Regional Environmental Change

, Volume 17, Issue 4, pp 973–987 | Cite as

Ocean acidification: assessing the vulnerability of socioeconomic systems in Small Island Developing States

  • Katherine Schmutter
  • Merinda NashEmail author
  • Liz Dovey
Original Article


Ocean acidification poses an increasing threat to marine ecosystems and also interacts with other anthropogenic environmental drivers. A planned response strategy could minimize exposure of socioeconomic systems to potential hazards and may even offer wider advantages. Response strategies can be informed by understanding the hazards, assessing exposure and assessing risks and opportunities. This paper assesses exposure of key socioeconomic systems to the hazards of ocean acidification and analyzes the risks and opportunities of this exposure from Small Island Developing States (SIDS) perspectives. Key socioeconomic systems that are likely to be affected by ocean acidification are identified. A risk analysis matrix is developed to evaluate the risks or opportunities arising from ocean acidification. Analysis of the matrix reveals similarities and differences in potential adaptive responses at global and regional levels. For example, while ocean acidification poses significant threats to SIDS from more frequent toxic wild-caught seafood events and, potentially destruction of coral reef structure and habitat, SIDS may have a relative advantage in aquaculture and an important role to play in global marine ecosystem conservation.


Ocean acidification Socioeconomic vulnerability Aquaculture Food security Small Island Developing States Coral reefs 



This work received funding from the ANU Australian Postgraduate Award (APA) to K.S and LD. K.S particularly thanked Associate Professor Karen Hussey, Professor Stephen Dovers, and Dr. William Howard for their assistance, encouragement, and support. K.S, MN, and LD also thank Dr. Tony Weir, Dr. Jamie Pittock, Dr. Ian Fry, and Ms. Stacey-Ann Robinson for their encouragement and support in the focus on SIDS. We also thank the anonymous referees for comments that helped improve the manuscript.

Author contributions

K.S submitted a first version of this paper as sole author. Unfortunately, she was terminally ill at the time, so requested M. N and L. D to prepare this revision. K.S died on December 9, 2015; this paper is a posthumous tribute to her.

Supplementary material

10113_2016_949_MOESM1_ESM.pdf (282 kb)
Supplementary material 1 (PDF 282 kb)


  1. Anderson SC, Mills-Flemming J, Lotze HK (2011) Serial exploitation of global sea cucumber fisheries. Fish Fish 12(3):317–339. doi: 10.1111/j.1467-2979.2010.00397.x CrossRefGoogle Scholar
  2. Andersson AJ, Gledhill D (2013) Ocean acidification and coral reefs: effects on breakdown, dissolution, and net ecosystem calcification. Annu Rev Mar Sci 5:321–348. doi: 10.1146/annurev-marine-121211-172241 CrossRefGoogle Scholar
  3. Andersson AJ, Mackenzie FT, Bates NR (2008) Life on the margin: implications of ocean acidification on Mg-calcite, high latitude and cold-water marine calcifiers. Mar Ecol Prog Ser 373:265–273. doi: 10.3354/meps07639 CrossRefGoogle Scholar
  4. Asplund ME, Baden SP, Russ S, Ellis RP, Gong N, Hernroth BE (2014) Ocean acidification and host-pathogen interactions: blue mussels, Mytilus edulis, encountering Vibrio tubiashii. Environ Microbiol 16(4):1029–1039. doi: 10.1111/1462-2920.12307 CrossRefGoogle Scholar
  5. Barkley HC, Cohen AL, Golbuu Y, Starczak VR, DeCarlo TM, Shamberger KEF (2015) Changes in coral reef communities across a natural gradient in seawater pH. Sci adv 1(5):e1500328. doi: 10.5670/oceanog.2015.38 CrossRefGoogle Scholar
  6. Barton A, Waldbusser GG, Feely RA, Weisberg SB, Newton JA, Hales B, Cudd S, Eudeline B, Langdon CJ, Jefferds I, King T, Suhrbier A, McLaughlin K (2015) Impacts of coastal acidification on the Pacific Northwest shellfish industry and adaptation strategies implemented in response. Oceanography 28(2):146–159CrossRefGoogle Scholar
  7. Bell JD, Johnson JE, Hobday AJ (eds) (2011) Vulnerability of tropical pacific fisheries and aquaculture to climate change. Secretariat of the Pacific Community, Noumea. ISBN: 978-982-00-0471-9Google Scholar
  8. Branch TA, DeJoseph DM, Ray LJ, Wagner CA (2013) Impacts of ocean acidification on marine seafood. Trends Ecol Evol 28(3):178–186. doi: 10.1016/j.tree.2012.10.001 CrossRefGoogle Scholar
  9. Brooks CM, Weller JB, Gjerde K, Sumaila UR, Ardron JA, Ban NC, Freestone D, Seto K, Unger S, Costa DP, Fisher K, Crowder L, Halpin P, Boustany A (2014) Challenging the ‘Right to Fish’ in a fast-changing ocean. Stanford Environ Law J 33(3):289–324Google Scholar
  10. Burke L,Waite R, Kushner B, Cooper E, Edwards P, Zenny P, Maxam A, Lyew-Ayee P, McIntyre K (2011) Coastal capital: Jamaica: the economic contribution of Jamaica’s coral reefs. World Resources Institute. Accessed 25 Nov 2015
  11. Callaway R, Shinn AP, Grenfell SE, Bron JE, Burnell G, Cook EJ, Crumlish M, Culloty S, Davidson K, Ellis RP, Flynn KJ, Fox C, Green DM, Hays GC, Hughes AD, Johnston E, Lowe CD, Lupatsch I, Malham S, Mendzil AF, Nickell TD, Pickerell T, Rowley AF, Stanley MS, Tocher DR, Turnbull JF, Webb G, Wootton E, Shields RJ (2012) Review of climate change impacts on marine aquaculture in the UK and Ireland. Aquat Conserv Mar Freshw Ecosyst 22:389–421. doi: 10.1002/aqc.2247 CrossRefGoogle Scholar
  12. Campbell J, Warrick O (2014) Climate change and migration issues in the Pacific. UNESCO Pacific Office, Fiji. ISBN: 978-982-91410-3-3Google Scholar
  13. Carpenter KE, Abrar M, Aeby G, Aronson RB, Banks S, Bruckner A, Chiriboga A, Cortés J, Delbeek JC, DeVantier L, Edgar GJ, Edwards AJ, Fenner D, Guzmán HM, Hoeksema BW, Hodgson G, Johan O, Licuanan WY, Livingstone SR, Lovell ER, Moore JA, Obura DO, Ochavillo D, Polidoro BA, Precht WF, Quibilan MC, Reboton C, Richards ZT, Rogers AD, Sanciangco J, Sheppard A, Sheppard C, Smith J, Stuart S, Turak E, Veron JEN, Wallace C, Weil E, Wood E (2008) One-third of reef-building corals face elevated extinction risk from climate change and local impacts. Science 321(5888):560–563. doi: 10.1126/science.1159196 CrossRefGoogle Scholar
  14. CBD (2014) An updated synthesis of the impacts of ocean acidification on marine biodiversity. In: Hennige S, Roberts JM, Williamson P (eds) CBD Tech Series No. 75. Secretariat of the convention on biological diversity, Montreal, pp 99. ISBN: 92-9225-527-4 (print version); ISBN: 92-9225-528-2 (web version)Google Scholar
  15. Chan KYK, Grünbaum D, O'Donnell MJ (2011) Effects of ocean acidification-induced morphological changes on larval swimming and feeding. J exp biol 214(22):3857–3867. doi: 10.1242/jeb.054809 CrossRefGoogle Scholar
  16. Chen S, Beardall J, Gao K (2014) A red tide alga grown under ocean acidification upregulates its tolerance to lower pH by increasing its photophysiological functions. Biogeosciences 11:4829–4837. doi: 10.5194/bg-11-4829-2014 CrossRefGoogle Scholar
  17. Cinner JE, Pratchett MS, Graham NAJ, Messmer V, Fuentes MMPB, Ainsworth T, Ban N, Bay LK, Blythe J, Dissard D, Dunn S, Evans L, Fabinyi M, Fidelman P, Figueiredo J, Frisch AJ, Fulton CJ, Hicks CC, Lukoschek V, Mallela J, Moya A, Penin L, Rummer JL, Walker S, Williamson DH (2015) A framework for understanding climate change impacts on coral reef social–ecological systems. Reg Environ Change. doi: 10.1007/s10113-015-0832-z Google Scholar
  18. Cooley SR, Doney SC (2009) Anticipating ocean acidification’s economic consequences for commercial fisheries. Environ Res Lett 4(2):024007. doi: 10.1088/1748-9326/4/2/024007 CrossRefGoogle Scholar
  19. Cox TM, Ragen TJ, Read AJ, Vos E, Baird RW, Balcomb K, Barlow J, Caldwell J, Cranford T, Crum L, D’Amico A, D’Spain G, Fernández A, Finneran J, Gentry R, Gerth W, Gulland F, Hildebrand J, Houser D, Hullar T, Jepson PD, Ketten D, MacLeod CD, Miller P, Moore S, Mountain D, Palka D, Ponganis P, Rommel S, Rowles T, Taylor B, Tyack P, Wartzok D, Gisiner R, Mead J, Benner L (2006) Understanding the impacts of anthropogenic sound on beaked whales. J Cetacean Res Manag 7(3):177–187Google Scholar
  20. Cyronak T, Santos IR, Eyre BD (2013) Permeable coral reef sediment dissolution driven by elevated pCO2 and pore water advection. Geophys Res Lett 40:4876–4881. doi: 10.1002/grl.50948 CrossRefGoogle Scholar
  21. De’ath G, Fabricius KE, Sweatman H, Puotinen M (2012) The 27–year decline of coral cover on the Great Barrier Reef and its causes. PNAS 109(44):17995–17999. doi: 10.1073/pnas.1208909109 CrossRefGoogle Scholar
  22. Denman R, Denman J, Scott D (2012) Challenges and opportunities for tourism development in Small Island Developing States. United Nations World Tourism Organization (UNWTO). Accessed 22 Nov 2015
  23. Dupont S, Hall E, Calosi P, Lundve B (2014) First evidence of altered sensory quality in a shellfish exposed to decreased pH relevant to ocean acidification. J Shellfish Res 33:857–861. doi: 10.2983/035.033.0320 CrossRefGoogle Scholar
  24. EMA (2004) Emergency risk management applications guide. Manual 5 in the Australian Emergency Management Manual Series. Emergency Management Australia, Canberra. ISBN: 0-9750474-5-0Google Scholar
  25. Eriksson H, Byrne M (2013) The sea cucumber fishery in Australia’s great barrier reef marine park follows global patterns of serial exploitation. Fish Fish 16:329–341. doi: 10.1111/faf.12059 CrossRefGoogle Scholar
  26. Eyre BD, Andersson AJ, Cyronak T (2014) Benthic coral reef calcium carbonate dissolution in an acidifying ocean. Nature Clim Change 4:969–976. doi: 10.1038/nclimate2380 CrossRefGoogle Scholar
  27. Fabry VJ, Seibel BA, Feely RA, Orr JC (2008) Impacts of ocean acidification on marine fauna and ecosystem processes. ICES J Mar Sci 65:414–432. doi: 10.1093/icesjms/fsn048 CrossRefGoogle Scholar
  28. FAO (2012) The state of world fisheries and aquaculture 2012. UN Food and Agriculture Organization, Rome. ISBN: 978-92-5-107225-7Google Scholar
  29. FAO (2016) Sustainable intensification of aquaculture in the Asia-Pacific region. Documentation of successful practices. Miao W, Lal KK (eds) Bangkok. ISBN 978-92-5-109065-7Google Scholar
  30. Feely RA, Doney SC, Cooley SR (2009) Ocean acidification: present conditions and future changes in a high-CO2 world. Oceanography 22:37–47. doi: 10.5670/oceanog.2009.95 CrossRefGoogle Scholar
  31. Ferrario F, Beck MW, Storlazzi CD, Micheli F, Shepard CC, Airoldi L (2014) The effectiveness of coral reefs for coastal hazard risk reduction and adaptation. Nat Commun. doi: 10.1038/ncomms4794 Google Scholar
  32. French Smith, M (2007) The social impact of ocean acidification in Pacific Island Countries: limits and imperatives of prediction and planning. Presentation to the 21st Pacific Science Congress June 12–18, Okinawa Japan. Accessed 27 Nov 2015
  33. Gattuso J-P, Magnan A, Billé R, Cheung WW, Howes EL, Joos F, Allemand D, Bopp L, Cooley SR, Eakin CM, Hoegh-Guldberg O, Kelly RP, Pörtner HO, Rogers AD, Baxter JM, Laffoley D, Osborn D, Rankovic A, Rochette J, Sumaila UR, Treyer S, Turley C (2015) Contrasting futures for ocean and society from different anthropogenic CO2 emissions scenarios. Science 349(6243):acc4722. doi: 10.1126/science.aac4722 CrossRefGoogle Scholar
  34. GBRMPA (2014) Great barrier reef outlook report 2014. Great Barrier Reef Marine Park Authority, Townsville. ISBN: 9781922126368Google Scholar
  35. Gledhill DK, White MM, Salisbury J, Thomas H, Mlsna I, Liebman M, Mook B, Grear J, Candelmo AC, Chambers RC, Gobler CJ, Hunt CW, King AL, Price NN, Signorini SR, Stancioff E, Stymiest C, Wahle RA, Waller JD, Rebuck ND, Wang ZA, Capson TL, Morrison JR, Cooley SR, Doney SC (2015) Ocean and coastal acidification off New England and Nova Scotia. Oceanography 28(2):182–197. doi: 10.5670/oceanog.2015.41 CrossRefGoogle Scholar
  36. Goggin L (2004) Introduced species in tropical waters: current state of knowledge. CRC Reef Research Centre, Townsville.
  37. Graham CT, Harrod C (2009) Implications of climate change for the fishes of the British Isles. J Fish Biol 74(6):1143–1205. doi: 10.1111/j.1095-8649.2009.02180.x CrossRefGoogle Scholar
  38. Hallegraeff GM (2015) Harmful marine algal blooms and climate change: progress on a formidable predictive challenge. In: Botana LM, Louzou MC, Vilarino N (eds) Climate change and marine and freshwater toxins. DeGruyter, Berlin. ISBN: 978-3-11-033303-9Google Scholar
  39. Harding J (2014) 10 million scallops are dead; Qualicum company lays off staff. The Parksville Qualicum Beach News (25 February 2014) Accessed 14 Aug 2015
  40. Hilmi N, Allemand D, Kavanagh C, Laffoley D, Metian M, Osborn D, Reynaud S (eds) (2015) Bridging the gap between ocean acidification impacts and economic valuation: regional impacts of ocean acidification on fisheries and aquaculture. IUCN, Gland. doi: 10.2305/IUCN.CH.2015.03.en Google Scholar
  41. Hoegh-Guldberg O, Mumby PJ, Hooten AJ, Steneck RS, Greenfield P, Gomez E, Harvell CD, Sale PF, Edwards AJ, Caldeira K, Knowlton N, Eakin CM, Iglesias-Prieto R, Muthiga N, Bradbury RH, Dubi A, Hatziolos ME (2007) Coral reefs under rapid climate change and ocean acidification. Science 318(5857):1737–1742. doi: 10.1126/science.1152509 CrossRefGoogle Scholar
  42. Hoegh-Guldberg O, Cai R, Poloczanska ES, Brewer PG, Sundby S, Hilmi K, Fabry VJ, Jung S (2014) The Oceans. Chapter 30. In: IPCC (ed) Climate change 2014: impacts, adaptation, and vulnerability. Part B: regional aspects. Contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change. IPCC, Geneva. ISBN: 978-1-107-05807-1 Hardback; ISBN: 978-1-107-64165-5 PaperbackGoogle Scholar
  43. Hoegh-Guldberg O, Beal D, Chaudhry T, Elhaj H, Abdullat A, Etessy P, Smits M (2015) Reviving the ocean economy: the case for action—2015. WWF International, Gland. ISBN: 978-2-940529-18-6Google Scholar
  44. Holmyard N (2014) Climate change: implications for fisheries and aquaculture. Key findings from the intergovernmental panel on climate change fifth assessment report. University of Cambridge and Sustainable Fisheries Partnership.
  45. Hooidonk R, Maynard JA, Manzello D, Planes S (2014) Opposite latitudinal gradients in projected ocean acidification and bleaching impacts on coral reefs. Glob Change Biol 20(1):103–112. doi: 10.1111/gcb.12394 CrossRefGoogle Scholar
  46. Howard WR et al (2012) Ocean acidification. In: A marine climate change impacts and adaptation report card for Australia 2012. In: Poloczanska ES, Hobday AJ, Richardson AJ (eds). ISBN: 978-0-643-10928-5
  47. Huelsenbeck M (2012) Ocean-based food security threatened in a high CO2 world: a ranking of nations’ vulnerability to climate change and ocean acidification. Oceana, Accessed 30 Nov 2015
  48. Hutchings PA (1986) Biological destruction of coral reefs. Coral reefs 4(4):239–252. doi: 10.1007/BF00298083 CrossRefGoogle Scholar
  49. IGBP, IOC, SCOR (2013) Ocean acidification summary for policymakers—third symposium on the ocean in a High-CO2 world. International Geosphere–Biosphere Programme, Stockholm.
  50. Ilyina T, Zeebe RE, Brewer PG (2010) Future ocean increasingly transparent to low-frequency sound owing to carbon dioxide emissions. Nat Geosci 3:18–22. doi: 10.1038/ngeo719 CrossRefGoogle Scholar
  51. Johnson CR, Banks SC, Barrett NS, Cazassus F, Dunstan PK, Edgar GJ, Frusher SD, Gardner C, Haddon M, Helidoniotis F, Hill KL, Holbrook NJ, Hosie GW, Last PR, Ling SD, Melbourne-Thomas J, Miller K, Pecl JT, Richardson AJ, Ridgway KR, Rintoul SR, Ritz DA, Ross DJ, Sanderson JC, Shepherd SA, Slotwinski A, Swadling KM, Taw N (2011) Climate change cascades: shifts in oceanography, species’ ranges and subtidal marine community dynamics in eastern Tasmania. J Exp Mar Biol Ecol 400(1–2):17–32. doi: 10.1016/j.jembe.2011.02.032 CrossRefGoogle Scholar
  52. Kennedy EV, Perry CT, Halloran PR, Iglesias-Prieto R, Schönberg CHL, Wisshak M, Form AU, Carricart-Ganivet JP, Fine M, Eakin CM, Mumby PJ (2013) Avoiding coral reef functional collapse requires local and global action. Curr Biol 23(10):912–918. doi: 10.1016/j.cub.2013.04.020 CrossRefGoogle Scholar
  53. Le Quesne W, Pinnegar J (2011) The potential impacts of ocean acidification: scaling from physiology to fisheries. Fish Fish 13(3):333–344. doi: 10.1111/j.1467-2979.2011.00423.x CrossRefGoogle Scholar
  54. Linnit C (2014) The Strait of Georgia is turning to acid, spelling doom for shellfish, new research shows. Desmog. Accessed 6 Nov 2014
  55. Maribus (2013) World ocean review 2—the future of fish—the fisheries of the future, Maribus in conjunction with future ocean. International Ocean Institute and Mare, Hambourg. ISBN: 978-3-86648-201-2Google Scholar
  56. Molnar JL, Gamboa RL, Revenga C, Spalding MD (2008) Assessing the global threat of invasive species to marine biodiversity. Front Ecol Environ 6(9):458–492. doi: 10.1890/070064 CrossRefGoogle Scholar
  57. Mora CW, Rollo CL, Amaro A, Baco T, Billett AR, Bopp D, Chen L, Collier Q, Danovaro M, Gooday R, Grupe AJ, Halloran BM, Ingels PR, Jones J, Levin DOB, Nakano LA, Norling H, Ramirez-Llodra K, Rex E, Ruhl M, Smith HA, Sweetman CR, Thurber AK, Tjiputra AR, Usseglio JF, Watling P, Wu L, Yasuhara T (2013) Biotic and human vulnerability to projected changes in ocean biogeochemistry over the 21st century. PLoS Biol 11(10):e1001682. doi: 10.1371/journal.pbio.1001682 CrossRefGoogle Scholar
  58. Munday PL, Dixson DL, Donelson JM, Jones JP, Pratchett MS, Devitsina GV, Døving KB (2009) Ocean acidification impairs olfactory discrimination and homing ability of a marine fish. PNAS 106(6):1848–1852. doi: 10.1073/pnas.0809996106 CrossRefGoogle Scholar
  59. Munday PL, DixsonDL McCormickMI, Meekan M, Ferrari MCO, Chivers DP (2010) Replenishment of fish populations is threatened by ocean acidification. PNAS 107(29):12930–12934. doi: 10.1073/pnas.1004519107 CrossRefGoogle Scholar
  60. Narita D, Rehdanz K, Tol RS (2012) Economic costs of ocean acidification: a look into the impacts on global shellfish production. Clim Change 113:1049–1063. doi: 10.1007/s10584-011-0383-3 CrossRefGoogle Scholar
  61. Nash MC, Opdyke BN, Troitzsch U, Russell BD, Adey WH, Kato A, Diaz-Pulido G, Brent C, Gardner M, Prichard J, Kline DI (2013) Dolomite-rich coralline algae in reefs resist dissolution in acidified conditions. Nat Clim Change 3(3):268–272. doi: 10.1038/nclimate1760 CrossRefGoogle Scholar
  62. Nellemann C, Hain S, Alder J (eds) (2008) In dead water—merging of climate change with pollution, over-harvest, and infestations in the world’s fishing grounds. United Nations Environment Programme, GRID-Arendal, Norway. ISBN: 978-82-7701-048-9Google Scholar
  63. Pandolfi JM, Connolly SR, Marshall DJ, Cohen AL (2011) Projecting coral reef futures under global warming and ocean acidification: review. Science 333:418–422. doi: 10.1126/science.1204794 CrossRefGoogle Scholar
  64. Parker LM, Ross PM, O’Connor WA (2010) Comparing the effect of elevated pCO2 and temperature on the fertilization and early development of two species of oysters. Mar Biol 157:2435–2452. doi: 10.1007/s00227-010-1508-3 CrossRefGoogle Scholar
  65. Peck LS, Clark MS, Power D, Rei J, Batista FM, Harper EM (2015) Acidification effects on biofouling communities: winners and losers. Glob Change Biol 21(5):1907–1913. doi: 10.1111/gcb.12841 CrossRefGoogle Scholar
  66. Pörtner H-O, Karl DM, Boyd PW, Cheung WWL, Lluch-Cota SE, Nojiri Y, Schmidt DN, Zavialov PO (2014) Ocean systems. In: Field CB, Barros VR, Dokken DJ, Mach KJ, Mastrandrea MD, Bilir TE, Chatterjee M, Ebi KL, Estrada YO, Genova RC, Girma B, Kissel ES, Levy AN, MacCracken S, Mastrandrea PR, White LL (eds) Climate change 2014: impacts, adaptation, and vulnerability. Part A: global and sectoral aspects. Contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge and New York. ISBN: 978-1-107-05807-1Google Scholar
  67. Purcell SW, Mercier A, Conand C, Hamel JF, Toral-Granda MV, Lovatelli A, Uthicke S (2013) Sea cucumber fisheries: global analysis of stocks, management measures and drivers of overfishing. Fish Fish 14:34–59. doi: 10.1111/j.1467-2979.2011.00443.x CrossRefGoogle Scholar
  68. Reaser JK, Meyerson LA, Cronk Q, De Poorter M, Eldrege LG, Green E, Kairo M, Latasi P, Mack RN, Mauremootoo J, O’Dowd D, Orapa W, Sastroutomo S, Saunders A, Shine C, Thrainsson S, Vaiutu L (2007) Ecological and socioeconomic impacts of invasive alien species in island ecosystems. Environ Conserv 34(02):98–111. doi: 10.1017/S0376892907003815 CrossRefGoogle Scholar
  69. Richardson AJ, Bakun A, Hays GC, Gibbons MJ (2009) The jellyfish joyride: causes, consequences and management responses to a more gelatinous future. Trends Ecol Evol 24(6):312–322. doi: 10.1016/j.tree.2009.01.010 CrossRefGoogle Scholar
  70. Riebesell U, Körtzinger A, Oschlies A (2009) Sensitivities of marine carbon fluxes to ocean change. PNAS 106(49):20602–20609. doi: 10.1073/pnas.0813291106 CrossRefGoogle Scholar
  71. Roberts DA, Birchenough SNR, Lewis C, Sanders MB, Bolam T, Sheahan D (2013) Ocean acidification increases the toxicity of contaminated sediments. Glob Change Biol 19:340–351. doi: 10.1111/gcb.12048 CrossRefGoogle Scholar
  72. Russell BD, Thompson JI, Falkenberg LJ, Connell SD (2009) Synergistic effects of climate change and local stressors: CO2 and nutrient-driven change in subtidal rocky habitats. Glob Change Biol 15(9):2153–2162. doi: 10.1111/j.1365-2486.2009.01886.x CrossRefGoogle Scholar
  73. Sanford E, Gaylord B, Hettinger A, Lenz EA, Meyer K, Hill TM (2014) Ocean acidification increases the vulnerability of native oysters to predation by invasive snails. Proc R Soc B 281:20132681. doi: 10.1098/rspb.2013.2681 CrossRefGoogle Scholar
  74. Schneider K, Silverman J, Woolsey E, Eriksson H, Byrne M, Caldeira K (2011) Potential influence of sea cucumbers on coral reef CaCO3 budget: a case study at One Tree Reef. J Geophys Res Biogeosci 116:G04032. doi: 10.1029/2011JG001755 CrossRefGoogle Scholar
  75. Shore R (2014) Acidic water blamed for West Coast scallop die-off: Nanaimo-based Island Scallops has shut down its processing plant and laid off a third of its workforce. Vancouver Sun, Canada, February 25, 2014. Acessed 15 Nov 2015
  76. Silbiger NJ, Guadayol Ò, Thomas FI, Donahue MJ (2014) Reefs shift from net accretion to net erosion along a natural environmental gradient. MEPS 515:33–44. doi: 10.3354/meps10999 CrossRefGoogle Scholar
  77. Silverman J, Lazar B, Cao L, Caldeira K, Erez J (2009) Coral reefs may start dissolving when atmospheric CO2 doubles. Geophys Res Lett 36(5):L05606. doi: 10.1029/2008GL036282 CrossRefGoogle Scholar
  78. Silverman J, Schneider K, Kline DI, Rivlin T, Rivlin A, Hamylton S, Lazar B, Erez J, Caldeira K (2014) Community calcification in Lizard Island, great barrier reef: a 33 year perspective. Geochim Cosmochim Acta 144:72–81. doi: 10.1016/j.gca.2014.09.011 CrossRefGoogle Scholar
  79. Skinner MP, Brewer TD, Johnstone R, Fleming LE, Lewis RJ (2011) Ciguatera fish poisoning in the Pacific Islands (1998 to 2008). PLoS Negl Trop Dis 5(12):e1416. doi: 10.1371/journal.pntd.0001416 CrossRefGoogle Scholar
  80. Slater MJ, Carton AG (2007) Survivorship and growth of the sea cucumber Australostichopus (Stichopus) mollis (Hutton 1872) in polyculture trials with green-lipped mussel farms. Aquaculture 272:389–398. doi: 10.1016/j.aquaculture.2007.07.230 CrossRefGoogle Scholar
  81. Soto D (2009) Integrated mariculture, a global review. FAO Technical Paper. No. 529, Food and Agriculture Organisation, Rome. Accessed 15 Nov 2015
  82. SPC (2012) Breaking the boom-and-bust cycle: sea cucumber a lucrative trade? Secretariat of the Pacific Community Fisheries Newsletter #138—May/August 2012, pp 28–29Google Scholar
  83. SPREP (2015) Taking action on Ocean Acidification in the Pacific islands. Secretariat of the Pacific Regional Environment Program, Samoa. Accessed 26 Nov 2015
  84. Trenberth KE, Fasullo JT, Shepherd TG (2015) Attribution of climate extreme events. Nature Clim Change 5:725–730. doi: 10.1038/nclimate2657 CrossRefGoogle Scholar
  85. UNFCCC (2005) Climate change, Small Island Developing States. Climate Change Secretariat (UNFCCC), Bonn, Germany.
  86. UNWTO (2014) Tourism in Small Island Developing States: building a more sustainable future for the people of Islands. United Nations World Tourism Office, Madrid. doi: 10.18111/9789284416905 Google Scholar
  87. Waldbusser GG, Hales B, Langdon CJ, Haley BA, Schrader P, Brunner EL, Gray MW, Miller CA, Gimenez I, Hutchinson G (2015) Ocean acidification has multiple modes of action on bivalve larvae. PLoS ONE 10(6):e0128376. doi: 10.1371/journal.pone.0128376 CrossRefGoogle Scholar
  88. Watson S-A, Southgate PC, Tyler PA, Peck LS (2009) Early larval development of the Sydney rock oyster Saccostrea glomerata under near-future predictions of CO2-driven ocean acidification. J Shellfish Res 28:431–437. doi: 10.2983/035.028.0302 CrossRefGoogle Scholar
  89. Welch C (2013) Sea change: oysters dying as coast hit hard: a Washington family opens a hatchery in Hawaii to escape lethal waters. Seattle Times 11/9/2013. Accessed 27 Nov 2015
  90. Wilkinson C (ed) (2008) Status of coral reefs of the world: 2008. Global Coral Reef Monitoring Network and Reef and Rainforest Research Centre, TownsvilleGoogle Scholar
  91. Witze A (2014) Florida forecasts sinkhole burden. Nature 504:196–197. doi: 10.1038/504196a CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Fenner School of Environment and SocietyAustralian National UniversityCanberraAustralia
  2. 2.Research School of Physics and EngineeringAustralian National UniversityCanberraAustralia

Personalised recommendations