Regional Environmental Change

, Volume 16, Issue 7, pp 2059–2069 | Cite as

Soil carbon stocks after conversion of Amazonian tropical forest to grazed pasture: importance of deep soil layers

  • Clément Stahl
  • Vincent Freycon
  • Sébastien Fontaine
  • Camille Dezécache
  • Lise Ponchant
  • Catherine Picon-Cochard
  • Katja Klumpp
  • Jean-François Soussana
  • Vincent Blanfort
Original Article

Abstract

Recent studies suggest that carbon (C) is stored in the topsoil of pastures established after deforestation. However, little is known about the long-term capacity of tropical pastures to sequester C in different soil layers after deforestation. Deep soil layers are generally not taken into consideration or are underestimated when C storage is calculated. Here we show that in French Guiana, the C stored in the deep soil layers contributes significantly to C stocks down to a depth of 100 cm and that C is sequestered in recalcitrant soil organic matter in the soil below a depth of 20 cm. The contribution of the 50–100 cm soil layer increased from 22 to 31 % with the age of the pasture. We show that long-term C sequestration in C4 tropical pastures is linked to the development of C3 species (legumes and shrubs), which increase both inputs of N into the ecosystem and the C:N ratio of soil organic matter. The deep soil under old pastures contained more C3 carbon than the native forest. If C sequestration in the deep soil is taken into account, our results suggest that the soil C stock in pastures in Amazonia would be higher with sustainable pasture management, in particular by promoting the development of legumes already in place and by introducing new species.

Keywords

C3 contribution Deep soil C Native forest Old pasture Mixed-grass pasture 

Supplementary material

10113_2016_936_MOESM1_ESM.docx (81 kb)
Supplementary material 1 (DOCX 81 kb)

References

  1. Asner GP, Townsend AR, Bustamante MMC, Nardoto GB, Olander LP (2004) Pasture degradation in the Central Amazon: linking changes in carbon and nutrient cycling with remote sensing. Global Change Biol 10:844–862. doi:10.1111/j.1529-8817.2003.00766.x CrossRefGoogle Scholar
  2. Bahr E, Zaragocin DC, Makeschin F (2014) Soil nutrient stock dynamics and land-use management of annuals, perennials and pastures after slash-and-burn in the Southern Ecuadorian Andes. Agric Ecosyst Environ 188:275–288. doi:10.1016/j.agee.2014.03.005 CrossRefGoogle Scholar
  3. Balesdent J, Wagner GH, Mariotti A (1988) Soil organic matter turnover in long-term field experiments as revealed by carbon-13 natural abundance. Soil Sci Soc Am J 52:118CrossRefGoogle Scholar
  4. Bonal D, Bosc A, Ponton S, Goret J-Y, Burban B, Gross P, Bonnefond J-M, Elbers JAN, Longdoz B, Epron D, Guehl J-M, Granier A (2008) Impact of severe dry season on net ecosystem exchange in the Neotropical rainforest of French Guiana. Global Change Biol 14:1917–1933. doi:10.1111/j.1365-2486.2008.01610.x CrossRefGoogle Scholar
  5. Bonde TA, Christensen BT, Cerri CC (1992) Dynamics of soil organic matter as reflected by natural 13C abundance in particle size fractions of forested and cultivated oxisols. Soil Biol Biochem 24:275–277CrossRefGoogle Scholar
  6. Bowden RD, Davidson E, Savage K, Arabia C, Steudler P (2004) Chronic nitrogen additions reduce total soil respiration and microbial respiration in temperate forest soils at the Harvard forest. For Ecol Manag 196:43–56CrossRefGoogle Scholar
  7. Cerri CEP, Paustian K, Bernoux M, Victoria RL, Melillo JM, Cerri CC (2004) Modeling changes in soil organic matter in Amazon forest to pasture conversion with the Century model. Global Change Biol 10:815–832. doi:10.1111/j.1529-8817.2003.00759.x CrossRefGoogle Scholar
  8. de Koning GHJ, Veldkamp E, Lopez-Ulloa M (2003) Quantification of carbon sequestration in soils following pasture to forest conversion in northwestern Ecuador. Global Biogeochem Cycles. doi:10.1029/2003GB002099 Google Scholar
  9. Desjardins T, Barros E, Sarrazin M, Girardin C, Mariotti A (2004) Effects of forest conversion to pasture on soil carbon content and dynamics in Brazilian Amazonia. Agric Ecosyst Environ 103:365–373. doi:10.1016/j.agee.2003.12.008 CrossRefGoogle Scholar
  10. Don A, Schumacher J, Freibauer A (2011) Impact of tropical land-use change on soil organic carbon stocks—a meta-analysis. Global Change Biol 17:1658–1670. doi:10.1111/j.1365-2486.2010.02336.x CrossRefGoogle Scholar
  11. Dümig A, Knicker H, Schad P, Rumpel C, Dignac MF, Kögel-Knabner I (2009) Changes in soil organic matter composition are associated with forest encroachment into grassland with long-term fire history. Eur J Soil Sci 60:578–589. doi:10.1111/j.1365-2389.2009.01140.x CrossRefGoogle Scholar
  12. Eclesia RP, Jobbagy EG, Jackson RB, Biganzoli F, Piñeiro G (2012) Shifts in soil organic carbon for plantation and pasture establishment in native forests and grasslands of South America. Global Change Biol 18:3237–3251. doi:10.1111/j.1365-2486.2012.02761.x CrossRefGoogle Scholar
  13. Ellert BH, Janzen HH, Entz T (2002) Assessment of a method to measure temporal change in soil C storage. Soil Sci Soc Am J 66:1787–1795CrossRefGoogle Scholar
  14. Falesi I (1976) Ecosistema de pastagem cultivada na Amazônia Brasileira. Boletim Técnico No. 1. EMBRAPA/CPATU, Belém, Para, Brazil, pp 193Google Scholar
  15. Fisher MJ, Rao IM, Ayarra MA, Lascano CE, Sanz JI, Thomas RJ, Vera RR (1994) Carbon storage by introduced deep-rooted grasses in the South American savannas. Nature 371:236–238CrossRefGoogle Scholar
  16. Fontaine S, Barot S (2005) Size and functional diversity of microbe populations control plant persistence and long-term soil carbon accumulation. Ecol Lett 8:1075–1087. doi:10.1111/j.1461-0248.2005.00813.x CrossRefGoogle Scholar
  17. Fontaine S, Bardoux G, Abbadie L, Mariotti A (2004) Carbon input to soil may decrease soil carbon content. Ecol Lett 7:314–320. doi:10.1111/j.1461-0248.2004.00579.x CrossRefGoogle Scholar
  18. Fontaine S, Barot S, Barre P, Bdioui N, Mary B, Rumpel C (2007) Stability of organic carbon in deep soil layers controlled by fresh carbon supply. Nature 450:277–280. doi:10.1038/nature06275 CrossRefGoogle Scholar
  19. Freycon V, Krencker M, Schwartz D, Nasi R, Bonal D (2010) The impact of climate changes during the Holocene on vegetation in northern French Guiana. Quat Res 73:220–225. doi:10.1016/j.yqres.2009.11.007 CrossRefGoogle Scholar
  20. Fujisaki K, Perrin AS, Desjardins T, Bernoux M, Balbino LC, Brossard M (2015) From forest to cropland and pasture systems: a critical review of soil organic carbon stocks changes in Amazonia. Global Change Biol 21:2773–2786. doi:10.1111/gcb.12906 CrossRefGoogle Scholar
  21. Gifford RM, Roderick ML (2003) Soil carbon stocks and bulk density: Spatial or cumulative mass coordinates as a basis of expression? Global Change Biol 9:1507–1514. doi:10.1046/j.1365-2486.2003.00677.x CrossRefGoogle Scholar
  22. Gourlet-Fleury S, Laroussinie O, Guehl J-M (2004) Ecology and management of a Neotropical rainforest. Lessons drawn from Paracou, a long-term experimental research site in French Guiana. Elsevier, Paris, p 311Google Scholar
  23. Guo LB, Gifford RM (2002) Soil carbon stocks and land use change: a meta analysis. Global Change Biol 8:345–360CrossRefGoogle Scholar
  24. Hagedorn F, Spinnler D, Siegwolf R (2003) Increased N deposition retards mineralization of old soil organic matter. Soil Biol Biochem 35:1683–1692CrossRefGoogle Scholar
  25. Huggett RJ (1998) Soil chronosequences, soil development, and soil evolution: acritical review. Catena 32:155–172CrossRefGoogle Scholar
  26. Huguenin J, Blanfort V, Navegantes L, Dufour M (2010) Configuration of livestock rearing areas in order to maintain the stability of forage systems considering the biophysical hazards of humid tropical climates—example in French Guyana. Adv Anim Biosci 1(02):434–435CrossRefGoogle Scholar
  27. IUSS Working Group WRB (2006) World reference base for soil resources 2006. FAO, RomeGoogle Scholar
  28. Jobbagy EG, Jackson RB (2000) The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol Appl 10:423–436CrossRefGoogle Scholar
  29. Kirschbaum MUF, Guo LB, Gifford RM (2008) Why does rainfall affect the trend in soil carbon after converting pastures to forests? A possible explanation based on nitrogen dynamics. For Ecol Manag 255:2990–3000. doi:10.1016/j.foreco.2008.02.005 CrossRefGoogle Scholar
  30. Koutika LS, Bartoli F, Andreux F, Cerri CC, Burtin G, Choné T, Philippy R (1997) Organic matter dynamics and aggregation in soils under rain forest and pastures of increasing age in the eastern Amazon Basin. Geoderma 76:87–112CrossRefGoogle Scholar
  31. Krull ES, Skjemstad JO (2003) δ13C and δ15N profiles in 14C-dated oxisol and vertisols as a function of soil chemistry and mineralogy. Geoderma 112:1–29CrossRefGoogle Scholar
  32. Laganière J, Angers DA, Paré D (2010) Carbon accumulation in agricultural soils after afforestation: a meta-analysis. Global Change Biol 16:439–453. doi:10.1111/j.1365-2486.2009.01930.x CrossRefGoogle Scholar
  33. Lal R (2004) Soil carbon sequestration impact on global climate change and food security. Science 304:1623–1627. doi:10.1126/science.1097396 CrossRefGoogle Scholar
  34. Lopez-Ulloa M, Veldkamp E, De Koning GHJ (2005) Soil carbon stabilization in converted tropical pastures and forests depends on soil type. Soil Sci Soc Am J 69:1110–1117CrossRefGoogle Scholar
  35. Maia SMF, Ogle SM, Cerri CEP, Cerri CC (2009) Effect of grassland management on soil carbon sequestration in Rondônia and Mato Grosso states, Brazil. Geoderma 149:84–91. doi:10.1016/j.geoderma.2008.11.023 CrossRefGoogle Scholar
  36. McSherry ME, Ritchie ME (2013) Effects of grazing on grassland soil carbon: a global review. Global Change Biol 19:1347–1357. doi:10.1111/gcb.12144 CrossRefGoogle Scholar
  37. Moraes JFL, Volkoff B, Cerri CC, Bernoux M (1996) Soil properties under Amazon forest and changes due to pasture installation in Rondônia, Brazil. Geoderma 70:63–81CrossRefGoogle Scholar
  38. Mosquera O, Buurman P, Ramirez BL, Amezquita MC (2012) Carbon stocks and dynamics under improved tropical pasture and silvopastoral systems in Colombian Amazonia. Geoderma 190:81–86. doi:10.1016/j.geoderma.2012.04.022 CrossRefGoogle Scholar
  39. Müller MML, Guimarães MF, Desjardins T, Mitja D (2004) The relationship between pasture degradation and soil properties in the Brazilian amazon: a case study. Agric Ecosyst Environ 103:279–288. doi:10.1016/j.agee.2003.12.003 CrossRefGoogle Scholar
  40. Neill C, Melillo JM (1997) Soil carbon and nitrogen stocks following forest clearing for pasture in the southwestern Brazilian Amazon. Ecol Appl 7:1216–1225CrossRefGoogle Scholar
  41. Neill C, Fry B, Melillo J, Steudler P, Moraes JL, Cerri C (1996) Forest- and pasture-derived carbon contributions to carbon stocks and microbial respiration of tropical pasture soils. Oecologia 107:113–119CrossRefGoogle Scholar
  42. Piñeiro G, Paruelo JM, Jobbagy EG, Jackson RB, Oesterheld M (2009) Grazing effects on belowground C and N stocks along a network of cattle exclosures in temperate and subtropical grasslands of South America. Global Biogeochem Cycles 23:GB2003CrossRefGoogle Scholar
  43. Powers JS, Schlesinger WH (2002) Relationships among soil carbon distributions and biophysical factors at nested spatial scales in rain forests of northeastern Costa Rica. Geoderma 109:165–190CrossRefGoogle Scholar
  44. Powers JS, Veldkamp E (2005) Regional variation in soil carbon and δ13C in forests and pastures of northeastern Costa Rica. Biogeochemistry 72:315–336. doi:10.1007/s10533-004-0368-7 CrossRefGoogle Scholar
  45. R Development Core Team (2010) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org/
  46. Rumpel C, Kögel-Knabner I (2011) Deep soil organic matter—a key but poorly understood component of terrestrial C cycle. Plant Soil 338:143–158. doi:10.1007/s11104-010-0391-5 CrossRefGoogle Scholar
  47. Salimon CI, Davidson EA, Victoria RL, Melo AWF (2004) CO2 flux from soil in pastures and forests in southwestern Amazonia. Global Change Biol 10:833–843. doi:10.1111/j.1529-8817.2003.00776.x CrossRefGoogle Scholar
  48. Schipper LA, Parfitt RL, Ross C, Baisden WT, Claydon JJ, Fraser S (2010) Gains and losses in C and N stocks of New Zealand pasture soils depend on land use. Agric Ecosyst Environ 139:611–617. doi:10.1016/j.agee.2010.10.005 CrossRefGoogle Scholar
  49. Smith P (2014) Do grasslands act as a perpetual sink for carbon? Global Change Biol 20:2708–2711. doi:10.1111/gcb.12561 CrossRefGoogle Scholar
  50. Stahl C, Burban B, Bompy F, Jolin ZB, Sermage J, Bonal D (2010) Seasonal variation in atmospheric relative humidity contributes to explaining seasonal variation in trunk circumference of tropical rain-forest trees in French Guiana. J Trop Ecol 26:393–405. doi:10.1017/S0266467410000155 CrossRefGoogle Scholar
  51. Trumbore SE, Davidson EA, De Camargo PB, Nepstad DC, Martinelli LA (1995) Belowground cycling of carbon in forests and pastures of Eastern Amazonia. Global Biogeochem Cycles 9:515–528CrossRefGoogle Scholar
  52. Zinn YL, Lal R, Resck DVS (2005) Texture and organic carbon relations described by a profile pedotransfer function for Brazilian Cerrado soils. Geoderma 127:168–173. doi:10.1016/j.geoderma.2005.02.010 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Clément Stahl
    • 1
    • 2
  • Vincent Freycon
    • 3
  • Sébastien Fontaine
    • 4
  • Camille Dezécache
    • 1
    • 5
  • Lise Ponchant
    • 1
    • 5
  • Catherine Picon-Cochard
    • 4
  • Katja Klumpp
    • 4
  • Jean-François Soussana
    • 4
  • Vincent Blanfort
    • 1
    • 5
  1. 1.CIRAD Joint Research Unit 112 Selmet, “Tropical and Mediterranean Animal Production Systems”MontpellierFrance
  2. 2.Department of BiologyUniversity of AntwerpWilrijkBelgium
  3. 3.UR 105 BsefCIRADMontpellierFrance
  4. 4.UR 874, UREP, Grassland Ecosystem Research TeamINRAClermont-FerrandFrance
  5. 5.UMR 0745 EcofogCIRADKourouFrance

Personalised recommendations