Regional Environmental Change

, Volume 17, Issue 6, pp 1569–1583 | Cite as

Climatic risks and impacts in South Asia: extremes of water scarcity and excess

  • Kira Vinke
  • Maria A. Martin
  • Sophie Adams
  • Florent Baarsch
  • Alberte Bondeau
  • Dim Coumou
  • Reik V. Donner
  • Arathy Menon
  • Mahé Perrette
  • Kira Rehfeld
  • Alexander Robinson
  • Marcia Rocha
  • Michiel Schaeffer
  • Susanne Schwan
  • Olivia Serdeczny
  • Anastasia Svirejeva-Hopkins
Original Article

Abstract

This paper reviews the current knowledge of climatic risks and impacts in South Asia associated with anthropogenic warming levels of 1.5–4 °C above pre-industrial values in the twenty-first century. It is based on the World Bank Report “Turn Down the Heat, Climate Extremes, Regional Impacts and the Case for Resilience” (2013b) . Many of the climate change impacts in the region, which appear quite severe even with relatively modest warming of 1.5–2 °C, pose significant hazards to development. For example, increased monsoon variability and loss or glacial meltwater will likely confront populations with ongoing and multiple challenges. The result is a significant risk to stable and reliable water resources for the region, with increases in peak flows potentially causing floods and dry season flow reductions threatening agriculture. Irrespective of the anticipated economic development and growth, climate projections indicate that large parts of South Asia’s growing population and especially the poor are likely to remain highly vulnerable to climate change.

Keywords

South Asia Climate change Climate impacts Water Agriculture 

Notes

Acknowledgments

We thank all contributors to the World Bank Report “Turn Down the Heat: Climate Extremes, Regional Impacts and the Case for Resilience,” which is the basis for this regional review. RVD was financially supported by the German Federal Ministry for Education and Research (BMBF) via the Young Investigator’s Group CoSy-CC2 (Grant No. 01LN1306A).

Supplementary material

10113_2015_924_MOESM1_ESM.pdf (1 mb)
Supplementary material 1 (PDF 1028 kb)
10113_2015_924_MOESM2_ESM.pdf (310 kb)
Supplementary material 2 (PDF 309 kb)

References

  1. Ajayamohan RS, Rao SA (2008) Indian Ocean dipole modulates the number of extreme rainfall events over india in a warming environment. J Meteorol Soc Jpn. doi: 10.2151/jmsj.86.245 Google Scholar
  2. Allen MR, Ingram WJ (2002) Constraints on future changes in climate and the hydrologic cycle. Nature 419:224–232. doi: 10.1038/nature01092 CrossRefGoogle Scholar
  3. Arnell NW, Gosling SN (2013) The impacts of climate change on river flow regimes at the global scale. J Hydrol 486:351–364. doi: 10.1016/j.jhydrol.2013.02.010 CrossRefGoogle Scholar
  4. Auffhammer M, Ramanathan V, Vincent JR (2006) Integrated model shows that atmospheric brown clouds and greenhouse gases have reduced rice harvests in India. Proc Natl Acad Sci USA 103:19668–19672. doi: 10.1073/pnas.0609584104 CrossRefGoogle Scholar
  5. Auffhammer M, Ramanathan V, Vincent JR (2011) Climate change, the monsoon, and rice yield in India. Clim Change 111:411–424. doi: 10.1007/s10584-011-0208-4 CrossRefGoogle Scholar
  6. Bates B, Kundzewicz ZW, Wu S, Palutikof J (2008) Climate change and water, Technical paper of the intergovernmental panel on climate change. IPCC Secretariat, GenevaGoogle Scholar
  7. Béguin A, Hales S, Rocklöv J, Åström C, Louis VR, Sauerborn R (2011) The opposing effects of climate change and socio-economic development on the global distribution of malaria. Glob Environ Chang 21:1209–1214. doi: 10.1016/j.gloenvcha.2011.06.001 CrossRefGoogle Scholar
  8. Bierbaum RM, Fay M, Ross-Larson B (eds) (2009) World development report 2010: development and climate change. World Development Report. World Bank Group, Washington, DC. http://documents.worldbank.org/curated/en/2010/01/11831971/world-development-report-2010-development-climate-change
  9. Bollasina MA, Ming Y, Ramaswamy V (2011) Anthropogenic aerosols and the weakening of the South Asian summer monsoon. Science 334:502–505. doi: 10.1126/science.1204994 CrossRefGoogle Scholar
  10. Brecht H, Dasgupta S, Laplante B, Murray S, Wheeler D (2012) Sea-level rise and storm surges: high stakes for a small number of developing countries. J Environ Dev 21:120–138. doi: 10.1177/1070496511433601 CrossRefGoogle Scholar
  11. Caron L-P, Jones CG (2008) Analysing present, past and future tropical cyclone activity as inferred from an ensemble of coupled global climate models. Tellus A 60:80–96. doi: 10.1111/j.1600-0870.2007.00291.x CrossRefGoogle Scholar
  12. Challinor AJ, Wheeler TR (2008) Crop yield reduction in the tropics under climate change: processes and uncertainties. Agric For Meteorol 148:343–356. doi: 10.1016/j.agrformet.2007.09.015 CrossRefGoogle Scholar
  13. Challinor AJ, Wheeler TR, Garforth C, Craufurd P, Kassam A (2007) Assessing the vulnerability of food crop systems in Africa to climate change. Clim Change 83:381–399. doi: 10.1007/s10584-007-9249-0 CrossRefGoogle Scholar
  14. Chattopadhyay M, Abbs D (2012) On the variability of projected tropical cyclone genesis in GCM ensembles. Tellus A 1:1–11Google Scholar
  15. Chou C, Tu J-Y, Tan P-H (2007) Asymmetry of tropical precipitation change under global warming. Geophys Res Lett 34:L17708. doi: 10.1029/2007GL030327 CrossRefGoogle Scholar
  16. Collins M, AchutaRao K, Ashok K, Bhandari S, Mitra AK, Prakash S, Srivastava R, Turner A (2013) Observational challenges in evaluating climate models. Nat Clim Change 3:940–941. doi: 10.1038/nclimate2012 CrossRefGoogle Scholar
  17. Coumou D, Robinson A (2013) Historic and future increase in the global land area affected by monthly heat extremes. Environ Res Lett 8:034018. doi: 10.1088/1748-9326/8/3/034018 CrossRefGoogle Scholar
  18. Dai A (2012) Increasing drought under global warming in observations and models. Nat Clim Change. doi: 10.1038/nclimate1633 Google Scholar
  19. De Fraiture C, Wichelns D (2010) Satisfying future water demands for agriculture. Agric Water Manag 97:502–511. doi: 10.1016/j.agwat.2009.08.008 CrossRefGoogle Scholar
  20. De Stefano L, Duncan J, Dinar S, Stahl K, Strzepek KM, Wolf AT (2012) Climate change and the institutional resilience of international river basins. J Peace Res 49:193–209. doi: 10.1177/0022343311427416 CrossRefGoogle Scholar
  21. Deka RL, Mahanta C, Pathak H, Nath KK, Das S (2012) Trends and fluctuations of rainfall regime in the Brahmaputra and Barak basins of Assam. Theor Appl Climatol, India. doi: 10.1007/s00704-012-0820-x Google Scholar
  22. Diffenbaugh NS, Scherer M, Ashfaq M (2012) Response of snow-dependent hydrologic extremes to continued global warming. Nat Clim Chang 3:379–384. doi: 10.1038/nclimate1732 CrossRefGoogle Scholar
  23. Döll P (2009) Vulnerability to the impact of climate change on renewable groundwater resources: a global-scale assessment. Environ Res Lett 4:035006. doi: 10.1088/1748-9326/4/3/035006 CrossRefGoogle Scholar
  24. Douglas I (2009) Climate change, flooding and food security in south Asia. Food Secur 1:127–136. doi: 10.1007/s12571-009-0015-1 CrossRefGoogle Scholar
  25. Ebi KL, Woodruff R, Hildebrand A, Corvalan C (2007) Climate Change-related Health Impacts in the Hindu Kush–Himalayas. EcoHealth 4:264–270. doi: 10.1007/s10393-007-0119-z CrossRefGoogle Scholar
  26. Elsner JB, Kossin JP, Jagger TH (2008) The increasing intensity of the strongest tropical cyclones. Nature 455:92–95. doi: 10.1038/nature07234 CrossRefGoogle Scholar
  27. Emanuel K, Sundararajan R, Williams J (2008) Hurricanes and global warming: results from downscaling IPCC AR4 simulations. Bull Am Meteorol Soc 89:347–367. doi: 10.1175/BAMS-89-3-347 CrossRefGoogle Scholar
  28. Endo H, Kitoh A, Ose T, Mizuta R, Kusunoki S (2012) Future changes and uncertainties in Asian precipitation simulated by multiphysics and multi-sea surface temperature ensemble experiments with high-resolution Meteorological Research Institute atmospheric general circulation models (MRI-AGCMs). J Geophys Res 117:D16118. doi: 10.1029/2012JD017874 CrossRefGoogle Scholar
  29. ESCAP (2011) Statistical Yearbook for Asia and the Pacific 2011. United Nations, Economic and Social Commission for Asia and the Pacific, BangkokGoogle Scholar
  30. Fung F, Lopez A, New M (2011) Water availability in +2°C and +4°C worlds. Philos Trans A Math Phys Eng Sci 369:99–116. doi: 10.1098/rsta.2010.0293 CrossRefGoogle Scholar
  31. Gadgil S, Rupa Kumar K (2006) The Asian monsoon—agriculture and economy. In: Wang B (ed) The Asian monsoon. Springer, Berlin, pp 651–683CrossRefGoogle Scholar
  32. Gain AK, Immerzeel WW, Sperna Weiland FC, Bierkens MFP (2011) Impact of climate change on the stream flow of the lower Brahmaputra: trends in high and low flows based on discharge-weighted ensemble modelling. Hydrol Earth Syst Sci 15:1537–1545. doi: 10.5194/hess-15-1537-2011 CrossRefGoogle Scholar
  33. Gautam PK (2012) Climate change and conflict in South Asia. Strateg Anal 36(1):32–40. doi: 10.1080/09700161.2012.628482 CrossRefGoogle Scholar
  34. Gautam R, Hsu NC, Lau KM, Kafatos M (2009) Aerosol and rainfall variability over the Indian monsoon region: distributions, trends and coupling. Ann Geophys 27:3691–3703. doi: 10.5194/angeo-27-3691-2009 CrossRefGoogle Scholar
  35. Gemenne F (2011) Why the numbers don’t add up: a review of estimates and predictions of people displaced by environmental changes. Glob Environ Change 21:S41–S49. doi: 10.1016/j.gloenvcha.2011.09.005 CrossRefGoogle Scholar
  36. Gerten D, Heinke J, Hoff H, Biemans H, Fader M, Waha K (2011) Global water availability and requirements for future food production. J Hydrometeorol 12:885–899. doi: 10.1175/2011JHM1328.1 CrossRefGoogle Scholar
  37. Ghosh S, Dutta S (2012) Impact of climate change on flood characteristics in Brahmaputra basin using a macro-scale distributed hydrological model. J Earth Syst Sci 121:637–657. doi: 10.1007/s12040-012-0181-y CrossRefGoogle Scholar
  38. Giorgi F, Im E-S, Coppola E, Diffenbaugh NS, Gao XJ, Mariotti L, Shi Y (2011) Higher hydroclimatic intensity with global warming. J Clim 24:5309–5324. doi: 10.1175/2011JCLI3979.1 CrossRefGoogle Scholar
  39. Gornall J, Betts R, Burke E, Clark R, Camp J, Willett K, Wiltshire A (2010) Implications of climate change for agricultural productivity in the early twenty-first century. Philos Trans R Soc Lond B Biol Sci 365:2973–2989. doi: 10.1098/rstb.2010.0158 CrossRefGoogle Scholar
  40. Goswami BN, Venugopal V, Sengupta D, Madhusoodanan MS, Xavier PK (2006) Increasing trend of extreme rain events over India in a warming environment. Science 314:1442–1445. doi: 10.1126/science.1132027 CrossRefGoogle Scholar
  41. Green TR, Taniguchi M, Kooi H, Gurdak JJ, Allen DM, Hiscock KM, Treidel H, Aureli A (2011) Beneath the surface of global change: impacts of climate change on groundwater. J Hydrol 405:532–560. doi: 10.1016/j.jhydrol.2011.05.002 CrossRefGoogle Scholar
  42. Gualdi S, Scoccimarro E, Navarra A (2008) Changes in tropical cyclone activity due to global warming: results from a high-resolution coupled general circulation model. J Clim 21:5204–5228. doi: 10.1175/2008JCLI1921.1 CrossRefGoogle Scholar
  43. Hajat S, Kosatky T, Kosatsky T (2010) Heat-related mortality: a review and exploration of heterogeneity. J Epidemiol Community Health 64:753–760. doi: 10.1136/jech.2009.087999 CrossRefGoogle Scholar
  44. Hallegatte S, Bangalore M, Bonzanigo L, Fay M, Narloch U, Rozenberg J, Vogt-Schilb A (2014) Climate change and poverty—an analytical framework. World Bank, Washington, DCGoogle Scholar
  45. Hertel TW, Burke MB, Lobell DB (2010) The poverty implications of climate-induced crop yield changes by 2030. Glob Environ Chang 20:577–585. doi: 10.1016/j.gloenvcha.2010.07.001 CrossRefGoogle Scholar
  46. Hugo G (2011) Future demographic change and its interactions with migration and climate change. Glob Environ Chang 21:S21–S33. doi: 10.1016/j.gloenvcha.2011.09.008 CrossRefGoogle Scholar
  47. Huq S, Ali SI, Rahman AA (1995) Sea-level rise and Bangladesh: a preliminary analysis. J Coast Res 44–53 (Special Issue No. 14) Google Scholar
  48. Iglesias A, Erda L, Rosenzweig C (1996) Climate change in Asia: a review of the vulnerability and adaptation of crop production. Water Air Soil Pollut 92:13–27Google Scholar
  49. Immerzeel WW, van Beek LPH, Bierkens MFP (2010) Climate change will affect the Asian water towers. Science 328:1382–1385. doi: 10.1126/science.1183188 CrossRefGoogle Scholar
  50. Jacoby H, Mariano R, Skoufias E (2011) Distributional Implications of Climate Change in India. World Bank, Washington, DCGoogle Scholar
  51. Jourdain NC, Gupta AS, Taschetto AS, Ummenhofer CC, Moise AF, Ashok K (2013) The Indo-Australian monsoon and its relationship to ENSO and IOD in reanalysis data and the CMIP3/CMIP5 simulations. Clim Dyn 41:3073–3102. doi: 10.1007/s00382-013-1676-1 CrossRefGoogle Scholar
  52. Kalra N, Chakraborty D, Sharma A, Rai HK, Jolly M, Chander S, Kumar PR, Bhadraray S, Barman D, Mittal RB, Lal M, Sehgal M (2008) Effect of increasing temperature on yield of some winter crops in northwest India. Curr Sci 94:82–88Google Scholar
  53. Khan AE, Ireson A, Kovats S, Mojumder SK, Khusru A, Rahman A, Vineis P (2011a) Drinking water salinity and maternal health in coastal Bangladesh: implications of climate change. Environ Health Perspect 119:1328–1332. doi: 10.1289/ehp.1002804 CrossRefGoogle Scholar
  54. Khan AE, Xun WW, Ahsan H, Vineis P (2011b) Climate change, sea-level rise, & health impacts in Bangladesh. Environ Sci Policy Sustain Dev 53:37–41. doi: 10.1080/00139157.2011.604008 CrossRefGoogle Scholar
  55. Kim D-W, Byun H-R (2009) Future pattern of Asian drought under global warming scenario. Theor Appl Climatol 98:137–150. doi: 10.1007/s00704-008-0100-y CrossRefGoogle Scholar
  56. Kim J-H, Brown SJ, McDonald RE (2011) Future changes in tropical cyclone genesis in fully dynamic ocean- and mixed layer ocean-coupled climate models: a low-resolution model study. Clim Dyn 37:737–758. doi: 10.1007/s00382-010-0855-6 CrossRefGoogle Scholar
  57. Knutson TR, McBride JL, Chan J, Emanuel K, Holland G, Landsea C, Held I, Kossin JP, Srivastava AK, Sugi M (2010) Tropical cyclones and climate change. Nat Geosci 3:157–163. doi: 10.1038/ngeo779 CrossRefGoogle Scholar
  58. Kripalani RH, Oh JH, Kulkarni A, Sabade SS, Chaudhari HS (2007) South Asian summer monsoon precipitation variability: coupled climate model simulations and projections under IPCC AR4. Theor Appl Climatol 90:133–159. doi: 10.1007/s00704-006-0282-0 CrossRefGoogle Scholar
  59. Krishnan R, Sabin TP, Ayantika DC, Kitoh A, Sugi M, Murakami H, Turner AG, Slingo JM, Rajendran K (2012) Will the South Asian monsoon overturning circulation stabilize any further? Clim Dyn 40:187–211. doi: 10.1007/s00382-012-1317-0 CrossRefGoogle Scholar
  60. Kumar KK, Kamala K, Rajagopalan B, Hoerling MP, Eischeid JK, Patwardhan SK, Srinivasan G, Goswami BN, Nemani R (2010) The once and future pulse of Indian monsoonal climate. Clim Dyn 36:2159–2170. doi: 10.1007/s00382-010-0974-0 CrossRefGoogle Scholar
  61. Ladha JK, Dawe D, Pathak H, Padre AT, Yadav RL, Singh B, Singh Y, Singh Y, Singh P, Kundu AL, Sakal R, Ram N, Regmi AP, Gami SK, Bhandari AL, Amin R, Yadav CR, Bhattarai EM, Das S, Aggarwal HP, Gupta RK, Hobbs PR (2003) How extensive are yield declines in long-term rice—Wheat experiments in Asia? F Crop Res 81:159–180. doi: 10.1016/S0378-4290(02)00219-8 CrossRefGoogle Scholar
  62. Lal M (2011) Implications of climate change in sustained agricultural productivity in South Asia. Reg Environ Chang 11:79–94. doi: 10.1007/s10113-010-0166-9 CrossRefGoogle Scholar
  63. Lin M, Huybers P (2012) Reckoning wheat yield trends. Environ Res Lett 7:024016. doi: 10.1088/1748-9326/7/2/024016 CrossRefGoogle Scholar
  64. Lloyd SJ, Kovats RS, Chalabi Z (2011) Children’ s Health climate change, crop yields, and undernutrition: development of a model to quantify the impact of climate scenarios on child undernutrition. Environ Health Perspect 119:1817–1824CrossRefGoogle Scholar
  65. Lobell DB, Schlenker W, Costa-Roberts J (2011) Climate trends and global crop production since 1980. Science 333:616–620. doi: 10.1126/science.1204531 CrossRefGoogle Scholar
  66. Lobell DB, Sibley AS, Ivan Ortiz-Monasterio J, Ortiz-Monasterio JI (2012) Extreme heat effects on wheat senescence in India. Nat Clim Chang 2:186–189. doi: 10.1038/nclimate1356 CrossRefGoogle Scholar
  67. Mall RK, Singh R, Gupta A, Srinivasan G, Rathore LS (2006) Impact of climate change on Indian agriculture: a review. Clim Change 78:445–478. doi: 10.1007/s10584-005-9042-x CrossRefGoogle Scholar
  68. May W (2010) The sensitivity of the Indian summer monsoon to a global warming of 2°C with respect to pre-industrial times. Clim Dyn 37:1843–1868. doi: 10.1007/s00382-010-0942-8 CrossRefGoogle Scholar
  69. Mearns R, Norton A (2009) Social dimensions of climate change: equity and vulnerability in a warming world. New frontiers of social policy. World Bank, Washington, DCGoogle Scholar
  70. Menon A, Levermann A, Schewe J, Lehmann J, Frieler K (2013a) Consistent increase in Indian monsoon rainfall and its variability across CMIP-5 models. Earth Syst Dyn 4:287–300. doi: 10.5194/esd-4-287-2013 CrossRefGoogle Scholar
  71. Menon A, Levermann A, Schewe J (2013b) Enhanced future variability during India’s rainy season. Geophys Res Lett 40:3242–3247. doi: 10.1002/grl.50583 CrossRefGoogle Scholar
  72. Ministry of Environment and Forests, Government of India (2012) India second National Communication to the United Nations Framework Convention on Climate Change. United Nations Development Programme, New DelhiGoogle Scholar
  73. Mirza MMQ (2010) Climate change, flooding in South Asia and implications. Reg Environ Change 11:95–107. doi: 10.1007/s10113-010-0184-7 CrossRefGoogle Scholar
  74. Müller C, Bondeau A, Popp A, Waha K (2010) Development and climate change background note—climate change impacts on agricultural yield. Potsdam, Washington, DCGoogle Scholar
  75. Murakami H, Wang Y, Yoshimura H, Mizuta R, Sugi M, Shindo E, Adachi Y, Yukimoto S, Hosaka M, Kusunoki S, Ose T, Kitoh A (2012) Future changes in tropical cyclone activity projected by the new high-resolution MRI-AGCM*. J Clim 25:3237–3260. doi: 10.1175/JCLI-D-11-00415.1 CrossRefGoogle Scholar
  76. Murakami H, Sugi M, Kitoh A (2013) Future changes in tropical cyclone activity in the North Indian Ocean projected by high-resolution MRI-AGCMs. Clim Dyn 40:1949–1968. doi: 10.1007/s00382-012-1407-z CrossRefGoogle Scholar
  77. NASA (2007) Powerful tropical cyclone Sidr makes landfall in Bangladesh. http://www.nasa-usa.de/mission_pages/hurricanes/archives/2007/h2007_sidr.html. Accessed 26 Jan 2015
  78. Nelson GC, Rosegrant MW, Koo J, Robertson R, Sulser T, Zhu T, Ringler C, Msangi S, Palazzo A, Batka M, Magalhaes M, Valmonte-Santos R, Ewing M, Lee D (2010) The costs of agricultural adaptation to climate change. World Bank, Washington, DCGoogle Scholar
  79. Pandey K (2010) Costs of adapting to climate change for human health in developing countries. World Bank, Washington, DCGoogle Scholar
  80. Parry M (2010) Copenhagen number crunch. Nat Rep Clim Change 4:18–19. doi: 10.1038/climate.2010.01 CrossRefGoogle Scholar
  81. Pathak H, Ladha JK, Aggarwal PK, Peng S, Das S, Singh Y, Singh B, Kamra SK, Mishra B, Sastri ASRAS, Aggarwal HP, Das DK, Gupta RK (2003) Trends of climatic potential and on-farm yields of rice and wheat in the Indo-Gangetic Plains. F Crop Res 80:223–234. doi: 10.1016/S0378-4290(02)00194-6 CrossRefGoogle Scholar
  82. Perrette M, Landerer F, Riva R, Frieler K, Meinshausen M (2013) A scaling approach to project regional sea level rise and its uncertainties. Earth Syst Dyn 4:11–29. doi: 10.5194/esd-4-11-2013 CrossRefGoogle Scholar
  83. Rockström J, Falkenmark M, Karlberg L, Hoff H, Rost S, Gerten D (2009) Future water availability for global food production: the potential of green water for increasing resilience to global change. Water Resour Res 45:1–16. doi: 10.1029/2007WR006767 CrossRefGoogle Scholar
  84. Sabade SS, Kulkarni A, Kripalani RH (2010) Projected changes in South Asian summer monsoon by multi-model global warming experiments. Theor Appl Climatol 103:543–565. doi: 10.1007/s00704-010-0296-5 CrossRefGoogle Scholar
  85. Sadoff BC, Muller M (2009) Water management, water security and climate change adaptation: early impacts and essential responses. Global Water Partnership, StockholmGoogle Scholar
  86. Schewe J, Levermann A (2012) A statistically predictive model for future monsoon failure in India. Environ Res Lett 7:044023. doi: 10.1088/1748-9326/7/4/044023 CrossRefGoogle Scholar
  87. Sillmann J, Kharin VV, Zwiers FW, Zhang X, Bronaugh D (2013) Climate extremes indices in the CMIP5 multimodel ensemble: part 2. Future climate projections. J Geophys Res Atmos 118:2473–2493. doi: 10.1002/jgrd.50188 CrossRefGoogle Scholar
  88. Singh N, Sontakke NA (2002) On climatic fluctuations and environmental changes of the Indo-Gangetic plains, India. Clim Change 52:287–313CrossRefGoogle Scholar
  89. Sperber KR, Annamalai H, Kang IS, Kitoh A, Moise A, Turner A, Wang B, Zhou T (2013) The Asian summer monsoon: an intercomparison of CMIP5 vs. CMIP3 simulations of the late 20th century. Clim Dyn 41:2711–2744. doi: 10.1007/s00382-012-1607-6 CrossRefGoogle Scholar
  90. Srivastava A, Naresh Kumar S, Aggarwal PK (2010) Assessment on vulnerability of sorghum to climate change in India. Agric Ecosyst Environ 138:160–169. doi: 10.1016/j.agee.2010.04.012 CrossRefGoogle Scholar
  91. Syvitski JPM, Kettner AJ, Overeem I, Hutton EWH, Hannon MT, Brakenridge GR, Day J, Vörösmarty C, Saito Y, Giosan L, Nicholls RJ (2009) Sinking deltas due to human activities. Nat Geosci 2:681–686. doi: 10.1038/ngeo629 CrossRefGoogle Scholar
  92. Takahashi K, Honda Y, Emori S (2007) Assessing mortality risk from heat stress due to global warming. J Risk Res 10:339–354. doi: 10.1080/13669870701217375 CrossRefGoogle Scholar
  93. Taylor IH, Burke E, McColl L, Falloon P, Harris GR, McNeall D (2012) Contributions to uncertainty in projections of future drought under climate change scenarios. Hydrol Earth Syst Sci Discuss 9:12613–12653. doi: 10.5194/hessd-9-12613-2012 CrossRefGoogle Scholar
  94. Tory KJ, Chand SS, McBride JL, Ye H, Dare RA (2013) Projected changes in late-twenty-first-century tropical cyclone frequency in 13 coupled climate models from phase 5 of the coupled model intercomparison project. J Clim 26:9946–9959. doi: 10.1175/JCLI-D-13-00010.1 CrossRefGoogle Scholar
  95. Turner AG, Annamalai H (2012) Climate change and the South Asian summer monsoon. Nat Clim Chang. doi: 10.1038/nclimate1495 Google Scholar
  96. UNISDR (2011) Global assessment report on disaster risk reduction. United Nations International Strategy for Disaster Reduction, GenevaGoogle Scholar
  97. Uprety K, Salman SMA (2011) Legal aspects of sharing and management of transboundary waters in South Asia: preventing conflicts and promoting cooperation. Hydrol Sci J 56:641–661. doi: 10.1080/02626667.2011.576252 CrossRefGoogle Scholar
  98. Van Vliet MTH, Franssen WHP, Yearsley JR, Ludwig F, Haddeland I, Lettenmaier DP, Kabat P (2013) Global river discharge and water temperature under climate change. Glob Environ Change. doi: 10.1016/j.gloenvcha.2012.11.002 Google Scholar
  99. Vörösmarty CJ, McIntyre PB, Gessner MO, Dudgeon D, Prusevich A, Green P, Glidden S, Bunn SE, Sullivan CA, Liermann CR, Davies PM (2010) Global threats to human water security and river biodiversity. Nature 467:555–561. doi: 10.1038/nature09440 CrossRefGoogle Scholar
  100. Wang B, Liu J, Kim H-J, Webster PJ, Yim S-Y (2011) Recent change of the global monsoon precipitation (1979–2008). Clim Dyn 39:1123–1135. doi: 10.1007/s00382-011-1266-z CrossRefGoogle Scholar
  101. Warszawski L, Frieler K, Huber V, Piontek F, Serdeczny O, Schewe J (2014) The inter-sectoral impact model intercomparison project (ISI-MIP): project framework. Proc Natl Acad Sci USA 111:3228–3232. doi: 10.1073/pnas.1312330110 CrossRefGoogle Scholar
  102. Wassmann R, Jagadish SVK, Heuer S (2009a) Climate change affecting rice production: the physiological and agronomic basis for possible adaptation strategies. Adv Agron 101:59–122. doi: 10.1016/S0065-2113(08)00802-X CrossRefGoogle Scholar
  103. Wassmann R, Jagadish SVK, Sumfleth K, Pathak H, Howell G, Ismail A, Serraj R, Redona E, Singh RK, Heuer S (2009b) Chapter 3 regional vulnerability of climate change impacts on Asian rice production and scope for adaptation. Adv Agron 102:91–133CrossRefGoogle Scholar
  104. Webster PJ, Magaña VO, Palmer TN, Shukla J, Tomas RA, Yanai M, Yasunari T (1998) Monsoons: processes, predictability, and the prospects for prediction. J Geophys Res 103:14451. doi: 10.1029/97JC02719 CrossRefGoogle Scholar
  105. Webster PJ, Holland GJ, Curry JA, Chang H-R (2005) Changes in tropical cyclone number, duration, and intensity in a warming environment. Science 309:1844–1846. doi: 10.1126/science.1116448 CrossRefGoogle Scholar
  106. Webster PJ, Toma VE, Kim HM (2011) Were the 2010 Pakistan floods predictable? Geophys Res Lett. doi: 10.1029/2010GL046346 Google Scholar
  107. World Bank (2010) Bangladesh—economic of adaptation to climate change. World Bank, Washington, DCGoogle Scholar
  108. World Bank (2012) Turn Down the Heat: Why a 4°C Warmer World Must be Avoided. A report for the World Bank by the Potsdam Institute for Climate Impact Research and Climate Analytics. World Bank, Washington, DCGoogle Scholar
  109. World Bank (2013a) Data: indicators. http://data.worldbank.org/indicator. Accessed 26 Jan 2015
  110. World Bank (2013b) Turn Down the Heat: Climate Extremes, Regional Impacts, and the Case for Resilience. A report for the World Bank by the Potsdam Institute for Climate Impact Research and Climate Analytics. World Bank, Washington, DCGoogle Scholar
  111. World Bank (2014) Turn Down the Heat: Confronting the New Climate Normal. A report for the World Bank by the Potsdam Institute for Climate Impact Research and Climate Analytics. World Bank, Washington, DCGoogle Scholar
  112. Yu WH, Alam M, Hassan A, Khan AS, Ruane AC, Rosenzweig C, Major DC, Thurlow J (2010) Climate Change Risks and Food Security in Bangladesh. Earthscan, Washington, DCGoogle Scholar

Copyright information

© International Bank for Reconstruction and Development/The World Bank 2016

Authors and Affiliations

  • Kira Vinke
    • 1
  • Maria A. Martin
    • 1
  • Sophie Adams
    • 2
    • 3
  • Florent Baarsch
    • 3
  • Alberte Bondeau
    • 4
  • Dim Coumou
    • 1
  • Reik V. Donner
    • 1
  • Arathy Menon
    • 8
  • Mahé Perrette
    • 1
  • Kira Rehfeld
    • 5
  • Alexander Robinson
    • 1
    • 6
  • Marcia Rocha
    • 3
  • Michiel Schaeffer
    • 3
  • Susanne Schwan
    • 7
  • Olivia Serdeczny
    • 3
  • Anastasia Svirejeva-Hopkins
    • 1
  1. 1.Potsdam Institute for Climate Impact ResearchPotsdamGermany
  2. 2.University of New South WalesKensingtonAustralia
  3. 3.Climate AnalyticsBerlinGermany
  4. 4.Institut Méditerranéen de Biodiversité et d’Ecologie marine et continentale (IMBE) Aix Marseille Université, CNRS, IRDAvignon UniversitéAix-en-ProvenceFrance
  5. 5.Alfred Wegener Institute for Polar and Marine ResearchPotsdamGermany
  6. 6.Universidad Complutense de MadridMadridSpain
  7. 7.Deutsche Gesellschaft für Internationale ZusammenarbeitEschbornGermany
  8. 8.NCAS-Climate, University of ReadingReadingUK

Personalised recommendations