Regional Environmental Change

, Volume 16, Issue 6, pp 1623–1634 | Cite as

Climate change in Algeria and its impact on durum wheat

  • Nacira Chourghal
  • Jean Paul LhommeEmail author
  • Frédéric Huard
  • Abdellah Aidaoui
Original Article


According to IPCC reports, the Mediterranean basin and particularly the North African area are amongst the most vulnerable regions to climate change. However, the information concerning the North African zone is very limited, and studies on climate change have never been conducted in Algeria up to now. This paper aims at bridging this information gap and initiates a first research on the impact of climate change on durum wheat cropping, the most strategic commodity in the food system and in the national economy of Algeria. Climate projections for the distant future (2071–2100), obtained from the ARPEGE-Climate model of Météo-France run under the medium A1B SRES scenario, are introduced into a simple agrometeorological crop model previously validated with field data. Two options for the sowing date are assessed: a dynamical date, chosen within the traditional sowing window by means of a rainfall criterion, or a prescribed date with supplemental irrigation on the same day. Crop development is modelled using thermal time, and maximum yield is determined from the accumulation of solar radiation. A water stress index is inferred from a daily water balance model, and actual yield is estimated from potential yield corrected by the water stress index. The model also takes into account the occurrence of dry periods during the growing season, which can induce partial or total failure of the crop cycle. Two stations, representative of two of the three agroclimatic areas where durum wheat is grown, were chosen: Algiers in the central northern region and Bordj Bou Arreridj in the eastern high plains. Climate change is not similar for both areas, but a tendency towards aridity is clear especially in spring. Future temperature and potential evapotranspiration increase in both regions with a maximum in spring and summer. In Algiers, rainfall will decrease throughout the year and mainly in spring and summer. Conversely, summer precipitation in Bordj Bou Arreridj will increase significantly. In both regions, the autumn rains will increase in the future climate, the possibilities of early sowing will be improved, crop cycle will be reduced, and harvest will take place earlier. In Algiers, yields tend to decrease in the future climate, whereas in Bordj Bou Arreridj, a dynamical (earlier) sowing will tend to keep yields at their current level.


Algeria Climate change impact Crop development and yield modelling Durum wheat 

Supplementary material

10113_2015_889_MOESM1_ESM.docx (14 kb)
The appendix (Modelling dry matter production) (DOCX 13 kb)


  1. Ali Dib T, Monneveux P, Araus JL (1992) Adaptation à la sécheresse et notion d’idiotype chez le blé dur. II. Caractères physiologiques d’adaptation. Agronomie 12:381–393CrossRefGoogle Scholar
  2. Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration: guidelines for computing crop water requirements. FAO Irrigation and drainage paper 56Google Scholar
  3. Amokrane A, Bouzerzour H, Benbelkacem A, Djeh A, Mahe A (2002) Etude comparative des variétés de blé dur (Triticum durum Desf.) d’origine algérienne, syrienne et européenne, sous climat méditerranéen. Sciences et Technologies N sp D, pp 33–38Google Scholar
  4. Asseng S, Jamieson PD, Kimball B, Pinter P, Sayre K, Bowden JW, Owden SM (2004) Simulated wheat growth affected by rising temperature, increased water deficit and elevated atmospheric CO2. Field Crop Res 85:85–102. doi: 10.1016/S0378-4290(03)00154-0 CrossRefGoogle Scholar
  5. Baldy C (1986) Comportement des blés dans les climats méditerranéens. Ecol Mediterr XII:73–88Google Scholar
  6. Barkhordarian A, von Storch H, Bhend J (2013) The expectation of future precipitation change over the Mediterranean region is different from what we observe. Clim Dyn 40(1–2):225–244. doi: 10.1007/s00382-012-1497-7 CrossRefGoogle Scholar
  7. Bensalem M (1993) Etude comparative de l’adaptation à la sécheresse du blé, de l’orge et du tritical. Les colloques INRA 64:275–297Google Scholar
  8. Bensemane L, Bouzerzour H, Benmahammed A, Mimouni H (2011) Assessment of the phenotypic variation within two- and six-rowed barley (Hordeum vulgare L.) breeding lines under semi-arid condition. Adv Environ Biol 5:1454–1460Google Scholar
  9. Boé J, Terray L, Habets F, Martin E (2007) Statistical and dynamical donscaling of the Seine basin climate for hydro-meteorological studies. Int J Climatol 27:1643–1655. doi: 10.1002/joc.1602 CrossRefGoogle Scholar
  10. Bouaoune D, Dahmani-Megrouche M (2010) Climatic data reconstitution of North Algeria: application of neural network method correlation. Comptes Rendus Geosci 342:815–822. doi: 10.1016/j.crte.2010.09.005 CrossRefGoogle Scholar
  11. Bouzerzour H, Dekhili M (1995) Heritability’s gains from selection and genetic correlations for grain yield of barley grown in two contrasting environments. Field Crop Res 41:173–178. doi: 10.1016/0378-4290(95)00005-B CrossRefGoogle Scholar
  12. Bouzerzour H, Monneuveux P (1992) Analyse des facteurs de stabilité des rendements de l’orge dans les conditions des hauts plateaux algériens. Séminaire sur la tolérance à la sécheresse, INRA, France, les colloques 64:205–215Google Scholar
  13. Bouzerzour H, Oudina M (1986) Effet des dates et densités de semis sur le rendement du blé et de l’orge dans la région de Sétif. Revue céréalière 15, ITGC, AlgerGoogle Scholar
  14. BSA (2011) Bulletin de statistique agricole. Ministère de l’Agriculture, Série BGoogle Scholar
  15. Cline W (2007) Global warming and agriculture–impact estimates by country. Center for Glob Dev, WashingtonGoogle Scholar
  16. Collins M, Knutti R, Arblaster J, Dufresne JL, Fichefet T, Friedlingstein P, Gao X, Gutowski WJ, Johns T, Krinner G, Shongwe M, Tebaldi C, Weaver AJ, Wehner M (2013) Long-term climate change: projections, commitments and irreversibility. In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 1031–1106Google Scholar
  17. Déqué M (2007) Frequency of precipitation and temperature extremes over France in an anthropogenic scenario: model results and statistical correction according to observed values. Glob Planet Chang 57:16–26. doi: 10.1016/j.gloplacha.2006.11.030 CrossRefGoogle Scholar
  18. Doorenbos J, Kassam A (1979) Yield response to water. FAO irrigation and drainage paper 33. FAO, RomeGoogle Scholar
  19. Francisco J, Meza-Daniel S (2009) Dynamic adaptation of maize and wheat to climate change. Clim Change 94:143–156. doi: 10.1007/s10584-009-9544-z CrossRefGoogle Scholar
  20. Gao X, Giorgi F (2008) Increased aridity in the Mediterranean region under greenhouse gas forcing estimated from high resolution simulations with a regional climate model. Glob Planet Chang 62(3–4):195–209. doi: 10.1016/j.gloplacha.2008.02.002 CrossRefGoogle Scholar
  21. Giannakopoulos C, Le Sager P, Bindi M, Moriondo M, Kostopoulou E, Goodess CM (2009) Climatic changes and associated impacts in the Mediterranean resulting from global warming. Glob Planet Change 68:209–224. doi: 10.1016/j.gloplacha.2008.02.002 CrossRefGoogle Scholar
  22. Gifford RM, Morison JIL (1993) Crop [wheat] responses to the global increase in atmospheric carbon dioxide concentration. In: Buxton DR, Shibles R, Forsberg RA, Blad BL, Asay KH, Paulsen GM, Wilson RF (eds) International crop science 1. Proceedings of the international crop science congress. Crop Science Society of America, Madison, USA, pp 325–331Google Scholar
  23. Giorgi F, Lionello P (2008) Climate change projections for the Mediterranean region. Glob Planet Change 63:90–104. doi: 10.1016/j.gloplacha.2007.09.005 CrossRefGoogle Scholar
  24. Goodess C, Jacob D, DDcob M, Gutti CJ, Huth R, Kendon E, Leckebusch G, Lorenz P, Pavan V (2009) Downscaling methods, data and tools for input to impacts assessments. In: van der Linden P, Mitchell JFB (eds) ENSEMBLES: climate change and its impacts: summary of research and results from the ENSEMBLES project. Met Office Hadley Centre, Exeter, pp 59–78Google Scholar
  25. Guernña A, Ruiz-Ramos M, Díaz-Ambrona CH, Conde J, Mínguez MI (2001) Assessment of climate change and agriculture in Spain using climate models. Agron 93:237–249CrossRefGoogle Scholar
  26. Hamlaoui-Moulai L, Mesbah M, Souag-Gamane D, Medjrab A (2013) Detecting hydro-climatic change using spatiotemporal analysis of rainfall time series in Western Algeria. Natl Hazards 65:1293–1311. doi: 10.1007/s11069-012-0411-2 CrossRefGoogle Scholar
  27. Hansen JW, Potgieter A, Tippett MK (2004) Using a general circulation model to forecast regional wheat yields in northeast Australia. Agric For Meteorol 127:77–92. doi: 10.1016/j.agrformet.2004.07.005 CrossRefGoogle Scholar
  28. IPCC (2007) Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USAGoogle Scholar
  29. Jamieson PD, Semenov MA, Brooking IR, Francis GS (1998) Sirius: a mechanistic model of wheat response to environmental variation. Eur J Agron 8:161–179. doi: 10.1016/S1161-0301(98)00020-3 CrossRefGoogle Scholar
  30. Jamieson PD, Berntsen J, Ewert F, Kimball BA, Olesen JE, Pinter PJ, Porter JR, Semenov MA (2000) Modelling CO2 effects on wheat with varying nitrogen supplies. Agric Ecosyst Environ 82:27–37. doi: 10.1016/S0167-8809(00)00214-0 CrossRefGoogle Scholar
  31. Kaiser HM, Riha SJ, Wilks DS, Rossiter DG, Sampath R (1993) A farm-level analysis of economic and agronomic impacts of gradual climate warming. Am J Agric Econ 75(2):387–398CrossRefGoogle Scholar
  32. Khaledian MR, Mailhol JC, Ruelle P, Rosique P (2009) Adapting PILOTE model for water and yield management under direct seeding system: the case of corn and durum wheat in a Mediterranean context. Agric Water Manag 96:757–770. doi: 10.1016/j.agwat.2008.10.011 CrossRefGoogle Scholar
  33. Kjellström E, Nikulin G, Hansson U, Strandberg G, Ullerstig A (2011) 21st century changes in the European climate: uncertainties derived from an ensemble of regional climate model simulations. Tellus A Series A 63 A(1):24–40. doi: 10.1111/j.1600-0870.2010.00475
  34. Kostopoulou E, Jones PD (2005) Assessment of climate extremes in the eastern Mediterranean. Meteorol Atmos Phys 89:69–85. doi: 10.1007/s00703-005-0122-2 CrossRefGoogle Scholar
  35. Lakhdari H, Ayad A (2009) Les conséquences du changement climatique sur le Développement de l’agriculture en Algérie: Quelles stratégies d’adaptation face à la rareté de l’eau ? Cinquième colloque international: Énergie, changements Climatiques et Développement Durable, Hammamet (Tunisie), pp 15–17Google Scholar
  36. Lhomme JP, Katerji N (1991) A simple modelling of crop water balance for agrometeorological applications. Ecol Model 57:11–25. doi: 10.1016/03043800(91)90052-3 CrossRefGoogle Scholar
  37. Lhomme JP, Mougou R, Mansour M (2009) Potential impact of climate change on durum wheat cropping in Tunisia. Clim Chang 96:549–564. doi: 10.1007/s00704-012-0764-1 CrossRefGoogle Scholar
  38. Lionello P, Giorgi F (2007) Winter precipitation and cyclones in the Mediterranean region: future climate scenarios in a regional simulation. Adv Geosci 12:153–158. doi: 10.5194/adgeo-12-153-2007 CrossRefGoogle Scholar
  39. Malki M, Redjel N (2000) Durum wheat yield sustainability or ecosystem sustainability?: effects of state policies on farmers’ behaviour in Algeria. In: Royo C, Nachit M, Di Fonzo N, Arau s JL (eds), Durum wheat improvement in the Mediterranean region: new challenges. Options Méditerranéennes: Série A. Séminaires Méditerranéens, CIHEAM Zaragoza, no 40, pp 569–573Google Scholar
  40. Manderscheid R, Burkart S, Bramm A, Weigel HJ (2003) Effect of CO2 enrichment on growth and daily radiation use efficiency of wheat in relation to temperature and growth stage. Eur J Agron 19:411–425. doi: 10.1016/S1161-0301(02)00133-8 CrossRefGoogle Scholar
  41. Monteith JL (1972) Solar radiation and productivity in tropical ecosystems. J Appl Ecol 9:747–766CrossRefGoogle Scholar
  42. Monteith JL (1977) Climate and the efficiency of crop production in Britain. Philos Trans R Soc 281:277–294CrossRefGoogle Scholar
  43. Moonen AC, Ercoli L, Mariotti M, Masoni A (2002) Climate change in Italy indicated by agrometeorological indices over 122 years. Agric For Meteorol 111:13–27. doi: 10.1016/S0168-1923(02)00012-6 CrossRefGoogle Scholar
  44. Moriondo M, Ginnakopulos C, Bindi M (2011) Climate change impact assessment: the role of climate extremes in crop yield simulation. Clim Chang 104:679–701. doi: 10.1007/s10584-010-9871-0 CrossRefGoogle Scholar
  45. Mougou R, Mansour M, Iglesias A, Zitouna Chebbi R, Battaglini A (2011) Climate change and agricultural vulnerability: a case study of rain-fed wheat in Kairouan, Central Tunisia. Reg Environ Change 11:137–142. doi: 10.1007/s10113-010-0179-4 CrossRefGoogle Scholar
  46. Niang I, Ruppel OC, Abdrabo MA, Essel A, Lennard C, Padgham J, Urquhart P (2014) Africa. In: Barros VR, Field CB, Dokken DJ, Mastrandrea MD, Mach KJ, Bilir TE, Chatterjee M, Ebi KL, Estrada YO, Genova RC, Girma B, Kissel ES, Levy AN, MacCracken S, Mastrandrea PR, White LL (eds) Climate Change 2014: impacts, adaptation, and vulnerability. Part B: regional aspects. Contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 1199–1265Google Scholar
  47. Paeth H, Born K, Girmes R, Podzun R, Jacob D (2009) Regional climate change in tropical and northern Africa due to greenhouse forcing and land use changes. J Clim 22:114–132CrossRefGoogle Scholar
  48. Palutikof JP, Wigley TML (1996) Developing climate change scenarios for the Mediterranean region. In: Jeftic L, Keckes S, Pernetta JC (eds) Climatic change and the mediterranean. Edward Arnold Publ, London, pp 27–56Google Scholar
  49. Parry ML, Rosenzweig C, Iglesias A, Livermore M, Fisher G (2004) Effects of climate change on global food production under SRES emissions and socio-economic scenarios. Glob Environ Change 14:53–67. doi: 10.1016/j.gloenvcha.2003.10.008 CrossRefGoogle Scholar
  50. Patricola CM, Cook K (2010) Northern African climate at the end of the twenty-first century: an integrated application of regional and global climate models. Clim Dyn 35(1):193–212. doi: 10.1007/s00382-009-0623-7 CrossRefGoogle Scholar
  51. Richter GM, Semenov MA (2005) Modeling impacts of climate change on wheat yields in England and Wales: assessing drought risks. Agric Syst 84:77–97. doi: 10.1016/j.agsy.2004.06.011 CrossRefGoogle Scholar
  52. Rosenzweig C, Tubiello FN (1997) Impacts of global climate change on Mediterranean agriculture: current methodologies and future directions. An introductory essay. Mitig Adapt Strat Glob Chang 1:219–232. doi: 10.1007/BF00517804 CrossRefGoogle Scholar
  53. Sanabria J, Lhomme JP (2013) Climate change and potato cropping in the Peruvian Altiplano. Theor Appl Climatol 112:683–695. doi: 10.1007/s00704-012-0764-1 CrossRefGoogle Scholar
  54. Sanabria J, Calanca P, Alarcón C, Canchari G (2014) Potential impact of early twenty-first century changes in temperature and precipitation in rainfed annual crops in the Central Andes of Peru. Reg Environ Change 14:1533–1548. doi: 10.1007/s10113-014-0595-y CrossRefGoogle Scholar
  55. Schilling J, Freier KP, Hertig E, Scheffran J (2012) Climate change, vulnerability and adaptation in North Africa with focus on Morocco. Agric Ecosyst Environ 156:12–26. doi: 10.1016/j.agee.2012.04.021 CrossRefGoogle Scholar
  56. Seltzer P (1949) Le climat de l’Algérie. Alger, pp 219Google Scholar
  57. Tao F, Zhang Z (2011) Impacts of climate change as a function of global mean temperature: maize productivity and water use in China. Clim Change 109:409–432. doi: 10.1007/s10584-010-9883-9 CrossRefGoogle Scholar
  58. Terray L, Page C, Déqué M, Flecher C (2010) L’évolution du climat en France au travers de quelques indicateurs agroclimatiques. Livre Vert du projet CLIMATOR, Changement climatique, agriculture et forêt en France: simulations d’impacts sur les principales espèces. Ed. ADEMEGoogle Scholar
  59. Touchan R, Anchukaitis KJ, Meko DM, Sabir M, Attalah S, Aloui A (2011) Spatiotemporal drought variability in north-western Africa over the last nine centuries. Clim Dyn 37:237–252. doi: 10.1007/s00382-010-0804-4 CrossRefGoogle Scholar
  60. Van Oosterom EJ, Ceccarelli S, Peacock JM (1993) Yield response of barley to rainfall and temperature in Mediterranean environments. J Agric Sci 121:307–313CrossRefGoogle Scholar
  61. Ventrella D, Charfedine M, Moriondo M, Rinaldi M, Bindi M (2011) Agronomic adaptation strategies under climate change for winter durum wheat and tomato in southern Italy: irrigation and nitrogen fertilization. Reg Environ Change 12:407–417. doi: 10.1007/s10113-011-0256-3 CrossRefGoogle Scholar
  62. Xiao G, Zhang Q, Yao Y, Zhao H, Wang R, Bai H, Zhang F (2008) Impact of recent climatic change on the yield of winter wheat at low and high altitudes in semi-arid northwestern China. Agric Ecosyst Environ 127:37–42. doi: 10.1016/j.agee.2008.02.007 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Nacira Chourghal
    • 1
  • Jean Paul Lhomme
    • 2
    Email author
  • Frédéric Huard
    • 3
  • Abdellah Aidaoui
    • 4
  1. 1.Laboratoire de Caractérisation et Valorisation des Ressources NaturellesUniversité de Bordj Bou ArreridjBordj Bou ArréridjAlgeria
  2. 2.IRD (UMR LISAH)MontpellierFrance
  3. 3.INRA (US AGROCLIM)AvignonFrance
  4. 4.Laboratoire de Maîtrise de l’Eau en AgricultureENSAEl HarrachAlgeria

Personalised recommendations