Skip to main content

Advertisement

Log in

Climatic risks and impacts in South Asia: extremes of water scarcity and excess

  • Original Article
  • Published:
Regional Environmental Change Aims and scope Submit manuscript

Abstract

This paper reviews the current knowledge of climatic risks and impacts in South Asia associated with anthropogenic warming levels of 1.5–4 °C above pre-industrial values in the twenty-first century. It is based on the World Bank Report “Turn Down the Heat, Climate Extremes, Regional Impacts and the Case for Resilience” (2013b) . Many of the climate change impacts in the region, which appear quite severe even with relatively modest warming of 1.5–2 °C, pose significant hazards to development. For example, increased monsoon variability and loss or glacial meltwater will likely confront populations with ongoing and multiple challenges. The result is a significant risk to stable and reliable water resources for the region, with increases in peak flows potentially causing floods and dry season flow reductions threatening agriculture. Irrespective of the anticipated economic development and growth, climate projections indicate that large parts of South Asia’s growing population and especially the poor are likely to remain highly vulnerable to climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Ajayamohan RS, Rao SA (2008) Indian Ocean dipole modulates the number of extreme rainfall events over india in a warming environment. J Meteorol Soc Jpn. doi:10.2151/jmsj.86.245

    Google Scholar 

  • Allen MR, Ingram WJ (2002) Constraints on future changes in climate and the hydrologic cycle. Nature 419:224–232. doi:10.1038/nature01092

    Article  CAS  Google Scholar 

  • Arnell NW, Gosling SN (2013) The impacts of climate change on river flow regimes at the global scale. J Hydrol 486:351–364. doi:10.1016/j.jhydrol.2013.02.010

    Article  Google Scholar 

  • Auffhammer M, Ramanathan V, Vincent JR (2006) Integrated model shows that atmospheric brown clouds and greenhouse gases have reduced rice harvests in India. Proc Natl Acad Sci USA 103:19668–19672. doi:10.1073/pnas.0609584104

    Article  CAS  Google Scholar 

  • Auffhammer M, Ramanathan V, Vincent JR (2011) Climate change, the monsoon, and rice yield in India. Clim Change 111:411–424. doi:10.1007/s10584-011-0208-4

    Article  Google Scholar 

  • Bates B, Kundzewicz ZW, Wu S, Palutikof J (2008) Climate change and water, Technical paper of the intergovernmental panel on climate change. IPCC Secretariat, Geneva

    Google Scholar 

  • Béguin A, Hales S, Rocklöv J, Åström C, Louis VR, Sauerborn R (2011) The opposing effects of climate change and socio-economic development on the global distribution of malaria. Glob Environ Chang 21:1209–1214. doi:10.1016/j.gloenvcha.2011.06.001

    Article  Google Scholar 

  • Bierbaum RM, Fay M, Ross-Larson B (eds) (2009) World development report 2010: development and climate change. World Development Report. World Bank Group, Washington, DC. http://documents.worldbank.org/curated/en/2010/01/11831971/world-development-report-2010-development-climate-change

  • Bollasina MA, Ming Y, Ramaswamy V (2011) Anthropogenic aerosols and the weakening of the South Asian summer monsoon. Science 334:502–505. doi:10.1126/science.1204994

    Article  CAS  Google Scholar 

  • Brecht H, Dasgupta S, Laplante B, Murray S, Wheeler D (2012) Sea-level rise and storm surges: high stakes for a small number of developing countries. J Environ Dev 21:120–138. doi:10.1177/1070496511433601

    Article  Google Scholar 

  • Caron L-P, Jones CG (2008) Analysing present, past and future tropical cyclone activity as inferred from an ensemble of coupled global climate models. Tellus A 60:80–96. doi:10.1111/j.1600-0870.2007.00291.x

    Article  Google Scholar 

  • Challinor AJ, Wheeler TR (2008) Crop yield reduction in the tropics under climate change: processes and uncertainties. Agric For Meteorol 148:343–356. doi:10.1016/j.agrformet.2007.09.015

    Article  Google Scholar 

  • Challinor AJ, Wheeler TR, Garforth C, Craufurd P, Kassam A (2007) Assessing the vulnerability of food crop systems in Africa to climate change. Clim Change 83:381–399. doi:10.1007/s10584-007-9249-0

    Article  Google Scholar 

  • Chattopadhyay M, Abbs D (2012) On the variability of projected tropical cyclone genesis in GCM ensembles. Tellus A 1:1–11

    Google Scholar 

  • Chou C, Tu J-Y, Tan P-H (2007) Asymmetry of tropical precipitation change under global warming. Geophys Res Lett 34:L17708. doi:10.1029/2007GL030327

    Article  Google Scholar 

  • Collins M, AchutaRao K, Ashok K, Bhandari S, Mitra AK, Prakash S, Srivastava R, Turner A (2013) Observational challenges in evaluating climate models. Nat Clim Change 3:940–941. doi:10.1038/nclimate2012

    Article  Google Scholar 

  • Coumou D, Robinson A (2013) Historic and future increase in the global land area affected by monthly heat extremes. Environ Res Lett 8:034018. doi:10.1088/1748-9326/8/3/034018

    Article  Google Scholar 

  • Dai A (2012) Increasing drought under global warming in observations and models. Nat Clim Change. doi:10.1038/nclimate1633

    Google Scholar 

  • De Fraiture C, Wichelns D (2010) Satisfying future water demands for agriculture. Agric Water Manag 97:502–511. doi:10.1016/j.agwat.2009.08.008

    Article  Google Scholar 

  • De Stefano L, Duncan J, Dinar S, Stahl K, Strzepek KM, Wolf AT (2012) Climate change and the institutional resilience of international river basins. J Peace Res 49:193–209. doi:10.1177/0022343311427416

    Article  Google Scholar 

  • Deka RL, Mahanta C, Pathak H, Nath KK, Das S (2012) Trends and fluctuations of rainfall regime in the Brahmaputra and Barak basins of Assam. Theor Appl Climatol, India. doi:10.1007/s00704-012-0820-x

    Google Scholar 

  • Diffenbaugh NS, Scherer M, Ashfaq M (2012) Response of snow-dependent hydrologic extremes to continued global warming. Nat Clim Chang 3:379–384. doi:10.1038/nclimate1732

    Article  Google Scholar 

  • Döll P (2009) Vulnerability to the impact of climate change on renewable groundwater resources: a global-scale assessment. Environ Res Lett 4:035006. doi:10.1088/1748-9326/4/3/035006

    Article  Google Scholar 

  • Douglas I (2009) Climate change, flooding and food security in south Asia. Food Secur 1:127–136. doi:10.1007/s12571-009-0015-1

    Article  Google Scholar 

  • Ebi KL, Woodruff R, Hildebrand A, Corvalan C (2007) Climate Change-related Health Impacts in the Hindu Kush–Himalayas. EcoHealth 4:264–270. doi:10.1007/s10393-007-0119-z

    Article  Google Scholar 

  • Elsner JB, Kossin JP, Jagger TH (2008) The increasing intensity of the strongest tropical cyclones. Nature 455:92–95. doi:10.1038/nature07234

    Article  CAS  Google Scholar 

  • Emanuel K, Sundararajan R, Williams J (2008) Hurricanes and global warming: results from downscaling IPCC AR4 simulations. Bull Am Meteorol Soc 89:347–367. doi:10.1175/BAMS-89-3-347

    Article  Google Scholar 

  • Endo H, Kitoh A, Ose T, Mizuta R, Kusunoki S (2012) Future changes and uncertainties in Asian precipitation simulated by multiphysics and multi-sea surface temperature ensemble experiments with high-resolution Meteorological Research Institute atmospheric general circulation models (MRI-AGCMs). J Geophys Res 117:D16118. doi:10.1029/2012JD017874

    Article  Google Scholar 

  • ESCAP (2011) Statistical Yearbook for Asia and the Pacific 2011. United Nations, Economic and Social Commission for Asia and the Pacific, Bangkok

    Google Scholar 

  • Fung F, Lopez A, New M (2011) Water availability in +2°C and +4°C worlds. Philos Trans A Math Phys Eng Sci 369:99–116. doi:10.1098/rsta.2010.0293

    Article  Google Scholar 

  • Gadgil S, Rupa Kumar K (2006) The Asian monsoon—agriculture and economy. In: Wang B (ed) The Asian monsoon. Springer, Berlin, pp 651–683

    Chapter  Google Scholar 

  • Gain AK, Immerzeel WW, Sperna Weiland FC, Bierkens MFP (2011) Impact of climate change on the stream flow of the lower Brahmaputra: trends in high and low flows based on discharge-weighted ensemble modelling. Hydrol Earth Syst Sci 15:1537–1545. doi:10.5194/hess-15-1537-2011

    Article  Google Scholar 

  • Gautam PK (2012) Climate change and conflict in South Asia. Strateg Anal 36(1):32–40. doi:10.1080/09700161.2012.628482

    Article  Google Scholar 

  • Gautam R, Hsu NC, Lau KM, Kafatos M (2009) Aerosol and rainfall variability over the Indian monsoon region: distributions, trends and coupling. Ann Geophys 27:3691–3703. doi:10.5194/angeo-27-3691-2009

    Article  CAS  Google Scholar 

  • Gemenne F (2011) Why the numbers don’t add up: a review of estimates and predictions of people displaced by environmental changes. Glob Environ Change 21:S41–S49. doi:10.1016/j.gloenvcha.2011.09.005

    Article  Google Scholar 

  • Gerten D, Heinke J, Hoff H, Biemans H, Fader M, Waha K (2011) Global water availability and requirements for future food production. J Hydrometeorol 12:885–899. doi:10.1175/2011JHM1328.1

    Article  Google Scholar 

  • Ghosh S, Dutta S (2012) Impact of climate change on flood characteristics in Brahmaputra basin using a macro-scale distributed hydrological model. J Earth Syst Sci 121:637–657. doi:10.1007/s12040-012-0181-y

    Article  Google Scholar 

  • Giorgi F, Im E-S, Coppola E, Diffenbaugh NS, Gao XJ, Mariotti L, Shi Y (2011) Higher hydroclimatic intensity with global warming. J Clim 24:5309–5324. doi:10.1175/2011JCLI3979.1

    Article  Google Scholar 

  • Gornall J, Betts R, Burke E, Clark R, Camp J, Willett K, Wiltshire A (2010) Implications of climate change for agricultural productivity in the early twenty-first century. Philos Trans R Soc Lond B Biol Sci 365:2973–2989. doi:10.1098/rstb.2010.0158

    Article  Google Scholar 

  • Goswami BN, Venugopal V, Sengupta D, Madhusoodanan MS, Xavier PK (2006) Increasing trend of extreme rain events over India in a warming environment. Science 314:1442–1445. doi:10.1126/science.1132027

    Article  CAS  Google Scholar 

  • Green TR, Taniguchi M, Kooi H, Gurdak JJ, Allen DM, Hiscock KM, Treidel H, Aureli A (2011) Beneath the surface of global change: impacts of climate change on groundwater. J Hydrol 405:532–560. doi:10.1016/j.jhydrol.2011.05.002

    Article  Google Scholar 

  • Gualdi S, Scoccimarro E, Navarra A (2008) Changes in tropical cyclone activity due to global warming: results from a high-resolution coupled general circulation model. J Clim 21:5204–5228. doi:10.1175/2008JCLI1921.1

    Article  Google Scholar 

  • Hajat S, Kosatky T, Kosatsky T (2010) Heat-related mortality: a review and exploration of heterogeneity. J Epidemiol Community Health 64:753–760. doi:10.1136/jech.2009.087999

    Article  Google Scholar 

  • Hallegatte S, Bangalore M, Bonzanigo L, Fay M, Narloch U, Rozenberg J, Vogt-Schilb A (2014) Climate change and poverty—an analytical framework. World Bank, Washington, DC

  • Hertel TW, Burke MB, Lobell DB (2010) The poverty implications of climate-induced crop yield changes by 2030. Glob Environ Chang 20:577–585. doi:10.1016/j.gloenvcha.2010.07.001

    Article  Google Scholar 

  • Hugo G (2011) Future demographic change and its interactions with migration and climate change. Glob Environ Chang 21:S21–S33. doi:10.1016/j.gloenvcha.2011.09.008

    Article  Google Scholar 

  • Huq S, Ali SI, Rahman AA (1995) Sea-level rise and Bangladesh: a preliminary analysis. J Coast Res 44–53 (Special Issue No. 14)

  • Iglesias A, Erda L, Rosenzweig C (1996) Climate change in Asia: a review of the vulnerability and adaptation of crop production. Water Air Soil Pollut 92:13–27

    CAS  Google Scholar 

  • Immerzeel WW, van Beek LPH, Bierkens MFP (2010) Climate change will affect the Asian water towers. Science 328:1382–1385. doi:10.1126/science.1183188

    Article  CAS  Google Scholar 

  • Jacoby H, Mariano R, Skoufias E (2011) Distributional Implications of Climate Change in India. World Bank, Washington, DC

  • Jourdain NC, Gupta AS, Taschetto AS, Ummenhofer CC, Moise AF, Ashok K (2013) The Indo-Australian monsoon and its relationship to ENSO and IOD in reanalysis data and the CMIP3/CMIP5 simulations. Clim Dyn 41:3073–3102. doi:10.1007/s00382-013-1676-1

    Article  Google Scholar 

  • Kalra N, Chakraborty D, Sharma A, Rai HK, Jolly M, Chander S, Kumar PR, Bhadraray S, Barman D, Mittal RB, Lal M, Sehgal M (2008) Effect of increasing temperature on yield of some winter crops in northwest India. Curr Sci 94:82–88

    Google Scholar 

  • Khan AE, Ireson A, Kovats S, Mojumder SK, Khusru A, Rahman A, Vineis P (2011a) Drinking water salinity and maternal health in coastal Bangladesh: implications of climate change. Environ Health Perspect 119:1328–1332. doi:10.1289/ehp.1002804

    Article  CAS  Google Scholar 

  • Khan AE, Xun WW, Ahsan H, Vineis P (2011b) Climate change, sea-level rise, & health impacts in Bangladesh. Environ Sci Policy Sustain Dev 53:37–41. doi:10.1080/00139157.2011.604008

    Article  Google Scholar 

  • Kim D-W, Byun H-R (2009) Future pattern of Asian drought under global warming scenario. Theor Appl Climatol 98:137–150. doi:10.1007/s00704-008-0100-y

    Article  Google Scholar 

  • Kim J-H, Brown SJ, McDonald RE (2011) Future changes in tropical cyclone genesis in fully dynamic ocean- and mixed layer ocean-coupled climate models: a low-resolution model study. Clim Dyn 37:737–758. doi:10.1007/s00382-010-0855-6

    Article  Google Scholar 

  • Knutson TR, McBride JL, Chan J, Emanuel K, Holland G, Landsea C, Held I, Kossin JP, Srivastava AK, Sugi M (2010) Tropical cyclones and climate change. Nat Geosci 3:157–163. doi:10.1038/ngeo779

    Article  CAS  Google Scholar 

  • Kripalani RH, Oh JH, Kulkarni A, Sabade SS, Chaudhari HS (2007) South Asian summer monsoon precipitation variability: coupled climate model simulations and projections under IPCC AR4. Theor Appl Climatol 90:133–159. doi:10.1007/s00704-006-0282-0

    Article  Google Scholar 

  • Krishnan R, Sabin TP, Ayantika DC, Kitoh A, Sugi M, Murakami H, Turner AG, Slingo JM, Rajendran K (2012) Will the South Asian monsoon overturning circulation stabilize any further? Clim Dyn 40:187–211. doi:10.1007/s00382-012-1317-0

    Article  Google Scholar 

  • Kumar KK, Kamala K, Rajagopalan B, Hoerling MP, Eischeid JK, Patwardhan SK, Srinivasan G, Goswami BN, Nemani R (2010) The once and future pulse of Indian monsoonal climate. Clim Dyn 36:2159–2170. doi:10.1007/s00382-010-0974-0

    Article  Google Scholar 

  • Ladha JK, Dawe D, Pathak H, Padre AT, Yadav RL, Singh B, Singh Y, Singh Y, Singh P, Kundu AL, Sakal R, Ram N, Regmi AP, Gami SK, Bhandari AL, Amin R, Yadav CR, Bhattarai EM, Das S, Aggarwal HP, Gupta RK, Hobbs PR (2003) How extensive are yield declines in long-term rice—Wheat experiments in Asia? F Crop Res 81:159–180. doi:10.1016/S0378-4290(02)00219-8

    Article  Google Scholar 

  • Lal M (2011) Implications of climate change in sustained agricultural productivity in South Asia. Reg Environ Chang 11:79–94. doi:10.1007/s10113-010-0166-9

    Article  Google Scholar 

  • Lin M, Huybers P (2012) Reckoning wheat yield trends. Environ Res Lett 7:024016. doi:10.1088/1748-9326/7/2/024016

    Article  Google Scholar 

  • Lloyd SJ, Kovats RS, Chalabi Z (2011) Children’ s Health climate change, crop yields, and undernutrition: development of a model to quantify the impact of climate scenarios on child undernutrition. Environ Health Perspect 119:1817–1824

    Article  Google Scholar 

  • Lobell DB, Schlenker W, Costa-Roberts J (2011) Climate trends and global crop production since 1980. Science 333:616–620. doi:10.1126/science.1204531

    Article  CAS  Google Scholar 

  • Lobell DB, Sibley AS, Ivan Ortiz-Monasterio J, Ortiz-Monasterio JI (2012) Extreme heat effects on wheat senescence in India. Nat Clim Chang 2:186–189. doi:10.1038/nclimate1356

    Article  Google Scholar 

  • Mall RK, Singh R, Gupta A, Srinivasan G, Rathore LS (2006) Impact of climate change on Indian agriculture: a review. Clim Change 78:445–478. doi:10.1007/s10584-005-9042-x

    Article  Google Scholar 

  • May W (2010) The sensitivity of the Indian summer monsoon to a global warming of 2°C with respect to pre-industrial times. Clim Dyn 37:1843–1868. doi:10.1007/s00382-010-0942-8

    Article  Google Scholar 

  • Mearns R, Norton A (2009) Social dimensions of climate change: equity and vulnerability in a warming world. New frontiers of social policy. World Bank, Washington, DC

    Google Scholar 

  • Menon A, Levermann A, Schewe J, Lehmann J, Frieler K (2013a) Consistent increase in Indian monsoon rainfall and its variability across CMIP-5 models. Earth Syst Dyn 4:287–300. doi:10.5194/esd-4-287-2013

    Article  Google Scholar 

  • Menon A, Levermann A, Schewe J (2013b) Enhanced future variability during India’s rainy season. Geophys Res Lett 40:3242–3247. doi:10.1002/grl.50583

    Article  Google Scholar 

  • Ministry of Environment and Forests, Government of India (2012) India second National Communication to the United Nations Framework Convention on Climate Change. United Nations Development Programme, New Delhi

  • Mirza MMQ (2010) Climate change, flooding in South Asia and implications. Reg Environ Change 11:95–107. doi:10.1007/s10113-010-0184-7

    Article  Google Scholar 

  • Müller C, Bondeau A, Popp A, Waha K (2010) Development and climate change background note—climate change impacts on agricultural yield. Potsdam, Washington, DC

    Google Scholar 

  • Murakami H, Wang Y, Yoshimura H, Mizuta R, Sugi M, Shindo E, Adachi Y, Yukimoto S, Hosaka M, Kusunoki S, Ose T, Kitoh A (2012) Future changes in tropical cyclone activity projected by the new high-resolution MRI-AGCM*. J Clim 25:3237–3260. doi:10.1175/JCLI-D-11-00415.1

    Article  Google Scholar 

  • Murakami H, Sugi M, Kitoh A (2013) Future changes in tropical cyclone activity in the North Indian Ocean projected by high-resolution MRI-AGCMs. Clim Dyn 40:1949–1968. doi:10.1007/s00382-012-1407-z

    Article  Google Scholar 

  • NASA (2007) Powerful tropical cyclone Sidr makes landfall in Bangladesh. http://www.nasa-usa.de/mission_pages/hurricanes/archives/2007/h2007_sidr.html. Accessed 26 Jan 2015

  • Nelson GC, Rosegrant MW, Koo J, Robertson R, Sulser T, Zhu T, Ringler C, Msangi S, Palazzo A, Batka M, Magalhaes M, Valmonte-Santos R, Ewing M, Lee D (2010) The costs of agricultural adaptation to climate change. World Bank, Washington, DC

  • Pandey K (2010) Costs of adapting to climate change for human health in developing countries. World Bank, Washington, DC

  • Parry M (2010) Copenhagen number crunch. Nat Rep Clim Change 4:18–19. doi:10.1038/climate.2010.01

    Article  Google Scholar 

  • Pathak H, Ladha JK, Aggarwal PK, Peng S, Das S, Singh Y, Singh B, Kamra SK, Mishra B, Sastri ASRAS, Aggarwal HP, Das DK, Gupta RK (2003) Trends of climatic potential and on-farm yields of rice and wheat in the Indo-Gangetic Plains. F Crop Res 80:223–234. doi:10.1016/S0378-4290(02)00194-6

    Article  Google Scholar 

  • Perrette M, Landerer F, Riva R, Frieler K, Meinshausen M (2013) A scaling approach to project regional sea level rise and its uncertainties. Earth Syst Dyn 4:11–29. doi:10.5194/esd-4-11-2013

    Article  Google Scholar 

  • Rockström J, Falkenmark M, Karlberg L, Hoff H, Rost S, Gerten D (2009) Future water availability for global food production: the potential of green water for increasing resilience to global change. Water Resour Res 45:1–16. doi:10.1029/2007WR006767

    Article  Google Scholar 

  • Sabade SS, Kulkarni A, Kripalani RH (2010) Projected changes in South Asian summer monsoon by multi-model global warming experiments. Theor Appl Climatol 103:543–565. doi:10.1007/s00704-010-0296-5

    Article  Google Scholar 

  • Sadoff BC, Muller M (2009) Water management, water security and climate change adaptation: early impacts and essential responses. Global Water Partnership, Stockholm

  • Schewe J, Levermann A (2012) A statistically predictive model for future monsoon failure in India. Environ Res Lett 7:044023. doi:10.1088/1748-9326/7/4/044023

    Article  Google Scholar 

  • Sillmann J, Kharin VV, Zwiers FW, Zhang X, Bronaugh D (2013) Climate extremes indices in the CMIP5 multimodel ensemble: part 2. Future climate projections. J Geophys Res Atmos 118:2473–2493. doi:10.1002/jgrd.50188

    Article  Google Scholar 

  • Singh N, Sontakke NA (2002) On climatic fluctuations and environmental changes of the Indo-Gangetic plains, India. Clim Change 52:287–313

    Article  Google Scholar 

  • Sperber KR, Annamalai H, Kang IS, Kitoh A, Moise A, Turner A, Wang B, Zhou T (2013) The Asian summer monsoon: an intercomparison of CMIP5 vs. CMIP3 simulations of the late 20th century. Clim Dyn 41:2711–2744. doi:10.1007/s00382-012-1607-6

    Article  Google Scholar 

  • Srivastava A, Naresh Kumar S, Aggarwal PK (2010) Assessment on vulnerability of sorghum to climate change in India. Agric Ecosyst Environ 138:160–169. doi:10.1016/j.agee.2010.04.012

    Article  Google Scholar 

  • Syvitski JPM, Kettner AJ, Overeem I, Hutton EWH, Hannon MT, Brakenridge GR, Day J, Vörösmarty C, Saito Y, Giosan L, Nicholls RJ (2009) Sinking deltas due to human activities. Nat Geosci 2:681–686. doi:10.1038/ngeo629

    Article  CAS  Google Scholar 

  • Takahashi K, Honda Y, Emori S (2007) Assessing mortality risk from heat stress due to global warming. J Risk Res 10:339–354. doi:10.1080/13669870701217375

    Article  Google Scholar 

  • Taylor IH, Burke E, McColl L, Falloon P, Harris GR, McNeall D (2012) Contributions to uncertainty in projections of future drought under climate change scenarios. Hydrol Earth Syst Sci Discuss 9:12613–12653. doi:10.5194/hessd-9-12613-2012

    Article  Google Scholar 

  • Tory KJ, Chand SS, McBride JL, Ye H, Dare RA (2013) Projected changes in late-twenty-first-century tropical cyclone frequency in 13 coupled climate models from phase 5 of the coupled model intercomparison project. J Clim 26:9946–9959. doi:10.1175/JCLI-D-13-00010.1

    Article  Google Scholar 

  • Turner AG, Annamalai H (2012) Climate change and the South Asian summer monsoon. Nat Clim Chang. doi:10.1038/nclimate1495

    Google Scholar 

  • UNISDR (2011) Global assessment report on disaster risk reduction. United Nations International Strategy for Disaster Reduction, Geneva

    Google Scholar 

  • Uprety K, Salman SMA (2011) Legal aspects of sharing and management of transboundary waters in South Asia: preventing conflicts and promoting cooperation. Hydrol Sci J 56:641–661. doi:10.1080/02626667.2011.576252

    Article  Google Scholar 

  • Van Vliet MTH, Franssen WHP, Yearsley JR, Ludwig F, Haddeland I, Lettenmaier DP, Kabat P (2013) Global river discharge and water temperature under climate change. Glob Environ Change. doi:10.1016/j.gloenvcha.2012.11.002

    Google Scholar 

  • Vörösmarty CJ, McIntyre PB, Gessner MO, Dudgeon D, Prusevich A, Green P, Glidden S, Bunn SE, Sullivan CA, Liermann CR, Davies PM (2010) Global threats to human water security and river biodiversity. Nature 467:555–561. doi:10.1038/nature09440

    Article  Google Scholar 

  • Wang B, Liu J, Kim H-J, Webster PJ, Yim S-Y (2011) Recent change of the global monsoon precipitation (1979–2008). Clim Dyn 39:1123–1135. doi:10.1007/s00382-011-1266-z

    Article  CAS  Google Scholar 

  • Warszawski L, Frieler K, Huber V, Piontek F, Serdeczny O, Schewe J (2014) The inter-sectoral impact model intercomparison project (ISI-MIP): project framework. Proc Natl Acad Sci USA 111:3228–3232. doi:10.1073/pnas.1312330110

    Article  CAS  Google Scholar 

  • Wassmann R, Jagadish SVK, Heuer S (2009a) Climate change affecting rice production: the physiological and agronomic basis for possible adaptation strategies. Adv Agron 101:59–122. doi:10.1016/S0065-2113(08)00802-X

    Article  Google Scholar 

  • Wassmann R, Jagadish SVK, Sumfleth K, Pathak H, Howell G, Ismail A, Serraj R, Redona E, Singh RK, Heuer S (2009b) Chapter 3 regional vulnerability of climate change impacts on Asian rice production and scope for adaptation. Adv Agron 102:91–133

    Article  Google Scholar 

  • Webster PJ, Magaña VO, Palmer TN, Shukla J, Tomas RA, Yanai M, Yasunari T (1998) Monsoons: processes, predictability, and the prospects for prediction. J Geophys Res 103:14451. doi:10.1029/97JC02719

    Article  Google Scholar 

  • Webster PJ, Holland GJ, Curry JA, Chang H-R (2005) Changes in tropical cyclone number, duration, and intensity in a warming environment. Science 309:1844–1846. doi:10.1126/science.1116448

    Article  CAS  Google Scholar 

  • Webster PJ, Toma VE, Kim HM (2011) Were the 2010 Pakistan floods predictable? Geophys Res Lett. doi:10.1029/2010GL046346

    Google Scholar 

  • World Bank (2010) Bangladesh—economic of adaptation to climate change. World Bank, Washington, DC

    Google Scholar 

  • World Bank (2012) Turn Down the Heat: Why a 4°C Warmer World Must be Avoided. A report for the World Bank by the Potsdam Institute for Climate Impact Research and Climate Analytics. World Bank, Washington, DC

    Google Scholar 

  • World Bank (2013a) Data: indicators. http://data.worldbank.org/indicator. Accessed 26 Jan 2015

  • World Bank (2013b) Turn Down the Heat: Climate Extremes, Regional Impacts, and the Case for Resilience. A report for the World Bank by the Potsdam Institute for Climate Impact Research and Climate Analytics. World Bank, Washington, DC

  • World Bank (2014) Turn Down the Heat: Confronting the New Climate Normal. A report for the World Bank by the Potsdam Institute for Climate Impact Research and Climate Analytics. World Bank, Washington, DC

    Google Scholar 

  • Yu WH, Alam M, Hassan A, Khan AS, Ruane AC, Rosenzweig C, Major DC, Thurlow J (2010) Climate Change Risks and Food Security in Bangladesh. Earthscan, Washington, DC

Download references

Acknowledgments

We thank all contributors to the World Bank Report “Turn Down the Heat: Climate Extremes, Regional Impacts and the Case for Resilience,” which is the basis for this regional review. RVD was financially supported by the German Federal Ministry for Education and Research (BMBF) via the Young Investigator’s Group CoSy-CC2 (Grant No. 01LN1306A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kira Vinke.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1028 kb)

Supplementary material 2 (PDF 309 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vinke, K., Martin, M.A., Adams, S. et al. Climatic risks and impacts in South Asia: extremes of water scarcity and excess. Reg Environ Change 17, 1569–1583 (2017). https://doi.org/10.1007/s10113-015-0924-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10113-015-0924-9

Keywords

Navigation