Regional Environmental Change

, Volume 16, Issue 8, pp 2345–2355 | Cite as

Regional carbon cycle responses to 25 years of variation in climate and disturbance in the US Pacific Northwest

  • David P. TurnerEmail author
  • William D. Ritts
  • Robert E. Kennedy
  • Andrew N. Gray
  • Zhiqiang Yang
Original Article


Variation in climate, disturbance regime, and forest management strongly influence terrestrial carbon sources and sinks. Spatially distributed, process-based, carbon cycle simulation models provide a means to integrate information on these various influences to estimate carbon pools and flux over large domains. Here we apply the Biome-BGC model over the four-state Northwest US region for the interval from 1986 to 2010. Landsat data were used to characterize disturbances, and forest inventory data were used to parameterize the model. The overall disturbance rate on forest land across the region was 0.8 % year−1, with 49 % as harvests, 28 % as fire, and 23 % as pest/pathogen. Net ecosystem production (NEP) for the 2006–2010 interval on forestland was predominantly positive (a carbon sink) throughout the region, with maximum values in the Coast Range, intermediate values in the Cascade Mountains, and relatively low values in the Inland Rocky Mountain ecoregions. Localized negative NEPs were mostly associated with recent disturbances. There was large interannual variation in regional NEP, with notably low values across the region in 2003, which was also the warmest year in the interval. The recent (2006–2010) net ecosystem carbon balance (NECB) was positive for the region (14.4 TgC year−1). Despite a lower area-weighted mean NECB, public forestland contributed a larger proportion to the total NECB because of its larger area. Aggregated forest inventory data and inversion modeling are beginning to provide opportunities for evaluating model-simulated regional carbon stocks and fluxes.


Pacific Northwest Carbon Climate Disturbances Net ecosystem production Net ecosystem carbon exchange 



Support was provided by the NASA Terrestrial Ecology Program (NNX12AK59G). Landsat data from US Geological Survey Eros Data Center, Daymet climate data from the North American Carbon Program (served from the Oak Ridge National Laboratory Biogeochemical Dynamics Distributed Active Archive Center), and plot data from the USDA Forest Service Forest Inventory and Analysis Program were essential to this study.

Supplementary material

10113_2016_956_MOESM1_ESM.docx (4.7 mb)
Supplementary material 1 (DOCX 4774 kb)


  1. Abatzoglou JT, Rupp DE, Mote PW (2014) Seasonal climate variability and change in the Pacific Northwest of the United States. J Clim 27:2125–2142. doi: 10.1175/jcli-d-13-00218.1 CrossRefGoogle Scholar
  2. Baldocchi D, Falge E, Gu LH, Olson R, Hollinger D, Running S, Anthoni P, Bernhofer C, Davis K, Evans R, Fuentes J, Goldstein A, Katul G, Law B, Lee XH, Malhi Y, Meyers T, Munger W, Oechel W, KTP U, Pilegaard K, Schmid HP, Valentini R, Verma S, Vesala T, Wilson K, Wofsy S (2001) FLUXNET: a new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bull Am Meteorol Soc 82:2415–2434. doi: 10.1175/1520-0477(2001)082<2415:fantts>;2 CrossRefGoogle Scholar
  3. Barnett TP, Pierce DW, Hidalgo HG, Bonfils C, Santer BD, Das T, Bala G, Wood AW, Nozawa T, Mirin AA, Cayan DR, Dettinger MD (2008) Human-induced changes in the hydrology of the western United States. Science 319:1080–1083. doi: 10.1126/science.1152538 CrossRefGoogle Scholar
  4. Beedlow PA, Lee EH, Tingey DT, Waschmann RS, Burdick CA (2013) The importance of seasonal temperature and moisture patterns on growth of Douglas-fir in western Oregon, USA. Agr For Meteorol 169:174–185. doi: 10.1016/j.agrformet.2012.10.010 CrossRefGoogle Scholar
  5. Campbell J, Donato D, Azuma DL, Law B (2007) Pyrogenic carbon emission from a large wildfire in Oregon, United States. J Geophys Res Biogeosci 12:G04014. doi: 10.1029/2007JG000451 Google Scholar
  6. Chapin FS, Woodwell GM, Randerson JT, Rastetter EB, Lovett GM, Baldocchi DD, Clark DA, Harmon ME, Schimel DS, Valentini R, Wirth C, Aber JD, Cole JJ, Goulden ML, Harden JW, Heimann M, Howarth RW, Matson PA, McGuire AD, Melillo JM, Mooney HA, Neff JC, Houghton RA, Pace ML, Ryan MG, Running SW, Sala OE, Schlesinger WH, Schulze ED (2006) Reconciling carbon-cycle concepts, terminology, and methods. Ecosystems 9:1041–1050. doi: 10.1007/s10021-005-0105-7 CrossRefGoogle Scholar
  7. Chen HP, Jackson PL (2015) Spatiotemporal mapping of potential mountain pine beetle emergence—Is a heating cycle a valid surrogate for potential beetle emergence? Agr For Meteorol 206:124–136. doi: 10.1016/j.agrformet.2015.03.006 CrossRefGoogle Scholar
  8. Cohen WB, Yang ZG, Kennedy R (2010) Detecting trends in forest disturbance and recovery using yearly Landsat time series: 2. TimeSync—tools for calibration and validation. Remote Sens Environ 114:2911–2924. doi: 10.1016/j.rse.2010.07.010 CrossRefGoogle Scholar
  9. CONUS (2007) Conterminous United States multi-layer soil characteristics data set for regional climate and hydrology modeling. Accessed 10 Aug 2015
  10. Creeden EP, Hicke JA, Buotte PC (2014) Climate, weather, and recent mountain pine beetle outbreaks in the western United States. For Ecol Manag 312:239–251. doi: 10.1016/j.foreco.2013.09.051 CrossRefGoogle Scholar
  11. Curtis PS, Hanson PJ, Barford P, Randolf JC, Schmid HP, Wilson KB (2002) Biometric and eddy-covariance based estimates of annual carbon storage in five eastern North American deciduous forests. Agr For Meteorol 113:3–19. doi: 10.1016/s0168-1923(02)00099-0 CrossRefGoogle Scholar
  12. Dennison PE, Brewer SC, Arnold JD, Moritz MA (2014) Large wildfire trends in the western United States, 1984–2011. Geophys Res Lett 41:2928–2933. doi: 10.1002/2014gl059576 CrossRefGoogle Scholar
  13. Duane MV, Cohen WB, Campbell JL, Hudiburg T, Weyermann D, Turner DP (2010) Implications of two different field-sampling designs on Landsat-based forest age maps used to model carbon in Oregon forests. For Sci 65:405–416Google Scholar
  14. Duncanson LI, Dubayah RO, Rosette J, Parker G (2015) The importance of spatial detail: assessing the utility of individual crown information and scaling approaches for lidar-based biomass density estimation. Remote Sens Environ 168:102–112. doi: 10.1016/j.rse.2015.06.021 CrossRefGoogle Scholar
  15. GAP (2014) US Geological Survey, Gap Analysis Program (GAP). National Land Cover, Version 2. Accessed 10 Aug 2015
  16. Garman SL, Swanson FJ, Spies TA (1999) Past, present, future landscape patterns in the Douglas-fir region of the Pacific Northwest. In: Rochelle JA, Lehmann LA, Wisniewski J (eds) Forest fragmentation: wildlife and management implications. Brill academic publishing, The Netherlands, pp 61–86Google Scholar
  17. GCP (2015) Global Carbon Project. Accessed 10 Aug 2015
  18. Gockede M, Turner DP, Michalak AM, Vickers D, Law BE (2010) Sensitivity of a subregional scale atmospheric inverse CO2 modeling framework to boundary conditions. J Geophys Res Atmos 115:15. doi: 10.1029/2010jd014443 Google Scholar
  19. Gonzalez P, Battles JJ, Collins BM, Robards T, Saah DS (2015) Aboveground live carbon stock changes of California wildland ecosystems, 2001–2010. For Ecol Manag 348:68–77. doi: 10.1016/j.foreco.2015.03.040 CrossRefGoogle Scholar
  20. Gower ST, McMurtrie RE, Murty D (1996) Aboveground net primary production decline with stand age: potential causes. Trends Ecol Evol 11:378–382. doi: 10.1016/0169-5347(96)10042-2 CrossRefGoogle Scholar
  21. Gray AN, Whittier TR (2014) Carbon stocks and changes on Pacific Northwest national forests and the role of disturbance, management, and growth. For Ecol Manag 328:167–178. doi: 10.1016/j.foreco.2014.05.015 CrossRefGoogle Scholar
  22. Hasenauer H, Merganicova K, Petritsch R, Pietsch SA, Thornton PE (2003) Validating daily climate interpolations over complex terrain in Austria. Agr For Meteorol 119:87–107. doi: 10.1016/0169-5347(96)10042-2 CrossRefGoogle Scholar
  23. Hart SJ, Schoennagel T, Veblen TT, Chapman TB (2015) Area burned in the western United States is unaffected by recent mountain pine beetle outbreaks. Proc Natl Acad Sci USA 112:4375–4380. doi: 10.1073/pnas.1424037112 CrossRefGoogle Scholar
  24. Hayes DJ, Turner DP (2012) The need for “apples-to-apples” comparisons of carbon dioxide source and sink estimates. EOS 93:404–405CrossRefGoogle Scholar
  25. Hibbard KA, Law BE, Reichstein M, Sulzman J (2005) An analysis of soil respiration across northern hemisphere temperate ecosystems. Biogeochemistry 73:29–70. doi: 10.1007/s10533-004-2946-0 CrossRefGoogle Scholar
  26. Hicke JA, Meddens AJH, Allen CD, Kolden CA (2013) Carbon stocks of trees killed by bark beetles and wildfire in the western United States. Environ Res Lett 8:8. doi: 10.1088/1748-9326/8/3/035032 CrossRefGoogle Scholar
  27. Johnstone JA, Mantua NJ (2014) Atmospheric controls on northeast Pacific temperature variability and change, 1900–2012. Proc Natl Acad Sci USA 111:14360–14365. doi: 10.1073/pnas.1318371111 CrossRefGoogle Scholar
  28. Keenan TF, Hollinger DY, Bohrer G, Dragoni D, Munger JW, Schmid HP, Richardson AD (2013) Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise. Nature 499:324. doi: 10.1038/nature12291 CrossRefGoogle Scholar
  29. Kennedy RE, Yang ZG, Cohen WB (2010) Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr—temporal segmentation algorithms. Remote Sens Environ 114:2897–2910. doi: 10.1016/j.rse.2010.07.008 CrossRefGoogle Scholar
  30. Kennedy RE, Yang ZQ, Cohen WB, Pfaff E, Braaten J, Nelson P (2012) Spatial and temporal patterns of forest disturbance and regrowth within the area of the Northwest Forest Plan. Remote Sens Environ 122:117–133. doi: 10.1016/j.rse.2011.09.024 CrossRefGoogle Scholar
  31. Latta G, Temesgen H, Adams D, Barrett T (2010) Analysis of potential impacts of climate change on forests of the United States Pacific Northwest. Forest Ecol Manag 259:720–729. doi: 10.1016/0169-5347(96)10042-2 CrossRefGoogle Scholar
  32. Law BE et al (2006) Carbon fluxes across regions: observational constraints at multiple scales. In: Wu J, Jones B, Li H, Loucks O (eds) Scaling and uncertainty analysis in ecology: methods and applications. Columbia university press, New York, pp 167–190Google Scholar
  33. Latta G, Temesgen H, Barrett TM (2009) Mapping and imputing potential productivity of Pacific Northwest forests using climate variables. Can J For Res 39:1197–1207. doi: 10.1139/x09-046 CrossRefGoogle Scholar
  34. Law BE, Turner D, Campbell J, Van Tuyl S, Ritts WD, Cohen WB (2004) Disturbance and climate effects on carbon stocks and fluxes across Western Oregon USA. Global Change Biol 10:1429–1444. doi: 10.1111/j.1365-2486.2004.00822.x CrossRefGoogle Scholar
  35. Law BE, Waring RH (2015) Carbon implications of current and future effects of drought, fire and management on Pacific Northwest forests. For Ecol Manag 355:4–14. doi: 10.1016/j.foreco.2014.11.023 CrossRefGoogle Scholar
  36. Le Quere C, Moriarty R, Andrew RM, Peters GP, Ciais P, Friedlingstein P, Jones SD, Sitch S, Tans P, Arneth A, Boden TA, Bopp L, Bozec Y, Canadell JG, Chini LP, Chevallier F, Cosca CE, Harris I, Hoppema M, Houghton RA, House JI, Jain AK, Johannessen T, Kato E, Keeling RF, Kitidis V, Goldewijk KK, Koven C, Landa CS, Landschutzer P, Lenton A, Lima ID, Marland G, Mathis JT, Metzl N, Nojiri Y, Olsen A, Ono T, Peng S, Peters W, Pfeil B, Poulter B, Raupach MR, Regnier P, Rodenbeck C, Saito S, Salisbury JE, Schuster U, Schwinger J, Seferian R, Segschneider J, Steinhoff T, Stocker BD, Sutton AJ, Takahashi T, Tilbrook B, van der Werf GR, Viovy N, Wang YP, Wanninkhof R, Wiltshire A, Zeng N (2014) Global carbon budget 2014. Earth Syst Sci Data 7:47–85. doi: 10.5194/essd-7-47-2015 CrossRefGoogle Scholar
  37. Littell JS, McKenzie D, Peterson DL, Westerling AL (2009) Climate and wildfire area burned in western U.S. ecoprovinces, 1916–2003. Ecol Appl 19:1003–1021. doi: 10.1890/07-1183.1 CrossRefGoogle Scholar
  38. Liu JX et al (2011) Estimating California ecosystem carbon change using process model and land cover disturbance data: 1951–2000. Ecol Model 222:2333–2341. doi: 10.1016/j.ecolmodel.2011.03.042 CrossRefGoogle Scholar
  39. Lu XL et al (2013) A contemporary carbon balance for the Northeast Region of the United States. Environ Sci Technol 47:13230–13238. doi: 10.1021/es403097z CrossRefGoogle Scholar
  40. McDowell NG, Allen CD (2015) Darcy’s law predicts widespread forest mortality under climate warming. Nat Clim Change 5:669–672. doi: 10.1038/nclimate2641 CrossRefGoogle Scholar
  41. Meigs GW, Kennedy RE, Gray AN, Gregory MJ (2015) Spatiotemporal dynamics of recent mountain pine beetle and western spruce budworm outbreaks across the Pacific Northwest region, USA. Remote Sens Environ 339:71–86. doi: 10.1016/j.foreco.2014.11.030 Google Scholar
  42. Meigs GW, Turner DP, Ritts WD, Yang ZQ, Law BE (2011) Landscape-scale simulation of heterogeneous fire effects on pyrogenic carbon emissions, tree mortality, and net ecosystem production. Ecosystems 14:758–775. doi: 10.1007/s10021-011-9444-8 CrossRefGoogle Scholar
  43. Meinzer FC (1982) The effect of vapor pressure on stomatal control of gas exchange in Douglas-fir (Psuedotsuga menziesii) seedlings. Oecologia 54:236–242. doi: 10.1007/bf00378398 CrossRefGoogle Scholar
  44. Mote PW (2003) Trends in temperature and precipitation in the Pacific Northwest during the twentieth century. Northwest Sci 77:271–282Google Scholar
  45. Mote PW (2006) Climate-driven variability and trends in mountain snowpack in western North America. J Clim 19:6209–6220. doi: 10.1175/jcli3971.1 CrossRefGoogle Scholar
  46. Mote PW, Salathe EP (2010) Future climate in the Pacific Northwest. Clim Change 102:29–50. doi: 10.1007/s10584-010-9848-z CrossRefGoogle Scholar
  47. MTBS (2015) Monitoring Trends in Burn Severity. Accessed 10 Aug 2015
  48. NLCD (2006) National land cover data. Accessed 10 Aug 2015
  49. OCO-2 (2015) Orbiting Carbon Observatory-2. Accessed 10 Aug 2015
  50. Ohmann JL, Gregory MJ (2002) Predictive mapping of forest composition and structure with direct gradient analysis and nearest-neighbor imputation in coastal Oregon, U.S.A. Can J For Res 32:725–741. doi: 10.1139/x02-011 CrossRefGoogle Scholar
  51. Omernik JM (1987) Ecoregions of the conterminous United States. Map (scale 1:7,500,000). Ann Assoc Am Geogr 77:118–125. doi: Accessed 10 Aug 2015
  52. ORNL (2014) Oak Ridge National Laboratory. Accessed 10 Aug 2015
  53. Oswalt SN, Smith WB, Miles PD, Pugh SA (2014) Forest Resources of the United States, 2012: a technical document supporting the forest Service 2015 update of the RPA Assessment. General Technical Report WO-91. U.S. Department of Agriculture, Forest ServiceGoogle Scholar
  54. Oyler JW, Dobrowski SZ, Ballantyne AP, Klene AE, Running SW (2015) Artificial amplification of warming trends across the mountains of the western United States. Geophys Res Lett 42:153–161. doi: 10.1002/2014gl062803 CrossRefGoogle Scholar
  55. Pederson GT, Graumlich LJ, Fagre DB, Kipfer T, Muhlfeld CC (2010) A century of climate and ecosystem change in Western Montana: what do temperature trends portend? Clim Change 98:133–154CrossRefGoogle Scholar
  56. Peterman W, Bachelet D, Ferschweiler K, Sheehan T (2014) Soil depth affects simulated carbon and water in the MC2 dynamic global vegetation model. Ecol Model 294:84–93. doi: 10.1016/j.ecolmodel.2014.09.025 CrossRefGoogle Scholar
  57. Preisler HK, Hicke JA, Ager AA, Hayes JL (2012) Climate and weather influences on spatial temporal patterns of mountain pine beetle populations in Washington and Oregon. Ecology 93:2421–2434CrossRefGoogle Scholar
  58. Reichstein M, Ciais P, Papale D, Valentini R, Running S, Viovy N, Cramer W, Granier A, Ogee J, Allard V, Aubinet M, Bernhofer C, Buchmann N, Carrara A, Grunwald T, Heimann M, Heinesch B, Knohl A, Kutsch W, Loustau D, Manca G, Matteucci G, Miglietta F, Ourcival JM, Pilegaard K, Pumpanen J, Rambal S, Schaphoff S, Seufert G, Soussana JF, Sanz MJ, Vesala T, Zhao M (2006) Reduction of ecosystem productivity and respiration during the European summer 2003 climate anomaly: a joint flux tower, remote sensing and modelling analysis. Global Change Biol 12:1–18. doi: 10.1111/j.1365-2486.2006.01224.x CrossRefGoogle Scholar
  59. Rogers BM, Neilson RP, Drapek R, Lenihan JM, Wells JR, Bachelet D, Law BE (2011) Impacts of climate change on fire regimes and carbon stocks of the U.S. Pacific Northwest. J Geophys Res Biogeosci 116:13. doi: 10.1029/2011jg001695 Google Scholar
  60. Schwalm CR, Williams CA, Schaefer K, Baldocchi D, Black TA, Goldstein AH, Law BE, Oechel WC, Kyaw TPU, Scott RL (2012) Reduction in carbon uptake during turn of the century drought in western North America. Nat Geosci 5:551–556. doi: 10.1038/ngeo1529 CrossRefGoogle Scholar
  61. Soule PT, Knapp PA (2013) Radial growth rates of two co-occurring coniferous trees in the Northern Rockies during the past century. J Arid Environ 94:87–95. doi: 10.1016/j.jaridenv.2013.02.005 CrossRefGoogle Scholar
  62. Stephens SL, Moghaddas JJ, Edminster C, Fiedler CE, Haase S, Harrington M, Keeley JE, Knapp EE, McIver JD, Metlen K, Skinner CN, Youngblood A (2009) Fire treatment effects on vegetation structure, fuels, and potential fire severity in western US forests. Ecol Appl 19:305–320. doi: 10.1890/07-1755.1 CrossRefGoogle Scholar
  63. Thomas CK, Law BE, Irvine J, Martin JG, Pettijohn JC, Davis KJ (2009) Seasonal hydrology explains interannual and seasonal variation in carbon and water exchange in a semiarid mature ponderosa pine forest in central Oregon. J Geophys Res Biogeosci 114:22. doi: 10.1029/2009jg001010 Google Scholar
  64. Thomas JW, Franklin JF, Gordon J, Johnson KN (2006) The northwest forest plan: origins, components, implimentation experience, and suggestions for change. Conserv Biol 20:277–287. doi: 10.1111/j.1523-1739.2006.00385.x CrossRefGoogle Scholar
  65. Thornton PE, Law BE, Gholz HL, Clark KL, Falge E, Ellsworth DS, Golstein AH, Monson RK, Hollinger D, Falk M, Chen J, Sparks JP (2002) Modeling and measuring the effects of disturbance history and climate on carbon and water budgets in evergreen needleleaf forests. Agr For Meteorol 113:185–222. doi: 10.1111/j.1523-1739.2006.00385.x CrossRefGoogle Scholar
  66. Thornton PE, Thornton MM, Mayer BW, Wilhelmi Y, Wei Y, Devarakonda R, Cook RB (2014) Daymet: Daily Surface Weather Data on a 1-km Grid for North America, Version 2. Data set. Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee, USA. Available:
  67. Thornton PE, Running SW, White MA (1997) Generating surfaces of daily meteorological variables over large regions of complex terrain. J Hydrol 190:214–251. doi: 10.1016/s0022-1694(96)03128-9 CrossRefGoogle Scholar
  68. Turner DP, Ritts D, Kennedy RE, Gray A, Yang Z (2015a) Effects of harvest, fire, and pest/pathogen disturbances on the West Cascades ecoregion carbon balance. Carbon Balance Manag 10:12. doi: 10.1186/s13021-015-0022-9 CrossRefGoogle Scholar
  69. Turner DP, Conklin DR, Bolte JP (2015b) Projected climate change impacts on forest land cover and land use over the Willamette River Basin, Oregon, USA. Clim Change 133:335–348. doi: 10.1007/s10584-015-1465-4 CrossRefGoogle Scholar
  70. Turner DP, Ritts WD, Yang ZQ, Kennedy RE, Cohen WB, Duane MV, Thornton PE, Law BE (2011a) Decadal trends in net ecosystem production and net ecosystem carbon balance for a regional socioecological system. For Ecol Manag 262:1318–1325. doi: 10.1007/s10584-015-1465-4 CrossRefGoogle Scholar
  71. Turner DP, Gockede M, Law BE, Ritts WD, Cohen WB, Yang Z, Hudiburg T, Kennedy R, Duane M (2011b) Multiple constraint analysis of regional land-surface carbon flux. Tellus 63B:207–221. doi: 10.111/j.1600-0889.2011.00525.x CrossRefGoogle Scholar
  72. Turner DP, Ritts WD, Law BE, Cohen WB, Yang Z, Hudiburg T, Campbell JL, Duane M (2007) Scaling net ecosystem production and net biome production over a heterogeneous region in the western United States. Biogeosciences 4:597–612CrossRefGoogle Scholar
  73. Turner J, Long JN (1975) Accumulation of organic matter in a series of Douglas-fir stands. Can J For Res 5:681–690CrossRefGoogle Scholar
  74. Turner DP, Ollinger SV, Kimball JS (2004) Integrating remote sensing and ecosystem process models for landscape to regional scale analysis of the carbon cycle. Bioscience 54:573–584. doi: 10.1641/0006-3568(2004)054[0573:irsaep];2 CrossRefGoogle Scholar
  75. USDA (2011) U.S. Agriculture and Forestry Greenhouse Gas Inventory: 1990–2008. Technical Bulletin No. 1930Google Scholar
  76. USGS (2015) Omernik Level 3 Ecoregions for the U.S. (including Alaska) for Use as a Reference Data Collection.
  77. van Mantgem PJ, Stephenson NL, Byrne JC, Daniels LD, Franklin JF, Fule PZ, Harmon ME, Larson AJ, Smith JM, Taylor AH, Veblen TT (2009) Widespread increase of tree mortality rates in the Western United States. Science 323:521–524. doi: 10.1126/science.1165000 CrossRefGoogle Scholar
  78. Westerling AL, Hidalgo HG, Cayan DR, Swetnam TW (2006) Warming and earlier spring increases western U.S. forest wildfire activity. Science 313:940–943. doi: 10.1126/science.1128834 CrossRefGoogle Scholar
  79. Wharton S, Falk M, Bible K, Schroeder M, Paw KT (2012) Old-growth CO2 flux measurements reveal high sensitivity to climate anomalies across seasonal, annual and decadal time scales. Agr For Meteorol 161:1–14. doi: 10.1016/j.agrformet.2012.03.007 CrossRefGoogle Scholar
  80. White MA, Thornton PE, Running SW, Nemani RR (2000) Parameterization and sensitivity analysis of the BIOME-BGC terrestrial ecosystem model: net primary production controls. Earth Interact 4:1–85CrossRefGoogle Scholar
  81. Woudenberg SW, Conkling BL, O’Connell BM, LaPoint EB, Turner JA, Waddell KL (2010) The Forest Inventory and Analysis database: description and user manual version 4.0 for Phase 2, USDA Forest Service, General Technical Report RMRS-GTR-245, USDA Forest Service, General Technical Report RMRS-GTR-245Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • David P. Turner
    • 1
    Email author
  • William D. Ritts
    • 1
  • Robert E. Kennedy
    • 2
  • Andrew N. Gray
    • 3
  • Zhiqiang Yang
    • 1
  1. 1.Department of Forest Ecosystems and SocietyOregon State UniversityCorvallisUSA
  2. 2.College of Earth, Ocean, and Atmospheric SciencesOregon State UniversityCorvallisUSA
  3. 3.USDA Forest ServicePacific Northwest Research StationCorvallisUSA

Personalised recommendations