Producción de Fitomasa de Acacia Caven En Milipilla Region Metropolitana. Dissertation, Universidad de ChileGoogle Scholar
  51. Navarro LM, Pereira HM (2012) Rewilding abandoned landscapes in Europe. Ecosystems 15:900–912. doi: 10.1007/978-3-319-12039-3_1 CrossRefGoogle Scholar
  52. Niven L, Steele TE, Rendu W, Mallye J-B, McPherron SP et al (2012) Neandertal mobility and large-game hunting: the exploitation of reindeer during the Quina Mousterian at Chez-Pinaud Jonzac (Charente-Maritime, France). J Human Evol 63:624–635. doi: 10.1016/j.jhevol.2012.07.002 CrossRefGoogle Scholar
  53. Oba G, Mengistu Z, Stenseth NC (2000) Compensatory growth of the African dwarf shrub Indigofera spinosa following simulated herbivory. Ecol Appl 10(4):1133–1146. doi:10.1890/1051-0761(2000)010[1133:CGOTAD]2.0.CO;2Google Scholar
  54. Olff H, Vera FWM, Bokdam J, Bakker ES, Gleichman JM, de Maeyer K, Smit R (1999) Shifting mosaics in grazed woodlands driven by alternation of plant facilitation and competition. Plant Biol 1:127–137. doi: 10.1111/j.1438-8677.1999.tb00236.x CrossRefGoogle Scholar
  55. Olivares AE (2006) Relaciones entre el estrato arbóreo, el estrato herbáceo y la conducta animal en el matorral de Acacia caven (espinal). Sécheresse 17(1–2):333–339Google Scholar
  56. Ortega IM, Franklin WL (1995) Social organization, distribution and movements of a migratory guanaco population in the Chilean Patagonia. Rev Chil Hist Nat 68:489–500Google Scholar
  57. Oteros-Rozas E, Martín-López B, López CA, Palomo I, González JA (2013) Envisioning the future of transhumant pastoralism through participatory scenario planning: a case study in Spain. Rangel J 35(3):251–272. doi: 10.1071/RJ12092 CrossRefGoogle Scholar
  58. Ovalle C, Aronson J, del Pozo A, Avendaño J (1990) The espinal: agroforestry systems of the mediterranean-type climate region of Chile. Agrofor Syst 10:213–239. doi: 10.1007/BF00122913 CrossRefGoogle Scholar
  59. Ovalle C, Del Pozo A, Casado MA, Acosta B, de Miguel JM (2006) Consequences of landscape heterogeneity on grassland diversity and productivity in the Espinal agroforestry system of central Chile. Landsc Ecol 21:585–594CrossRefGoogle Scholar
  60. Papanastasis VP (2009) Restoration of degraded grazing lands through grazing management: can it work? Rest Ecol 17(4):441–445. doi: 10.1111/j.1526-100X.2009.00567.x CrossRefGoogle Scholar
  61. Parfitt J, Barthel M, Macnaughton S (2010) Food waste within food supply chains: quantification and potential for change to 2050. Philos Trans R Soc B 365:3065–3081. doi: 10.1098/rstb.2010.0126 CrossRefGoogle Scholar
  62. Pedersen J, Benjaminsen TA (2008) One leg or two? Food security and pastoralism in the Northern Sahel. Human Ecol 36:43–57. doi: 10.1007/s10745-007-9136-3 CrossRefGoogle Scholar
  63. Peri PL, Dube F, Varella AC (2016) Silvopastoral systems in the subtropical and temperate zones of South America: an overview. In: Peri PL et al (eds) Silvopastoral systems in Southern South America, Adv Agrofor 11. doi: 10.1007/978-3-319-24109-8_8
  64. Pimentel D, Houser J, Preiss E, White O, Fang H, Mesnick L, Barsky T, Tariche S, Schrek J, Alpert S (1997) Water resources: agriculture, the environment and society. BioScience 47(2):97–106.
  65. Poschlod P, Bonn S (1998) Changing dispersal processes in the central European landscape since the last ice age: an explanation for the actual decrease of plant species richness in different habitats? Acta Bot Neerl 47(1):27–44Google Scholar
  66. Puig S, Rosi MI, Videla F, Mendez E (2011) Summer and winter diet of the guanaco and food availability for a High Andean migratory population (Mendoza, Argentina). Mamm Biol 76:727–734. doi: 10.1016/j.mambio.2011.07.001 CrossRefGoogle Scholar
  67. Puig S, Videla F, Monge S, Roig V (1996) Seasonal variations in guanaco diet (Lama guanicoe Müller 1776) and food availability in northern patagonia, argentina.  J Arid Environ 34:215–224CrossRefGoogle Scholar
  68. Puig S, Videla F, Cona MI (1997) Diet and abundance of the guanaco (Lama guanicoe Müller 1776) in four habitats of northern patagonia, argentina.  J Arid Environ 36:343–357CrossRefGoogle Scholar
  69. Ridoutt BG, Sanguansri P, Freer M, Harper GS (2012) Water footprint of livestock: comparison of six geographically defined beef production systems. Int J Life Cycle Assess 17:165–175. doi: 10.1007/s11367-011-0346-y CrossRefGoogle Scholar
  70. Rojas P, Gonzálex M, Benedetti S, Yates P, Sotomayor A, Dube F (2016) Silvopastoral systems in arid and semiarid zones of Chile. In Peri PL et al (eds) Silvopastoral systems in Southern South America, Adv Agrofor 11. doi: 10.1007/978-3-319-24109-8_7
  71. Rook AJ, Dumont B, Isselstein J, Osoro K, WallisDeVries MF, Parente G, Mills J (2004) Matching type of livestock to desired biodiversity outcomes in pastures—a review. Biol Conserv 119:137–150. doi: 10.1016/j.biocon.2003.11.010 CrossRefGoogle Scholar
  72. Root-Bernstein M (2014) Nostalgia, the fleeting and the rare in Chilean relationships to nature and non human animals. Soc Anim 22:560–579. doi: 10.1163/15685306-12341348 CrossRefGoogle Scholar
  73. Root-Bernstein M, Jaksic F (2013) The Chilean espinal: restoration for a sustainable silvopastoral system. Rest Ecol 21(4):409–414. doi: 10.1111/rec.12019 CrossRefGoogle Scholar
  74. Root-Bernstein M, Jaksic F (2015) Ecosystem process interactions between central Chilean habitats. GECCO 3:776–788. doi: 10.1016/j.gecco.2015.04.007 Google Scholar
  75. Root-Bernstein M, Montecinos Carvajal Y, Ladle R, Jepson P, Jaksic F (2013) Conservation easements and mining: the case of Chile. Earth’s Future 1(1):33–38. doi: 10.1002/2013EF000136 CrossRefGoogle Scholar
  76. Sandom C, Donlan J, Svenning J-C, Hansen D (2012) Rewilding. Key topics. Conserv Biol 2:430–451. doi: 10.1002/9781118520178.ch23 Google Scholar
  77. Sayre NF, McAllister RRJ, Bestelmeyer BT, Moritz M, Turner MD (2013) Earth Stewardship of rangelands: coping with ecological, economic, and political marginality. Front Ecol Environ 11(7):348–354. doi: 10.1890/120333 CrossRefGoogle Scholar
  78. Scheele J (2010) Traders, saints, and irrigation: refelection on saharan connectivity. J Af Hist 51:281–300. doi: 10.1017/S0021853711000016 CrossRefGoogle Scholar
  79. Scholz MM, van Ryssen JBJ, Meissner HH, Laker MC (2013) A South African perspective on livestock production in relation to greenhouse gases and water usage. S Afr J Anim Sci 43(3):247–254CrossRefGoogle Scholar
  80. Schulz JJ, Cayuela L, Echeverria C, Salas J, Rey Benayas JM (2010) Monitoring land cover change of the dryland forest landscape of Central Chile (1975–2008). Appl Geogr 30:436–447. doi: 10.1016/j.apgeog.2009.12.003 CrossRefGoogle Scholar
  81. Serra MT (1997) Acacia caven (Mol.) Mol. En: FAO: Especies arbóreas y arbustivas para las zonas áridas y semi áridas de América Latina. Serie Zonas Áridas y Semiáridas N° 12(1):57–168Google Scholar
  82. Shipley LA (2007) The influence of bite size on foraging at larger spatial and temporal scales by mammalian herbivores. Oikos 116:1964–1974. doi: 10.1111/j.2007.0030-1299.15974.x CrossRefGoogle Scholar
  83. Simonetti JA (1999) Diversity and conservation of terrestrial vertebrates in mediterranean Chile. Rev Chil Hist Nat 72:493–500Google Scholar
  84. Smith P (2013) Delivering food security without increasing pressure on land. Glob Food Sec 2:18–23. doi: 10.1016/j.gfs.2012.11.008 CrossRefGoogle Scholar
  85. Solh M, van Ginkel M (2014) Drought preparedness and drought mitigation in the developing world’s drylands. Weather Clim Extrem 3:62–66. doi: 10.1016/j.wace.2014.03.003 CrossRefGoogle Scholar
  86. Stehfest E, Bouwman L, van Vuuren DP, den Elzen MGJ, Eickhout B, Kabat P (2009) Climate benefits of changing diet. Clim Change 95:83–102. doi: 10.1007/s10584-008-9534-6 CrossRefGoogle Scholar
  87. Svenning J-C, Pedersen PBM, Donlan CJ, Ejnæs R, Faurby S, Galetti M, Hansen DM, Sandel B, Sandom CJ, Terborgh JW, Vera FWM (2016) Science for a wilder anthropocene: synthesis and future directions for trophic rewilding research. PNAS 113(4):898–906. doi: 10.1073/pnas.1502556112 CrossRefGoogle Scholar
  88. Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S (2002) Agricultural sustainability and intensive production practices. Nature 418:671–677. doi: 10.1038/nature01014 CrossRefGoogle Scholar
  89. Tscharntke T, Clough Y, Wanger TC, Jackson L, Motzke I, Perfecto I, Vandermeer J, Whitbread A (2012) Global food security, biodiversity conservation and the future of agricultural intensification. Biol Conserv 151:53–59. doi: 10.1016/j.biocon.2012.01.068 CrossRefGoogle Scholar
  90. van Leeuwen WJD, Hartfield K, Miranda M, Meza FJ (2013) Trends and ENSO/AAO driven variability in NDVI derived productivity and phenology alongside the Andes Mountains. Remote Sens 5:1177–1203. doi: 10.3390/rs5031177 CrossRefGoogle Scholar
  91. Vanham D, Mekonnen MM, Hoekstra AY (2013) The water footprint of the EU for different sites. Ecol Indic 32:1–8. doi: 10.1016/j.ecolind.2013.02.020 CrossRefGoogle Scholar
  92. Vera FWM (2000) Grazing ecology and forest history [electronic resource]. CABI. doi: 10.1079/9780851994420.0000 Google Scholar
  93. Vermeulen SJ, Aggarwal PK, Ainslie A, Angelone C, Campbell BM, Challinor AJ, Hansen JW, Ingram JSI, Jarvis A, Kristjanson P, Lau C, Nelson GC, Thornton PK, Wollenberg E (2012) Options for support to agriculture and food security under climate change. Environ Sci Policy 15:136–144. doi: 10.1016/j.envsci.2011.09.003 CrossRefGoogle Scholar
  94. Vita A, Serra MT, Grez I, González M, Olivares DA (1995) Intervenciones silviculturales en espino (Acacia caven (Mol.)) en la zona árida de Chile. Rev Cien Forest (Chile) 10:51–62Google Scholar
  95. Westreicher CA, Mérega JL, Palmili G (2007) The economics of pastoralism: study on current practices in South America. Nomad People 11(2):87–105.

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Meredith Root-Bernstein
    • 1
    • 2
    • 3
  • Matías Guerrero-Gatica
    • 3
    • 4
  • Luis Piña
    • 5
  • Cristián Bonacic
    • 6
  • Jens-Christian Svenning
    • 1
  • Fabián M. Jaksic
    • 7
  1. 1.Section for Ecoinformatics and Biodiversity, Department of BioscienceAarhus UniversityAarhusDenmark
  2. 2.Department of EcologyPontificia Catholic University of ChileSantiagoChile
  3. 3.Institute for Ecology and BiodiversitySantiagoChile
  4. 4.Faculty of SciencesUniversidad de ChileSantiagoChile
  5. 5.Department of Animal Production, Faculty of Agronomical SciencesUniversidad de ChileSantiagoChile
  6. 6.School of Agriculture and Forestry EngineeringPontificia Universidad Catolica de ChileSantiagoChile
  7. 7.Center of Applied Ecology and Sustainability (CAPES)Catholic University of ChileSantiagoChile

Personalised recommendations