Advertisement

Regional Environmental Change

, Volume 16, Issue 8, pp 2471–2484 | Cite as

A review of potential physical impacts on harbours in the Mediterranean Sea under climate change

  • Agustín Sánchez-ArcillaEmail author
  • Joan Pau Sierra
  • Sally Brown
  • Mercè Casas-Prat
  • Robert James Nicholls
  • Piero Lionello
  • Dario Conte
Original Article

Abstract

The potential impact of climate change on port operations and infrastructures has received much less attention than the corresponding impact for beach systems. However, ports have always been vulnerable to weather extremes and climate change could enhance such occurrences at timescales comparable to the design lifetime of harbour engineering structures. The analysis in this paper starts with the main climatic variables affecting harbour engineering and exploitation. It continues with a review of the available projections for such variables first at global scale and then at a regional scale (Catalan coast in the western Mediterranean) as a study case for similar environments in the planet. The detailed assessment of impacts starts from downscaled projections for mean sea level and wave storms (wind not considered in the paper). This is followed by an analysis of the port operations and infrastructure performance that are relevant from a climate perspective. The key climatic factors here considered are relative sea level, wave storm features (height, period, direction and duration) and their combined effect, which is expected to produce the highest impacts. The paper ends with a discussion and some examples of analyses aiming at port adaptation to future climate change.

Keywords

Climate change Ports Downscaling Mediterranean Impacts 

Notes

Acknowledgments

The work described in this publication was funded by the European Union Framework Programme through the grant to the budget of the Collaborative Project RISES-AM-, Contract ENV-2013-two-stage-603396. It has also benefitted from the data in PLAN-WAVE project (CTM2013-45141-R, co-financed by FEDER funds).

References

  1. Adloff F, Somot S, Sevault F, Jorda G, Aznar R, Déqué M, Herrmann M, Marcos M, Dubois C, Padorno E, Alvarez-Fanjul E, Gomis D (2015) Mediterranean Sea response to climate change in an ensemble of 21st century scenarios. Clim Dyn. doi: 10.1007/s00382-015-2507-3 Google Scholar
  2. Becker A, Inoue S, Fischer M, Schwegler B (2012) Climate change impacts on international seaports: knowledge, perceptions, and planning, efforts among port administrations. Clim Change 110:5–29. doi: 10.1007/s10584-011-0043-7 CrossRefGoogle Scholar
  3. Becker AH, Acciaro M, Asariotis R, Cabrera E, Cretegny L, Crist P, Esteban M, Mather A, Messner S, Naruse S, Ng AKY, Rahmstorf S, Savonis M, Song D-W, Stenek V, Velegrakis AF (2013) A note on climate change adaptation for seaports: a challenge for global ports, a challenge for global society. Clim Change 120:683–995. doi: 10.1007/s10584-013-0843-z CrossRefGoogle Scholar
  4. Brown S, Nicholls RJ (2015) Subsidence and human influences in mega deltas: the case of the Ganges–Brahmaputra–Meghna. Sci Total Environ 527–528:362–374. doi: 10.1016/j.scitotenv.2015.04.124 CrossRefGoogle Scholar
  5. Brown S, Nicholls RJ, Lowe JA, Hinkel J (2013) Spatial variations of sea-level rise and impacts: an application of DIVA. Clim Change. doi: 10.1007/s10584-013-0925-y Google Scholar
  6. Burchart HF, Hughes SA (2003) Coastal Engineering Manual, Part VI. Fundaments of design, chap V. Department of the Army, U.S. Army Corps of Engineers, WashingtonGoogle Scholar
  7. Casas-Prat M, Sierra JP (2010) Trend analysis of wave storminess: wave direction and its impact on harbour agitation. Nat Hazard Earth Syst Sci 10:2327–2340. doi: 10.5194/nhess-10-2327-2010 CrossRefGoogle Scholar
  8. Casas-Prat M, Sierra JP (2012) Trend analysis of wave direction and associated impacts on the Catalan coast. Clim Change 115:667–691. doi: 10.1007/s10584-012-0466-9 CrossRefGoogle Scholar
  9. Casas-Prat M, Sierra JP (2013) Projected future wave climate in the NW Mediterranean Sea. J Geophys Res Oceans 118:3548–3568. doi: 10.1002/jgrc.20233 CrossRefGoogle Scholar
  10. Casas-Prat M, McInnes KL, Hemer MA, Sierra JP (2016) Future wave-driven coastal sediment transport along the Catalan coast (NW Mediterranean). Reg Environ Change. doi: 10.1007/s10113-015-0923-x Google Scholar
  11. CHRR et al (2005) Global cyclone hazard frequency and distribution. Version 1.0. Raster digital data. Center for Hazards and Risk Research, Columbia University; Center for International Earth Science Information Network, Columbia University; International Bank for Reconstruction and Development/The World Bank; and United Nations Environment Programme Global Resource Information Database. CHRR, Columbia University, Palisades, NYGoogle Scholar
  12. Church JA, Clark PU, Cazenave A, Gregory JM, Jevrejeva S, Levermann A, Merrifield MA, Milne GA, Nerem RS (2013) Sea level change. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of working Group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, New YorkGoogle Scholar
  13. Conte D, Lionello P (2013) Characteristics of large positive and negative surges in the Mediterranean Sea and their attenuation in future climate scenarios. Glob Planet Change 111:159–173. doi: 10.1016/j.gloplacha.2013.09.006 CrossRefGoogle Scholar
  14. Déqué M, Somot S (2010) Weighted frequency distributions express modelling uncertainties in the ENSEMBLES regional climate experiments. Clim Res 44:195–209. doi: 10.3354/cr00866 CrossRefGoogle Scholar
  15. Donat M, Leckebusch G, Pinto J, Ulbrich U (2010) European storminess and associated circulation weather types: future changes deduced from a multi-model ensemble of GCM simulations. Clim Res 42:27–43. doi: 10.3354/cr00853 CrossRefGoogle Scholar
  16. DPTOP (2007) Pla de Ports de Catalunya. Departament de Política Territorial i Obres Públiques, Generalitat de Catalunya, BarcelonaGoogle Scholar
  17. Ericson JP, Vörösmarty CJ, Dingman SL, Ward LG, Meybeck M (2006) Effective sea-level rise and deltas: causes of change and human dimension implications. Glob Planet Change 50:63–82. doi: 10.1016/j.gloplacha.2005.07.004 CrossRefGoogle Scholar
  18. Friedlingstein P, Meinshausen M, Arora V, Jones C, Anav A, Liddicoat S, Knutti R (2014) Uncertainties in CMIP5 climate projections due to carbon cycle feedbacks. J of Clim 27:511–526. doi: 10.1175/JCLI-D-12-00579.1 CrossRefGoogle Scholar
  19. González-Marco D, Bolaños R, Alsina JM, Sánchez-Arcilla A (2008) Implications of nearshore processes on the significant wave height probability distribution. J Hydraul Res 46(S2):303–313. doi: 10.1080/00221686.2008.9521963 CrossRefGoogle Scholar
  20. Hemer MA, Fan Y, Mori N, Semedo A, Wang XL (2013) Projected change in wave climate from a multi-model ensemble. Nat Clim Change 3:471–476. doi: 10.1038/nclimate1791 CrossRefGoogle Scholar
  21. Hinkel J, Jaeger C, Nicholls RJ, Lowe J, Renn O, Peijun S (2015) Sea-level risk scenarios and coastal risk management. Nat Clim Change 5:188–190CrossRefGoogle Scholar
  22. IPCC (2007) Climate change 2007. The physical science basis. In: Solomon S, Qin D, Manning M (eds) Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate ChangeGoogle Scholar
  23. IPCC (2013) Climate change 2013. The physical science basis. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Contribution of working Group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, p 1535 Google Scholar
  24. Jevrejeva S, Grinsted A, Moore JC (2009) Anthropogenic forcing dominates sea level rise since 1850. Geophys Res Lett 36:L20706. doi: 10.1029/2009GL040216 CrossRefGoogle Scholar
  25. Jorda G, Gomis D, Álvarez-Fanjul E, Somot S (2012) Atmospheric contribution to Mediterranean and nearby Atlantic sea level variability under different climate change scenarios. Glob Planet Change 80–81:198–214. doi: 10.1016/j.gloplacha.2011.10.013 CrossRefGoogle Scholar
  26. Lionello P, Sanna A (2005) Mediterranean wave climate variability and its links with NAO and Indian Monsoon. Clim Dyn 25:611–623. doi: 10.1007/s00382-005-0025-4 CrossRefGoogle Scholar
  27. Lionello P, Cogo S, Galati MB, Sanna A (2008) The Mediterranean surface wave climate inferred from future scenario simulations. Glob Planet Change 63:152–162. doi: 10.1016/j.gloplacha.2008.03.004 CrossRefGoogle Scholar
  28. Lionello P, Conte D, Scarascia L, Sanchez-Arcilla A, Sierra JP, Mosso C (2015) Impacts of high-end climate change scenarios on the Mediterranean coast. Proc. AGU Joint Assembly 2015, Montreal, CanadaGoogle Scholar
  29. Marcos M, Tsimplis MN (2008) Comparison of results of AOGCMs in the Mediterranean Sea during the 21st century. J Geophys Res 113:C12028. doi: 10.1029/2008JC004820 CrossRefGoogle Scholar
  30. Mase H, Tsujio D, Yasuda T, Mori N (2013) Stability analysis of composite breakwater with wave-dissipating blocks considering increase in sea levels, surges and waves due to climate change. Ocean Eng 71:58–65. doi: 10.1016/j.oceaneng.2012.12.037 CrossRefGoogle Scholar
  31. Nicholls RJ, Cazenave A (2010) Sea-level rise and its impact on coastal zones. Science 328:1517–1520. doi: 10.1126/science.1185782 CrossRefGoogle Scholar
  32. Nicholls RJ, Marinova N, Lowe JA, Brown S, Gusmão D, Hinkel J, Tol RSJ (2011) Sea-level rise and its possible impacts given a ‘beyond 4 °C world’ in the twenty-first century. Philos Trans R Soc A Math Phys Eng Sci 369(1934):161–181. doi: 10.1098/rsta.2010.0291 CrossRefGoogle Scholar
  33. Nicholls RJ, Hanson SE, Lowe JA, Warrick RA, Lu X, Long AJ (2014) Sea-level scenarios for evaluating coastal impacts. Wiley Interdiscip Rev WIREs Clim Change 5:129–150CrossRefGoogle Scholar
  34. Peltier WR (2004) Global glacial isostasy and the surface of the ice-age Earth: the ICE-5G (VM2) model and GRACE. Annu Rev Earth Planet Sci 32:111–149. doi: 10.1146/annurev.earth.32.082503.144359 CrossRefGoogle Scholar
  35. Pullen T, Allsop NWH, Bruce T, Kortenhaus A, Scüttrumpf H, van der Meer JW (2007) EurOtop wave overtopping of sea defences and related structures: assessment manual. Kuratorium für Forschung in Küsteningenieurwesen, HeideGoogle Scholar
  36. Rahmstorf S (2007) Sea-level rise a semi-empirical approach to projecting future. Science 315:368–370. doi: 10.1126/science.1135456 CrossRefGoogle Scholar
  37. Romero R, Emanuel K (2013) Medicane risk in a changing climate. J Geophys Res Atmos 118:5992–6001. doi: 10.1002/jgrd.50475 CrossRefGoogle Scholar
  38. Sánchez-Arcilla A, Gonzalez-Marco D, Bolaños R (2008a) A review of wave climate and prediction along the Spanish Mediterranean coast. Nat Hazards Earth Syst Sci 8:1–12. doi: 10.5194/nhess-8-1217-2008 CrossRefGoogle Scholar
  39. Sánchez-Arcilla A, Gonzalez-Marco D, Doorn N, Kortenhaus A (2008b) Extreme values for coastal, estuarine, and riverine environments. J Hydraul Res 46(S2):183–190. doi: 10.1080/00221686.2008.9521953 CrossRefGoogle Scholar
  40. Sánchez-Arcilla A, Mendoza ET, Jiménez JA, Peña C, Galofré J, Novoa M (2008c) Beach erosion and storm parameters. Uncertainties for the Spanish Mediterranean. In: Proceedings of the 31st international conference on coastal engineering, Hamburg, pp 2352–2362Google Scholar
  41. Sánchez-Arcilla A, Mösso C, Sierra JP, Mestres M, Harzallah A, Senouci M, El Rahey M (2011) Climatic drivers of potential hazards in Mediterranean coasts. Reg Environ Change 11:617–636. doi: 10.1007/s10113-010-0193-6 CrossRefGoogle Scholar
  42. Scarascia L, Lionello P (2013) Global and regional factors contributing to the past and future sea level rise in the Northern Adriatic Sea. Glob Planet Change 106:51–63. doi: 10.1016/j.gloplacha.2013.03.004 CrossRefGoogle Scholar
  43. Sierra JP (2015) Study of agitation for improving the Marina of Palamós. Maritime Engineering Laboratory, Technical Report TR-LIM/AHC-15-1, Barcelona (in Catalan) Google Scholar
  44. Sierra JP, Casas-Prat M (2014) Analysis of potential impacts on coastal areas due to changes in wave conditions. Clim Change 124:861–876. doi: 10.1007/s10584-014-1120-5 CrossRefGoogle Scholar
  45. Sierra JP, Casas-Prat M, Virgili M, Mösso C, Sanchez-Arcilla A (2015) Impacts on wave-driven harbour agitation due to climate change in Catalan ports. Nat Hazards Earth Syst Sci 15:1695–1709. doi: 10.5194/nhess-15-1695-2015 CrossRefGoogle Scholar
  46. Sierra JP, Casanovas I, Mösso C, Mestres M, Sanchez-Arcilla A (2016) Vulnerability of Catalan (NW Mediterranean) ports to wave overtopping due to different scenarios of sea level rise. Reg Environ Change. doi: 10.1007/s10113-015-0879-x Google Scholar
  47. Suh K-D, Kim S-W, Kim S, Cheon S (2013) Effects of climate change on stability of caisson breakwaters in different water depths. Ocean Eng 71:103–112. doi: 10.1016/j.oceaneng.2013.02.017 CrossRefGoogle Scholar
  48. Takagi H, Kashihara H, Esteban M, Shibayama T (2011) Assessment of future stability of breakwaters under climate change. Coast Eng J 53:21–39. doi: 10.1142/S0578563411002264 CrossRefGoogle Scholar
  49. Tsimplis MN, Marcos M, Somot S (2008) 21st century Mediterranean sea level rise: steric and atmospheric pressure contributions from a regional model. Glob Planet Change 63:105–111. doi: 10.1016/j.gloplacha.2007.09.006 CrossRefGoogle Scholar
  50. Wang X, Swail V (2006) Climate change signal and uncertainty in projections of ocean wave heights. Clim Dyn 26:109–126. doi: 10.1007/s00382-005-0080-x CrossRefGoogle Scholar
  51. Weisse R, von Storch H (2010) Marine climate and climate change. Storms, wind waves and storm surges. Springer, Praxis Publishing, ChichesterCrossRefGoogle Scholar
  52. Wigley TML, Raper SCB (1993) Future changes in global mean temperature and sea level. In: Warrick RA, Barrow EM, Wigley TML (eds) Climate and sea level change: observation, projections and implications. Cambridge University Press, Cambridge, pp 111–113Google Scholar
  53. Young IR, Zieger S, Babanin AV (2011) Global trends in wind speed and wave height. Science 332(6028):451–455. doi: 10.1126/science.1197219 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Agustín Sánchez-Arcilla
    • 1
    • 2
    Email author
  • Joan Pau Sierra
    • 1
    • 2
  • Sally Brown
    • 3
  • Mercè Casas-Prat
    • 4
  • Robert James Nicholls
    • 3
  • Piero Lionello
    • 5
    • 6
  • Dario Conte
    • 6
  1. 1.(LIM/UPC) Laboratori d’Enginyeria MarítimaUniversitat Politècnica de Catalunya (UPC), BarcelonaTechBarcelonaSpain
  2. 2.Centre Internacional d’Investigació dels Recursos Costaners (CIIRC)BarcelonaSpain
  3. 3.Faculty of Engineering and the Environment and Tyndall Centre for Climate Change ResearchUniversity of SouthamptonSouthamptonUK
  4. 4.Environment and Climate Change CanadaTorontoCanada
  5. 5.DiSTeBAUniversity of SalentoLecceItaly
  6. 6.CMCC (EuroMediterranean Center on Climate Change)LecceItaly

Personalised recommendations