Regional Environmental Change

, Volume 17, Issue 6, pp 1601–1621 | Cite as

Climate change impacts in Latin America and the Caribbean and their implications for development

  • Christopher P.O. ReyerEmail author
  • Sophie Adams
  • Torsten Albrecht
  • Florent Baarsch
  • Alice Boit
  • Nella Canales Trujillo
  • Matti Cartsburg
  • Dim Coumou
  • Alexander Eden
  • Erick Fernandes
  • Fanny Langerwisch
  • Rachel Marcus
  • Matthias Mengel
  • Daniel Mira-Salama
  • Mahé Perette
  • Paola Pereznieto
  • Anja Rammig
  • Julia Reinhardt
  • Alexander Robinson
  • Marcia Rocha
  • Boris Sakschewski
  • Michiel Schaeffer
  • Carl-Friedrich Schleussner
  • Olivia Serdeczny
  • Kirsten Thonicke
Original Article


This paper synthesizes what is known about the physical and biophysical impacts of climate change and their consequences for societies and development under different levels of global warming in Latin America and the Caribbean (LAC). Projections show increasing mean temperatures by up to 4.5 °C compared to pre-industrial by the end of this century across LAC. Associated physical impacts include altered precipitation regimes, a strong increase in heat extremes, higher risks of droughts and increasing aridity. Moreover, the mean intensity of tropical cyclones, as well as the frequency of the most intense storms, is projected to increase while sea levels are expected to rise by ~0.2–1.1 mm depending on warming level and region. Tropical glacier volume is found to decrease substantially, with almost complete deglaciation under high warming levels. The much larger glaciers in the southern Andes are less sensitive to warming and shrink on slower timescales. Runoff is projected to be reduced in Central America, the southern Amazon basin and southernmost South America, while river discharge may increase in the western Amazon basin and in the Andes in the wet season. However, in many regions, there is uncertainty in the direction of these changes as a result of uncertain precipitation projections and differences in hydrological models. Climate change will also reduce agricultural yields, livestock and fisheries, although there may be opportunities such as increasing rice yield in several LAC countries or higher fish catch potential in the southernmost South American waters. Species range shifts threaten terrestrial biodiversity, and there is a substantial risk of Amazon rainforest degradation with continuing warming. Coral reefs are at increasing risk of annual bleaching events from 2040 to 2050 onwards irrespective of the climate scenario. These physical and biophysical climate change impacts challenge human livelihoods through, e.g., decreasing income from fisheries, agriculture or tourism. Furthermore, there is evidence that human health, coastal infrastructures and energy systems are also negatively affected. This paper concludes that LAC will be severely affected by climate change, even under lower levels of warming, due to the potential for impacts to occur simultaneously and compound one another.


Development Global change Poverty Projections Scenarios Sustainability 



This research has been funded through the World Bank Project “Turn Down the Heat: Confronting the New Climate Normal,” and we are grateful to everybody involved in this activity for making it a success. Moreover, we would like to thank Wolfgang Cramer, James Ford, Gabriele Götz and the guest editors for making this special feature possible and for their valuable guidance throughout this process.

Supplementary material

10113_2015_854_MOESM1_ESM.pdf (2.1 mb)
Supplementary material 1 (PDF 2153 kb)


  1. Ahmed SA, Diffenbaugh NS, Hertel TW (2009) Climate volatility deepens poverty vulnerability in developing countries. Environ Res Lett 4:034004CrossRefGoogle Scholar
  2. Ainsworth EA, Leakey ADB, Ort DR, Long SP (2008) FACE-ing the facts: inconsistencies and interdependence among field, chamber and modeling studies of elevated CO2 impacts on crop yield and food supply. New Phytol 179:5–9CrossRefGoogle Scholar
  3. Aiyyer A, Thorncroft C (2011) Interannual-to-multidecadal variability of vertical shear and tropical cyclone activity. J Clim 24:2949–2962. doi: 10.1175/2010JCLI3698.1 CrossRefGoogle Scholar
  4. Allison EH, Perry AL, Badjeck M-C, Neil Adger W, Brown K, Conway D, Halls AS, Pilling GM, Reynolds JD, Andrew NL, Dulvy NK (2009) Vulnerability of national economies to the impacts of climate change on fisheries. Fish Fish 10:173–196. doi: 10.1111/j.1467-2979.2008.00310.x CrossRefGoogle Scholar
  5. Alves MC, de Carvalho LG, Pozza EA, Sanches L, Maia JCS (2011) Ecological zoning of soybean rust, coffee rust and banana black sigatoka based on Brazilian climate changes. Proced Environ Sci 6:35–49. doi: 10.1016/j.proenv.2011.05.005 CrossRefGoogle Scholar
  6. Anciães M, Peterson A (2006) Climate change effects on neotropical manakin diversity based on ecological niche modeling. Condor 108:778–791CrossRefGoogle Scholar
  7. Arndt DS, Baringer MO, Johnson MR (eds) (2010) State of the climate in 2009. Bull Amer Meteor Soc 91:S1–S224Google Scholar
  8. Arnell NW, Gosling SN (2013) The impacts of climate change on river flow regimes at the global scale. J Hydrol 486:351–364. doi: 10.1016/j.jhydrol.2013.02.010 CrossRefGoogle Scholar
  9. Avnery S, Mauzerall DL, Liu J, Horowitz LW (2011) Global crop yield reductions due to surface ozone exposure: 2. Year 2030 potential crop production losses and economic damage under two scenarios of O3 pollution. Atmos Environ 45:2297–2309. doi: 10.1016/j.atmosenv.2011.01.002 CrossRefGoogle Scholar
  10. Baraer M, Mark B, McKenzie J, Condom T, Bury J, Huh K-I, Portocarrero C, Gomez J, Rathay S (2012) Glacier recession and water resources in Peru’s Cordillera Blanca. J Glaciol 58:134–150. doi: 10.3189/2012JoG11J186 CrossRefGoogle Scholar
  11. Barclay E (2008) Is climate change affecting dengue in the Americas? Lancet 371:973–974CrossRefGoogle Scholar
  12. Beaumont LJ, Pitman A, Perkins S, Zimmermann NE, Yoccoz NG (2010) Impacts of climate change on the world’s most exceptional ecoregions. doi:10.1073/pnas.1007217108/-/DCSupplemental.
  13. Becker A, Inoue S, Fischer M, Schwegler B (2012) Climate change impacts on international seaports: knowledge, perceptions, and planning efforts among port administrators. Clim Change 110:5–29. doi: 10.1007/s10584-011-0043-7 CrossRefGoogle Scholar
  14. Bellard C, Leclerc C, Courchamp F (2014) Impact of sea level rise on the 10 insular biodiversity hotspots. Glob Ecol Biogeogr 23:203–212. doi: 10.1111/geb.12093 CrossRefGoogle Scholar
  15. Bender MA, Knutson TR, Tuleya RE, Sirutis JJ, Vecchi GA, Garner ST, Held IM (2010) Modeled impact of anthropogenic warming on the frequency of intense Atlantic hurricanes. Science 327:454–458. doi: 10.1126/science.1180568 CrossRefGoogle Scholar
  16. Betts RA, Cox PM, Collins M, Harris PP, Huntingford C, Jones CD (2004) The role of ecosystem-atmosphere interactions in simulated Amazonian precipitation decrease and forest dieback under global climate warming. Theor Appl Climatol 78:157–175. doi: 10.1007/s00704-004-0050-y CrossRefGoogle Scholar
  17. Béguin A, Hales S, Rocklöv J, Åström C, Louis VR, Sauerborn R (2011) The opposing effects of climate change and socioeconomic development on the global distribution of malaria. Glob Environ Chang 21:1209–1214. doi: 10.1016/j.gloenvcha.2011.06.001 CrossRefGoogle Scholar
  18. Bindoff NL, Stott PA, AchutaRao KM, Allen MR, Gillett N, Gutzler D, Hansingo K, Hegerl G, Hu Y, Jain S, Mokhov I, Overland J, Perlwitz J, Sebbari R, Zhang X (2013) Detection and attribution of climate change: from global to regional. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Chapter 10. IPCC AR5 WG1, Cambridge University Press, Cambridge, pp 867–952Google Scholar
  19. Blanchard JL, Jennings S, Holmes R, Harle J, Merino G, Allen JI, Holt J, Dulvy NK, Barange M (2012) Potential consequences of climate change for primary production and fish production in large marine ecosystems. Philos Trans R Soc Lond B Biol Sci 367:2979–2989. doi: 10.1098/rstb.2012.0231 CrossRefGoogle Scholar
  20. Brando PM, Nepstad DC, Davidson EA, Trumbore SE, Ray D, Camargo P (2008) Drought effects on litterfall, wood production and belowground carbon cycling in an Amazon forest: results of a throughfall reduction experiment. Philos Trans R Soc Lond B Biol Sci 363:1839–1848. doi: 10.1098/rstb.2007.0031 CrossRefGoogle Scholar
  21. Brando PM, Balch JK, Nepstad DC, Morton DC, Putz FE, Coe MT, Silvério D, Macedo MN, Davidson EA, Nóbrega CC, Alencar A, Soares-Filho BS (2014) Abrupt increases in Amazonian tree mortality due to drought-fire interactions. Proc Natl Acad Sci USA 111:6347–6352. doi: 10.1073/pnas.1305499111 CrossRefGoogle Scholar
  22. Bravo JM, Collischonn W, Paz AR, Allasia D, Domecq F (2013) Impact of projected climate change on hydrologic regime of the Upper Paraguay River basin. Clim Change. doi: 10.1007/s10584-013-0816-2 Google Scholar
  23. Buddemeier RW, Lane DR, Martinich JA (2011) Modeling regional coral reef responses to global warming and changes in ocean chemistry: Caribbean case study. Clim Change 109:375–397. doi: 10.1007/s10584-011-0022-z CrossRefGoogle Scholar
  24. Bueno R, Herzfeld C, Stanton EA, Ackerman F (2008) The Caribbean and climate change: the costs of inaction. Tufts University, SomervilleGoogle Scholar
  25. Buytaert W, De Bièvre B (2012) Water for cities: the impact of climate change and demographic growth in the tropical Andes. Water Resour Res. doi: 10.1029/2011WR011755 Google Scholar
  26. Buytaert W, Célleri R, Timbe L (2009) Predicting climate change impacts on water resources in the tropical Andes: effects of GCM uncertainty. Geophys Res Lett 36:1–5. doi: 10.1029/2008GL037048 CrossRefGoogle Scholar
  27. Cai W, Borlace S, Lengaigne M, van Rensch P, Collins M, Vecchi G, Timmermann A, Santoso A, McPhaden MJ, Wu L, England MH, Wang G, Guilyardi E, Jin F-F (2014) Increasing frequency of extreme El Niño events due to greenhouse warming. Nat Clim Change 5:1–6. doi: 10.1038/nclimate2100 CrossRefGoogle Scholar
  28. Caldeira K (2013) Coral Bleaching: coral “refugia” amid heating seas. Nat Clim Change 3:444–445. doi: 10.1038/nclimate1888 CrossRefGoogle Scholar
  29. Camargo MBP (2010) The impact of climatic variability and climate change on arabic coffee crop in Brazil. Bragantia 69:239–247. doi: 10.1590/S0006-87052010000100030 CrossRefGoogle Scholar
  30. Camargo SJ, Ting M, Kushnir Y (2012) Influence of local and remote SST on North Atlantic tropical cyclone potential intensity. Clim Dyn 40:1515–1529. doi: 10.1007/s00382-012-1536-4 CrossRefGoogle Scholar
  31. Camilloni IA, Saurral RI, Montroull NB (2013) Hydrological projections of fluvial floods in the Uruguay and Paraná basins under different climate change scenarios. Int J River Basin Manag 11:389–399. doi: 10.1080/15715124.2013.819006 CrossRefGoogle Scholar
  32. Caminade C, Kovats S, Rocklov J, Tompkins AM, Morse AP, Colon-Gonzalez FJ, Stenlund H, Martens P, Lloyd SJ (2014) Impact of climate change on global malaria distribution. PNAS 111:3286–3291CrossRefGoogle Scholar
  33. Carey M (2005) Living and dying with glaciers: people’s historical vulnerability to avalanches and outburst floods in Peru. Glob Planet Change 47:122–134. doi: 10.1016/j.gloplacha.2004.10.007 CrossRefGoogle Scholar
  34. Carey M, Huggel C, Bury J, Portocarrero C, Haeberli W (2012) An integrated socio-environmental framework for glacier hazard management and climate change adaptation: lessons from Lake 513, Cordillera Blanca, Peru. Clim Change 112:733–767CrossRefGoogle Scholar
  35. Carrigan AD, Puotinen M (2014) Tropical cyclone cooling combats region-wide coral bleaching. Glob Chang Biol. doi: 10.1111/gcb.12541 Google Scholar
  36. Cashman A, Nurse L, John C (2010) Climate change in the Caribbean: the water management implications. J Environ Dev 19:42–67. doi: 10.1177/1070496509347088 CrossRefGoogle Scholar
  37. Cheung WWL, Lam VWY, Sarmiento JL, Kearney K, Watson R, Zeller D, Pauly D (2010) Large-scale redistribution of maximum fisheries catch potential in the global ocean under climate change. Glob Chang Biol 16:24–35. doi: 10.1111/j.1365-2486.2009.01995.x CrossRefGoogle Scholar
  38. Cheung WWL, Dunne J, Sarmiento JL, Pauly D (2011) Integrating ecophysiology and plankton dynamics into projected maximum fisheries catch potential under climate change in the Northeast Atlantic. ICES J Mar Sci 68:1008–1018. doi: 10.1093/icesjms/fsr012 CrossRefGoogle Scholar
  39. Chevallier P, Pouyaud B, Suarez W, Condom T (2011) Climate change threats to environment in the tropical Andes: glaciers and water resources. Reg Environ Change 11:179–187. doi: 10.1007/s10113-010-0177-6 CrossRefGoogle Scholar
  40. Chhetri P, Corcoran J, Gekara V, Corbitt B, Wickramasinghe N, Jayatilleke G, Basic F, Scott H, Manzoni A, Maddox C (2013) Functional resilience of port environs in a changing climate—assets and operations. Work Package 2 of Enhancing the resilience of seaports to a changing climate report series. National Climate Change Adaptation Research Facility, Gold CoastGoogle Scholar
  41. CIESIN (2011) Population, landscape, and climate estimates (PLACE), v3 (1990, 2000, 2010). In: Center for international earth science information network. NASA Socioeconomic Data and Applications Center (SEDAC). doi: 10.7927/H4F769GP. Accessed 12 Jun 2013
  42. Collins M, Knutti R, Arblaster J, Dufresne J-L, Fichefet T, Friedlingstein P, Gao X, Gutowski WJ, Johns T, Krinner G, Shongwe M, Tebaldi C, Weaver AJ, Wehner M (2013) Long-term climate change: projections, commitments and irreversibility. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Chapter 12. IPCC AR5 WGI, Cambridge University Press, Cambridge, UK, pp 1–100Google Scholar
  43. Colon-Gonzales FJ, Fezzi C, Lake IR, Hunter PR (2013) The effects of weather and climate change on dengue. PLoS Negl Trop Dis 7:e2503CrossRefGoogle Scholar
  44. Confalonieri U, Menne B, Akhtar R, Ebi KL, Hauengue M, Kovats RS, Revich B, Woodward A (2007) Human health. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) Climate change 2007: impacts, adaptation and vulnerability. Contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 391–431Google Scholar
  45. Cortés G, Vargas X, McPhee J (2011) Climatic sensitivity of streamflow timing in the extratropical western Andes Cordillera. J Hydrol 405:93–109. doi: 10.1016/j.jhydrol.2011.05.013 CrossRefGoogle Scholar
  46. Costa MH, Pires GF (2010) Effects of Amazon and Central Brazil deforestation scenarios on the duration of the dry season in the arc of deforestation. Int J Climatol 30:1970–1979. doi: 10.1002/joc.2048 CrossRefGoogle Scholar
  47. Costa LC, Justino F, Oliveira LJC, Sediyama GC, Ferreira WPM, Lemos CF (2009) Potential forcing of CO2, technology and climate changes in maize (Zea mays) and bean (Phaseolus vulgaris) yield in southeast Brazil. Environ Res Lett 4:014013. doi: 10.1088/1748-9326/4/1/014013 CrossRefGoogle Scholar
  48. Coumou D, Robinson A (2013) Historic and future increase in the global land area affected by monthly heat extremes. Environ Res Lett 8:6CrossRefGoogle Scholar
  49. Cox PM, Betts RA, Collins M, Harris PP, Huntingford C, Jones CD (2004) Amazonian forest dieback under climate-carbon cycle projections for the 21st century. Theor Appl Climatol 78:137–156. doi: 10.1007/s00704-004-0049-4 CrossRefGoogle Scholar
  50. Cox PM, Pearson D, Booth BB, Friedlingstein P, Huntingford C, Jones CD, Luke CM (2013) Sensitivity of tropical carbon to climate change constrained by carbon dioxide variability. Nature 494:341–344. doi: 10.1038/nature11882 CrossRefGoogle Scholar
  51. Curry J, Jelinek M, Foskey B, Suzuki A, Webster P (2009) Potential Economic Impacts of Hurricanes in Mexico, Central America, and the Caribbean ca. 2020–2025. LCR Sustainable Development Working Paper, Washington, DCGoogle Scholar
  52. Dai A (2012) Increasing drought under global warming in observations and models. Nat Clim Change 3:52–58. doi: 10.1038/nclimate1633 CrossRefGoogle Scholar
  53. Davidson EA, de Araújo AC, Artaxo P, Balch JK, Brown IF, Bustamante MC, Coe MT, DeFries RS, Keller M, Longo M, Munger JW, Schroeder W, Soares-Filho BS, Souza CM, Wofsy SC (2012) The Amazon basin in transition. Nature 481:321–328. doi: 10.1038/nature10717 CrossRefGoogle Scholar
  54. De Lucena AFP, Szklo AS, Schaeffer R, de Souza RR, Borba BSMC, da Costa IVL, Júnior AOP, da Cunha SHF (2009) The vulnerability of renewable energy to climate change in Brazil. Energy Policy 37:879–889. doi: 10.1016/j.enpol.2008.10.029 CrossRefGoogle Scholar
  55. De’ath G, Fabricius KE, Sweatman H, M Puotinen (2012) The 27-year decline of coral cover on the Great Barrier Reef and its causes. Proc Natl Acad Sci USA. doi: 10.1073/pnas.1208909109 Google Scholar
  56. Demaria EMC, Maurer EP, Thrasher B, Vicuña S, Meza FJ (2013) Climate change impacts on an alpine watershed in Chile: do new model projections change the story? J Hydrol 502:128–138. doi: 10.1016/j.jhydrol.2013.08.027 CrossRefGoogle Scholar
  57. Deutsch CA, Tewksbury JJ, Huey RB, Sheldon KS, Ghalambor CK, Haak DC, Martin PR (2008) Impacts of climate warming on terrestrial ectotherms across latitude thermal safety margin. Proc Natl Acad Sci USA 105:6668–6672CrossRefGoogle Scholar
  58. Dilley M, Chen RS, Deichmann U, Lerner-Lam AL, Arnold M, Agwe J, Buys P, Kjekstad O, Lyon B, Yetman G (2005) Natural disaster hotspots: a global risk analysis. Disaster Risk Management Series, Washington DCGoogle Scholar
  59. Döll P, Schmied HM (2012) How is the impact of climate change on river flow regimes related to the impact on mean annual runoff? A global-scale analysis. Environ Res Lett 7:1–11. doi: 10.1088/1748-9326/7/1/014037 CrossRefGoogle Scholar
  60. Douglas I, Alam K, Maghenda M, Mcdonnell Y, Mclean L, Campbell J (2008) Unjust waters: climate change, flooding and the urban poor in Africa. Environ Urban 20:187–205. doi: 10.1177/0956247808089156 CrossRefGoogle Scholar
  61. Eakin CM, Morgan JA, Heron SF, Smith TB, Liu G, Alvarez-Filip L, Baca B, Bartels E, Bastidas C, Bouchon C, Brandt M, Bruckner AW, Bunkley-Williams L, Cameron A, Causey BD, Chiappone M, Christensen TRL, Crabbe MJC, Day O, de la Guardia E, Díaz-Pulido G, DiResta D, Gil-Agudelo DL, Gilliam DS, Ginsburg RN, Gore S, Guzmán HM, Hendee JC, Hernández-Delgado EA, Husain E, Jeffrey CFG, Jones RJ, Jordán-Dahlgren E, Kaufman LS, Kline DI, Kramer PA, Lang JC, Lirman D, Mallela J, Manfrino C, Maréchal J-P, Marks K, Mihaly J, Miller WJ, Mueller EM, Muller EM, Orozco Toro CA, Oxenford HA, Ponce-Taylor D, Quinn N, Ritchie KB, Rodríguez S, Ramírez AR, Romano S, Samhouri JF, Sánchez JA, Schmahl GP, Shank BV, Skirving WJ, Steiner SCC, Villamizar E, Walsh SM, Walter C, Weil E, Williams EH, Roberson KW, Yusuf Y (2010) Caribbean corals in crisis: record thermal stress, bleaching, and mortality in 2005. PLoS ONE 5:e13969. doi: 10.1371/journal.pone.0013969 CrossRefGoogle Scholar
  62. ECLAC (2010) Economics of Climate Change in Latin America and the Caribbean. Summary 2010. United Nations Economic Commission for Latin America and the Caribbean (ECLAC), Santiago, ChileGoogle Scholar
  63. ECLAC (2014) Economic and Social Panorama of the Community of Latin American and Caribbean States, 2013. United Nations Economic Commission for Latin America and the Caribbean (ECLAC), Santiago, ChileGoogle Scholar
  64. ECLAC, UNFPA (2009) 2009 Social Panorama of Latin America. United Nations Economic Commission for Latin America and the Caribbean (ECLAC) and th United Nations Population Fund (UNFPA), New York, NYGoogle Scholar
  65. ECLAC, FAO, IICA (2012) The outlook for agriculture and rural development in the Americas: a perspective on latin America and the Caribbean. Economic Commission for Latin America and the Caribbean (ECLAC), Food and Agriculture Organization of the UN (FAO), Inter-American Institute for Cooperation on Agriculture (IICA), Santiago, ChileGoogle Scholar
  66. Eisenberg MC, Kujbida G, Tuite AR, Fisman DN, Tien JH (2013) Examining rainfall and cholera dynamics in Haiti using statistical and dynamic modeling approaches. Epidemics 5:197–207CrossRefGoogle Scholar
  67. Emanuel KA (2013) Downscaling CMIP5 climate models shows increased tropical cyclone activity over the 21st century. Proc Natl Acad Sci USA 110:12219–12224. doi: 10.1073/pnas.1301293110 CrossRefGoogle Scholar
  68. Estay SA, Lima M, Labra FA (2009) Predicting insect pest status under climate change scenarios: combining experimental data and population dynamics modelling. J Appl Entomol 133:491–499. doi: 10.1111/j.1439-0418.2008.01380.x CrossRefGoogle Scholar
  69. Esteban M, Thao ND, Takagi H (2012) Increase in port downtime and damage in Vietnam due to a potential increase in tropical cyclone intensity. In: Leal Filho W (ed) Climate change and the sustainable use of water resources. Springer, Berlin, pp 101–125CrossRefGoogle Scholar
  70. Exbrayat J-F, Buytaert W, Timbe E, Windhorst D, Breuer L (2014) Addressing sources of uncertainty in runoff projections for a data scarce catchment in the Ecuadorian Andes. Clim Change 125:221–235. doi: 10.1007/s10584-014-1160-x CrossRefGoogle Scholar
  71. FAO (2003) Review of world water resources by country. Water Reports No. 23, Food and Agriculture Organization, RomeGoogle Scholar
  72. Feeley KJ, Malhi Y, Zelazowski P, Silman MR (2012) The relative importance of deforestation, precipitation change, and temperature sensitivity in determining the future distributions and diversity of Amazonian plant species. Glob Change Biol 18:2636–2647. doi: 10.1111/j.1365-2486.2012.02719.x CrossRefGoogle Scholar
  73. Feldt H (2011) Fortalecimiento de Organizaciones Indígenas en América Latina: Pueblos Indígenas y Cambio Climático. Relación entre cambio climático y pueblos indígenas y sus posiciones en el contexto de las negociaciones en la Convención Marco sobre el Cambio Climático. Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ), FrankfurtGoogle Scholar
  74. Fernandes ECM, Soliman A, Confalonieri R, Donatelli M, Tubiello F (2012) Climate change and agriculture in Latin America, 2020–2050. World Bank, Washington DCGoogle Scholar
  75. Fernandes JA, Cheung WWL, Jennings S, Butenschön M, de Mora L, Frölicher TL, Barange M, Grant A (2013) Modelling the effects of climate change on the distribution and production of marine fishes: accounting for trophic interactions in a dynamic bioclimate envelope model. Glob Chang Biol 19:2596–2607. doi: 10.1111/gcb.12231 CrossRefGoogle Scholar
  76. Ficke AD, Myrick CA, Hansen LJ (2007) Potential impacts of global climate change on freshwater fisheries. Rev Fish Biol Fish 17:581–613. doi: 10.1007/s11160-007-9059-5 CrossRefGoogle Scholar
  77. Fish MR, Cote IM, Gill JA, Jones AP, Renshoff S, Watkinson AR (2005) Predicting the impact of sea-level rise on Caribbean sea turtle nesting habitat. Conserv Biol 19:482–491. doi: 10.1111/j.1523-1739.2005.00146.x CrossRefGoogle Scholar
  78. Frieler K, Meinshausen M, Golly A, Mengel M, Lebek K, Donner SD, Hoegh-Guldberg O (2012) Limiting global warming to 2 °C is unlikely to save most coral reefs. Nat Clim Chang 2:1–6. doi: 10.1038/nclimate1674 CrossRefGoogle Scholar
  79. Fu R, Yin L, Li W, Arias PA, Dickinson RE, Huang L, Chakraborty S (2013) Increased dry-season length over southern Amazonia in recent decades and its implication for future climate projection. doi: 10.1073/pnas.1302584110/-/DCSupplemental.
  80. García NO, Vargas WM (1998) The temporal climatic variability in the Río de la Plata basin displayed by the river discharges. Clim Change 38:359–379CrossRefGoogle Scholar
  81. García-López JM, Allué C (2013) Modelling future no-analogue climate distributions: a world-wide phytoclimatic niche-based survey. Glob Planet Change 101:1–11. doi: 10.1016/j.gloplacha.2012.12.001 CrossRefGoogle Scholar
  82. Gardner T, Cote I, Gill J, Grant A, Watkinson A (2005) Hurricanes and Caribbean coral reefs: impacts, recovery patterns, and role in long-term decline. Ecology 86:174–184CrossRefGoogle Scholar
  83. Gerten D, Lucht W, Ostberg S, Heinke J, Kowarsch M, Kreft H, Kundzewicz ZW, Rastgooy J, Warren R, Schellnhuber HJ (2013) Asynchronous exposure to global warming: freshwater resources and terrestrial ecosystems. Environ Res Lett 8:034032. doi: 10.1088/1748-9326/8/3/034032 CrossRefGoogle Scholar
  84. Ghini R, Bettiol W, Hamada E (2011) Diseases in tropical and plantation crops as affected by climate changes: current knowledge and perspectives. Plant Pathol 60:122–132. doi: 10.1111/j.1365-3059.2010.02403.x CrossRefGoogle Scholar
  85. Giesen RH, Oerlemans J (2013) Climate-model induced differences in the 21st century global and regional glacier contributions to sea-level rise. Clim Dyn. doi: 10.1007/s00382-013-1743-7 Google Scholar
  86. Gomes AF, Nobre AA, Cruz OG (2012) Temporal analysis of the relationship between dengue and meteorological variable in the city of Rio de Janeiro, Brazil, 2001–2009. Cad Saúde Pública 28:2189–2197CrossRefGoogle Scholar
  87. Good P, Jones C, Lowe J, Betts R, Gedney N (2013) Comparing tropical forest projections from two generations of hadley centre earth system models, HadGEM2-ES and HadCM3LC. J Clim 26:495–511. doi: 10.1175/JCLI-D-11-00366.1 CrossRefGoogle Scholar
  88. Guimberteau M, Ronchail J, Espinoza JC, Lengaigne M, Sultan B, Polcher J, Drapeau G, Guyot J-L, Ducharne A, Ciais P (2013) Future changes in precipitation and impacts on extreme streamflow over Amazonian sub-basins. Environ Res Lett 8:1–13. doi: 10.1088/1748-9326/8/1/014035 CrossRefGoogle Scholar
  89. Gumpenberger M, Vohland K, Heyder U, Poulter B, Macey K, Rammig A, Popp A, Cramer W (2010) Predicting pan-tropical climate change induced forest stock gains and losses—implications for REDD. Environ Res Lett 5:014013. doi: 10.1088/1748-9326/5/1/014013 CrossRefGoogle Scholar
  90. Haines A, Kovats RS, Campbell-Lendrum D, Corvalan C (2006) Climate change and human health: impacts, vulnerability and public health. Public Health 120:585–596. doi: 10.1016/j.puhe.2006.01.002 CrossRefGoogle Scholar
  91. Hallegatte S (2007) The use of synthetic hurricane tracks in risk analysis and climate change damage assessment. J Appl Meteorol Climatol 46:1956–1966. doi: 10.1175/2007JAMC1532.1 CrossRefGoogle Scholar
  92. Hallegatte S, Green C, Nicholls RJ, Corfee-Morlot J (2013) Future flood losses in major coastal cities. Nat Clim Chang 3:802–806. doi: 10.1038/nclimate1979 CrossRefGoogle Scholar
  93. Hamududu B, Killingtveit A (2012) Assessing climate change impacts on global hydropower. Energies 5:305–322. doi: 10.3390/en5020305 CrossRefGoogle Scholar
  94. Hansen J, Sato M, Ruedy R (2012) Perception of climate change. Proc Nat Acad Sci 109:E2415–E2423CrossRefGoogle Scholar
  95. Hardoy J, Pandiella G (2009) Urban poverty and vulnerability to climate change in Latin America. Environ Urban 21:203CrossRefGoogle Scholar
  96. Hertel T, Burke M, Lobell D (2010) The poverty implications of climate-induced crop yield changes by 2030. Glob Environ Chang 20:577–585. doi: 10.1016/j.gloenvcha.2010.07.001 CrossRefGoogle Scholar
  97. Heyder U, Schaphoff S, Gerten D, Lucht W (2011) Risk of severe climate change impact on the terrestrial biosphere. Environ Res Lett 6:034036. doi: 10.1088/1748-9326/6/3/034036 CrossRefGoogle Scholar
  98. Hidalgo HG, Amador JA, Alfaro EJ, Quesada B (2013) Hydrological climate change projections for Central America. J Hydrol 495:94–112. doi: 10.1016/j.jhydrol.2013.05.004 CrossRefGoogle Scholar
  99. Hirabayashi Y, Mahendran R, Koirala S, Konoshima L, Yamazaki D, Watanabe S, Kim H, Kanae S (2013) Global flood risk under climate change. Nat Clim Chang 3:816–821. doi: 10.1038/nclimate1911 CrossRefGoogle Scholar
  100. Hirata R, Conicelli BP (2012) Groundwater resources in Brazil: a review of possible impacts caused by climate change. An Acad Bras Cienc 84:297–312CrossRefGoogle Scholar
  101. Hoegh-Guldberg O, Mumby PJ, Hooten AJ, Steneck RS, Greenfield P, Gomez E, Harvell CD, Sale PF, Edwards AJ, Caldeira K, Knowlton N, Eakin CM, Iglesias-Prieto R, Muthiga N, Bradbury RH, Dubi A, Hatziolos ME (2007) Coral reefs under rapid climate change and ocean acidification. Science 318:1737–1742. doi: 10.1126/science.1152509 CrossRefGoogle Scholar
  102. Hof C, Levinsky I, Araújo MB, Rahbek C (2011) Rethinking species’ ability to cope with rapid climate change. Glob Chang Biol 17:2987–2990. doi: 10.1111/j.1365-2486.2011.02418.x CrossRefGoogle Scholar
  103. Hoffman M, Grigera AI (2013) Climate change, migration, and conflict in the Amazon and the Andes. Rising tensions and policy options in South America. Center for American Progress, Washington, DCGoogle Scholar
  104. Hurtado-Diaz M, Riojas-Rodriguez H, Rothenburg SJ, Gomez-Dantes H, Cifuentes E (2007) Impact of climate variability on the incidence of dengue in Mexico. Trop Med Int Heal 12:1327–1337CrossRefGoogle Scholar
  105. Hyman T-A (2013) Assessing the vulnerability of beach tourism and non-beach tourism to climate change: a case study from Jamaica. J Sustain Tour. doi: 10.1080/09669582.2013.855220 Google Scholar
  106. IFAD (2013) IFAD in Latin America and the Caribbean. In: International Fund for Agricultural Development, Rome. Accessed 25 Mar 2014
  107. Imbach P, Molina L, Locatelli B, Roupsard O, Mahé G, Neilson R, Corrales L, Scholze M, Ciais P (2012) Modeling potential equilibrium states of vegetation and terrestrial water cycle of Mesoamerica under climate change scenarios. J Hydrometeorol 13:665–680. doi: 10.1175/JHM-D-11-023.1 CrossRefGoogle Scholar
  108. IPCC (2012) Special report on managing the risks of extreme events and disasters to advance climate change adaptation (SREX). In: Field CB, Barros V, Stocker TF, Dahe Q (eds) A special report of working groups I and II of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, p 582Google Scholar
  109. IPCC (2013) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge (in press)Google Scholar
  110. Ivins ER, Watkins MM, Yuan D-N, Dietrich R, Casassa G, Rülke A (2011) On-land ice loss and glacial isostatic adjustment at the Drake passage: 2003–2009. J Geophys Res 116:B02403. doi: 10.1029/2010JB007607 CrossRefGoogle Scholar
  111. Jacob T, Wahr J, Pfeffer WT, Swenson S (2012) Recent contributions of glaciers and ice caps to sea level rise. Nature 482:514–518. doi: 10.1038/nature10847 CrossRefGoogle Scholar
  112. Jaggard KW, Qi A, Ober ES (2010) Possible changes to arable crop yields by 2050. Philos Trans R Soc Lond B Biol Sci 365:2835–2851. doi: 10.1098/rstb.2010.0153 CrossRefGoogle Scholar
  113. Jaime P, Menéndez AN (2002) Análisis del Régimen Hidrológico de los Rìos Paraná y Uruguay. Instituto Nacional del Agua, EzeizaGoogle Scholar
  114. Jetz W, Wilcove DS, Dobson AP (2007) Projected impacts of climate and land-use change on the global diversity of birds. PLoS Biol 5:e157. doi: 10.1371/journal.pbio.0050157 CrossRefGoogle Scholar
  115. Johansson MA, Dominici F, Glass GE (2009) Local and global effects of climate on dengue transmission in Puerto Rico. PLoS Negl Trop Dis 3:e382CrossRefGoogle Scholar
  116. Jones C, Carvalho LMV (2013) Climate change in the South American monsoon system: present climate and CMIP5 projections. J Clim 26:6660–6678. doi: 10.1175/JCLI-D-12-00412.1 CrossRefGoogle Scholar
  117. Juen I, Kaser G, Georges C (2007) Modelling observed and future runoff from a glacierized tropical catchment (Cordillera Blanca, Perú). Glob Planet Change 59:37–48. doi: 10.1016/j.gloplacha.2006.11.038 CrossRefGoogle Scholar
  118. Kharin VV, Zwiers FW, Zhang X, Wehner M (2013) Changes in temperature and precipitation extremes in the CMIP5 ensemble. Clim Change 119:345–357. doi: 10.1007/s10584-013-0705-8 CrossRefGoogle Scholar
  119. Kim H-M, Webster PJ, Curry JA (2011) Modulation of North Pacific tropical cyclone activity by three phases of ENSO. J Clim 24:1839–1849. doi: 10.1175/2010JCLI3939.1 CrossRefGoogle Scholar
  120. Kinouchi T, Liu T, Mendoza J, Asaoka Y (2013) Modeling glacier melt and runoff in a high-altitude headwater catchment in the Cordillera Real, Andes. Hydrol Earth Syst Sci Discuss 10:13093–13144. doi: 10.5194/hessd-10-13093-2013 CrossRefGoogle Scholar
  121. Knabb RD, Rhome JR, Brown DP (2005) Tropical cyclone report: Hurricane Katrina. NOAA—National Hurricane Center, MiamiGoogle Scholar
  122. Knutson TR, McBride JL, Chan J, Emanuel K, Holland G, Landsea C, Held I, Kossin JP, Srivastava AK, Sugi M (2010) Tropical cyclones and climate change. Nat Geosci 3:157–163. doi: 10.1038/ngeo779 CrossRefGoogle Scholar
  123. Knutson TR, Sirutis JJ, Vecchi GA, Garner S, Zhao M, Kim H-S, Bender M, Tuleya RE, Held IM, Villarini G (2013) dynamical downscaling projections of twenty-first-century Atlantic Hurricane activity: CMIP3 and CMIP5 model-based scenarios. J Clim 26:6591–6617. doi: 10.1175/JCLI-D-12-00539.1 CrossRefGoogle Scholar
  124. Koelle K (2009) The impact of climate on the disease dynamics of cholera. Clin Microb Infect 15:29–31CrossRefGoogle Scholar
  125. Kolstad EW, Johansson KA (2011) Uncertainties associated with quantifying climate change impacts on human health: a case study for diarrhea. Environ Health Perspect 119:299–305. doi: 10.1289/ehp.1002060 CrossRefGoogle Scholar
  126. Kossin JP, Olander TL, Knapp KR (2013) Trend analysis with a new global record of tropical cyclone intensity. J Clim 26:9960–9976. doi: 10.1175/JCLI-D-13-00262.1 CrossRefGoogle Scholar
  127. Kossin JP, Emanuel KA, Vecchi GA (2014) The poleward migration of the location of tropical cyclone maximum intensity. Nature 509:349–352. doi: 10.1038/nature13278 CrossRefGoogle Scholar
  128. Krol MS, Bronstert A (2007) Regional integrated modelling of climate change impacts on natural resources and resource usage in semi-arid Northeast Brazil. Environ Model Softw 22:259–268. doi: 10.1016/j.envsoft.2005.07.022 CrossRefGoogle Scholar
  129. Kronik J, Verner D (2010) Indigenous peoples and climate change in Latin America and the Caribbean. doi: 10.1596/978-0-8213-8237-0
  130. Kumar N, Quisumbing AR (2011) Gendered Impacts of the 2007 – 08 food price crisis evidence using panel data from rural Ethiopia. International Food Policy Research Institute (IFPRI), Washington, DCGoogle Scholar
  131. Laderach P, Lundy M, Jarvis A, Ramirez J, Portilla EP, Schepp K, Eitzinger A (2011) Predicted impact of climate change on coffee supply chains. In: Leal Filho W (ed) The economic, social and political elements of climate change. Springer, Berlin, pp 703–723CrossRefGoogle Scholar
  132. Langerwisch F, Rost S, Gerten D, Poulter B, Rammig A, Cramer W (2013) Potential effects of climate change on inundation patterns in the Amazon Basin. Hydrol Earth Syst Sci 17:2247–2262. doi: 10.5194/hess-17-2247-2013 CrossRefGoogle Scholar
  133. Lapola DM, Schaldach R, Alcamo J, Bondeau A, Msangi S, Priess JA, Silvestrini R, Soares-Filho BS (2011) Impacts of climate change and the end of deforestation on land use in the Brazilian Legal Amazon. Earth Interact 15:1–29. doi: 10.1175/2010EI333.1 CrossRefGoogle Scholar
  134. Lawler JJ, Shafer SL, White D, Kareiva P, Maurer EP, Blaustein AR, Bartlein PJ (2009) Projected climate-induced faunal change in the Western Hemisphere. Ecology 90:588–597CrossRefGoogle Scholar
  135. Lemes P, Melo AS, Loyola RD (2014) Climate change threatens protected areas of the Atlantic Forest. Biodivers Conserv 23:357–368. doi: 10.1007/s10531-013-0605-2 CrossRefGoogle Scholar
  136. Lenton TM, Held H, Kriegler E, Hall JW, Lucht W, Rahmstorf S, Schellnhuber HJ (2008) Tipping elements in the Earth’s climate system. Proc Natl Acad Sci 105:1786–1793CrossRefGoogle Scholar
  137. Lewis SL, Brando PM, Phillips OL, van der Heijden GMF, Nepstad D (2011) The 2010 Amazon drought. Science 331:554. doi: 10.1126/science.1200807 CrossRefGoogle Scholar
  138. Li J, Lin X, Chen A, Peterson T, Ma K, Bertzky M, Ciais P, Kapos V, Peng C, Poulter B (2013) Global priority conservation areas in the face of 21st century climate change. PLoS ONE 8:e54839. doi: 10.1371/journal.pone.0054839 CrossRefGoogle Scholar
  139. Lopez P, Chevallier P, Favier V, Pouyaud B, Ordenes F, Oerlemans J (2010) A regional view of fluctuations in glacier length in southern South America. Glob Planet Change 71:85–108. doi: 10.1016/j.gloplacha.2009.12.009 CrossRefGoogle Scholar
  140. Loyola RD, Lemes P, Faleiro FV, Trindade-Filho J, Machado RB (2012) Severe loss of suitable climatic conditions for marsupial species in Brazil: challenges and opportunities for conservation. PLoS ONE 7:e46257. doi: 10.1371/journal.pone.0046257 CrossRefGoogle Scholar
  141. Loyola RD, Lemes P, Nabout JC, Trindade-Filho J, Sagnori MD, Dobrovolski R, Diniz-Filho JAF (2013) A straightforward conceptual approach for evaluating spatial conservation priorities under climate change. Biodivers Conserv 22:483–495. doi: 10.1007/s10531-012-0424-x CrossRefGoogle Scholar
  142. Luck J, Spackman M, Freeman A, Trebicki P, Griffiths W, Finlay K, Chakraborty S (2011) Climate change and diseases of food crops. Plant Pathol 60:113–121. doi: 10.1111/j.1365-3059.2010.02414.x CrossRefGoogle Scholar
  143. Magrin G, Gay García C, Cruz Choque D, Giménez JC, Moreno AR, Nagy GJ, Nobre C, Villamizar A (2007) Chapter 10—Latin America. In: Parry ML, Canziano OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) Climate change 2007: impacts, adaptation and vulnerability. Contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change. IPCC AR4 WGII, Cambridge University Press, Cambridge, UK, pp 581–685Google Scholar
  144. Magrin G, Marengo J, Boulanger J-P, Buckeridge MS, Castellanos E, Poveda G, Scarano F, Vicuña S (2014) Central and South America. In: Girardin LO, Ometto JP (eds) Climate change 2014: impacts, adaptation, and vulnerability. Contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change. Regional aspects. Chapter 27. Final draft. IPCC AR5 WGII, Cambridge University Press, Cambridge UK, pp 1–102Google Scholar
  145. Malhi Y, Wood D, Baker TR, Wright J, Phillips OL, Cochrane T, Meir P, Chave J, Almeida S, Arroyo L, Higuchi N, Killeen TJ, Laurance SG, Laurance WF, Lewis SL, Monteagudo A, Neill DA, Vargas PN, Pitman NCA, Quesada CA, Salomao R, Silva JNM, Lezama AT, Terborgh J, Martinez RV, Vinceti B (2006) The regional variation of aboveground live biomass in old-growth Amazonian forests. Glob Chang Biol 12:1107–1138. doi: 10.1111/j.1365-2486.2006.01120.x CrossRefGoogle Scholar
  146. Mallard MS, Lackmann GM, Aiyyer A, Hill K (2013) Atlantic Hurricanes and climate change. Part I: experimental design and isolation of thermodynamic effects. J Clim 26:4876–4893. doi: 10.1175/JCLI-D-12-00182.1 CrossRefGoogle Scholar
  147. Marengo JA, Jones R, Alves LM, Valverde MC (2009) Future change of temperature and precipitation extremes in South America as derived from the PRECIS regional climate modeling system. Int J Climatol. doi: 10.1002/joc Google Scholar
  148. Marin FR, Jones JW, Singels A, Royce F, Assad ED, Pellegrino GQ, Justino F (2012) Climate change impacts on sugarcane attainable yield in southern Brazil. Clim Change 117:227–239. doi: 10.1007/s10584-012-0561-y CrossRefGoogle Scholar
  149. Marini MA, Barbet-Massin M, Lopes LE, Jiguet F (2009) Predicted climate-driven bird distribution changes and forecasted conservation conflicts in a neotropical savanna. Conserv Biol J Soc Conserv Biol 23:1558–1567. doi: 10.1111/j.1523-1739.2009.01258.x CrossRefGoogle Scholar
  150. Martinez-Sanchez J, Cavazos T (2014) Eastern Tropical Pacific hurricane variability and landfalls on Mexican coasts. Clim Res 58:221–234. doi: 10.3354/cr01192 CrossRefGoogle Scholar
  151. Marzeion B, Jarosch AH, Hofer M (2012) Past and future sea-level change from the surface mass balance of glaciers. Cryosph 6:1295–1322. doi: 10.5194/tc-6-1295-2012 CrossRefGoogle Scholar
  152. Masiokas MH, Villalba R, Luckman BH, Le Quesne C, Aravena JC (2006) Snowpack variations in the central Andes of Argentina and Chile, 1951–2005: large-scale atmospheric influences and implications for water resources in the region. J Clim 19:6334–6352CrossRefGoogle Scholar
  153. Masiokas MH, Villalba R, Christie DA, Betman E, Luckman BH, Le Quesne C, Prieto MR, Mauget S (2012) Snowpack variations since AD 1150 in the Andes of Chile and Argentina (30°–37°S) inferred from rainfall, tree-ring and documentary records. J Geophys Res 117:D05112. doi: 10.1029/2011JD016748 CrossRefGoogle Scholar
  154. Masiokas MH, Villalba R, Luckman BH, Montaña E, Betman E, Christie C, Le Quesne C, Mauget S (2013) Recent and historic Andean snowpack and streamflow variations and vulnerability to water shortages in Central-Western Argentina. Climate vulnerability: understanding and addressing threats to essential resources. Elsevier Inc., Academic press, Oxford, pp 213–227Google Scholar
  155. Mata LJ, Campos M, Basso E, Compagnucci R, Fearnside P, Magrin G, Marengo J, Moreno AR, Suárez A, Solman S, Villamizar A, Villers L (2001) Latin America. In: McCarthy JJ, Canziani OF, Leary NA, Dokken DJ, White KS (eds) Working group II: impacts, adaptation and vulnerability, intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 694–734Google Scholar
  156. Maurer EP, Adam JC, Wood AW (2009) Climate model based consensus on the hydrologic impacts of climate change to the Rio Lempa basin of Central America. Hydrol Earth Syst Sci 13:183–194CrossRefGoogle Scholar
  157. Maynard-Ford BMC, Phillips EC, Chirico PG, Survey USG (2008) Mapping Vulnerability to disasters in Latin America and the Caribbean, 1900–2007. U.S. Geological Survey, RestonGoogle Scholar
  158. McGranahan G, Balk D, Anderson B (2007) The rising tide: assessing the risks of climate change and human settlements in low elevation coastal zones. Environ Urban 19:17–37. doi: 10.1177/0956247807076960 CrossRefGoogle Scholar
  159. MEA (2005) Millenium ecosystem assessment. Ecosystems and human well-being: synthesis. Island Press, Washington, DCGoogle Scholar
  160. Meissner KJ, Lippmann T, Sen Gupta A (2012) Large-scale stress factors affecting coral reefs: open ocean sea surface temperature and surface seawater aragonite saturation over the next 400 years. Coral Reefs 31:309–319CrossRefGoogle Scholar
  161. Mendelsohn R, Emanuel K, Chonabayashi S, Bakkensem L (2011) The impact of climate change on global tropical storm damages. Nat Clim Chang 2:205–209CrossRefGoogle Scholar
  162. Menéndez Á, Berbery EH (2005) Hydrological trends. In: Barros V, Clarke R, Silva Días P (eds) Climate change in the La Plata Basin: raising awareness and new tools for water management. Project SGP II 057, Inter American Institute for Global Change Research (IAI), Montevideo, Uruguay, pp 74–86Google Scholar
  163. Merrifield MA, Maltrud ME (2011) Regional sea level trends due to a Pacific trade wind intensification. Geophys Res Lett 38:L21605. doi: 10.1029/2011GL049576 CrossRefGoogle Scholar
  164. Mesquita PCMD, Pinheiro-Mesquita SF, Pietczak C (2013) Are common species endangered by climate change? Habitat suitability projections for the royal ground snake, Liophis reginae (Serpentes, Dipsadidae). North West J Zool 9:51–56Google Scholar
  165. Mika J (2013) Changes in weather and climate extremes: phenomenology and empirical approaches. Clim Change 121:15–26. doi: 10.1007/s10584-013-0914-1 CrossRefGoogle Scholar
  166. Milly PCD, Dunne KA, Vecchia AV (2005) Global pattern of trends in streamflow and water availability in a changing climate. Nature 438:347–350. doi: 10.1038/nature04312 CrossRefGoogle Scholar
  167. Mimura N, Nurs L, McLean R, Agard J, Briguglio L, Lefale P, Payet R, Sem G (2007) Small islands. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) Climate change 2007: impacts, adaptation and vulnerability. IPCC AR4 WGII, Cambridge University Press, Cambridge, pp 687–71Google Scholar
  168. Montenegro A, Ragab R (2010) Hydrological response of a Brazilian semi-arid catchment to different land use and climate change scenarios: a modelling study. Hydrol Process 24:2705–2723. doi: 10.1002/hyp.7825 CrossRefGoogle Scholar
  169. Mora C, Frazier AG, Longman RJ, Dacks RS, Walton MM, Tong EJ, Sanchez JJ, Kaiser LR, Stender YO, Anderson JM, Ambrosino CM, Fernandez-Silva I, Giuseffi LM, Giambelluca TW (2013a) The projected timing of climate departure from recent variability. Nature 502:183–187. doi: 10.1038/nature12540 CrossRefGoogle Scholar
  170. Mora DE, Campozano L, Cisneros F, Wyseure G, Willems P (2013b) Climate changes of hydrometeorological and hydrological extremes in the Paute basin, Ecuadorean Andes. Hydrol Earth Syst Sci Discuss 10:6445–6471. doi: 10.5194/hessd-10-6445-2013 CrossRefGoogle Scholar
  171. Moreno AR (2006) Climate change and human health in Latin America: drivers, effects, and policies. Reg Environ Chang 6:157–164CrossRefGoogle Scholar
  172. Moser C, Norton A, Stein A, Georgieva S (2010). Pro-poor adaptation to climate change in Urban centers: case studies of vulnerability and resilience in Kenya and Nicaragua. World Bank, Washington DC. Retrieved from
  173. Murakami H, Mizuta R, Shindo E (2011) Future changes in tropical cyclone activity projected by multi-physics and multi-SST ensemble experiments using the 60-km-mesh MRI-AGCM. Clim Dyn 39:2569–2584. doi: 10.1007/s00382-011-1223-x CrossRefGoogle Scholar
  174. Murakami H, Wang Y, Yoshimura H, Mizuta R, Sugi M, Shindo E, Adachi Y, Yukimoto S, Hosaka M, Kusunoki S, Ose T, Kitoh A (2012) Future changes in tropical cyclone activity projected by the new high-resolution MRI-AGCM. J Clim 25:3237–3260. doi: 10.1175/JCLI-D-11-00415.1 CrossRefGoogle Scholar
  175. Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GA, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858. doi: 10.1038/35002501 CrossRefGoogle Scholar
  176. Nakaegawa T, Kitoh A, Hosaka M (2013) Discharge of major global rivers in the late 21st century climate projected with the high horizontal resolution MRI-AGCMs. Hydrol Process 27:3301–3318. doi: 10.1002/hyp.9831 Google Scholar
  177. Nepstad DC, Tohver IM, Ray D, Moutinho P, Cardinot G (2007) Mortality of large trees and lianas following experimental drought in an Amazon forest. Ecology 88:2259–2269CrossRefGoogle Scholar
  178. Nóbrega MT, Collischonn W, Tucci CEM, Paz AR (2011) Uncertainty in climate change impacts on water resources in the Rio Grande Basin, Brazil. Hydrol Earth Syst Sci 15:585–595. doi: 10.5194/hess-15-585-2011 CrossRefGoogle Scholar
  179. Nurse LA, McLean RF, Agard J, Briguglio LP, Duvat-Magnan V, Pelesikoti N, Tompkins E, Webb A (2014) Small islands. In: Barros VR, Field CB, Dokken DJ, Mastrandrea MD, Mach KJ, Bilir TE, Chatterjee M, Ebi KL, Estrada YO, Genova RC, Girma B, Kissel ES, Levy AN, MacCracken S, Mastrandrea PR, White LL (eds). Climate change 2014: impacts, adaptation, and vulnerability. Part B: regional aspects. Contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 1613–1654Google Scholar
  180. Olson DM, Dinerstein E (2002) The global 200: priority ecoregions for global conservation. Ann Missouri Bot Gard 89:199–224. doi: 10.2307/3298564 CrossRefGoogle Scholar
  181. Orlowsky B, Seneviratne SI (2013) Elusive drought: uncertainty in observed trends and short- and long-term CMIP5 projections. Hydrol Earth Syst Sci 17:1765–1781. doi: 10.5194/hess-17-1765-2013 CrossRefGoogle Scholar
  182. Pardaens AK, Gregory JM, Lowe JA (2011) A model study of factors influencing projected changes in regional sea level over the twenty-first century. Clim Dyn 36:2015–2033. doi: 10.1007/s00382-009-0738-x CrossRefGoogle Scholar
  183. Parry M (2010) Copenhagen number crunch. Nat Rep Clim Chang 4:18–19. doi: 10.1038/climate.2010.01 CrossRefGoogle Scholar
  184. Perry AL, Low PJ, Ellis JR, Reynolds JD (2005) Climate change and distribution shifts in marine fishes. Science 308:1912–1915. doi: 10.1126/science.1111322 CrossRefGoogle Scholar
  185. Phillips OL, Aragão LEOC, Lewis SL, Fisher JB, Lloyd J, López-González G, Malhi Y, Monteagudo A, Peacock J, Quesada CA, van der Heijden G, Almeida S, Amaral I, Arroyo L, Aymard G, Baker TR, Bánki O, Blanc L, Bonal D, Brando P, Chave J, de Oliveira ACA, Cardozo ND, Czimczik CI, Feldpausch TR, Freitas MA, Gloor E, Higuchi N, Jiménez E, Lloyd G, Meir P, Mendoza C, Morel A, Neill DA, Nepstad D, Patiño S, Peñuela MC, Prieto A, Ramírez F, Schwarz M, Silva J, Silveira M, Thomas AS, Ter Steege H, Stropp J, Vásquez R, Zelazowski P, Alvarez Dávila E, Andelman S, Andrade A, Chao K-J, Erwin T, Di Fiore A, Honorio CE, Keeling H, Killeen TJ, Laurance WF, Peña Cruz A, Pitman NCA, Núñez Vargas P, Ramírez-Angulo H, Rudas A, Salamão R, Silva N, Terborgh J, Torres-Lezama A (2009) Drought sensitivity of the Amazon rainforest. Science 323:1344–1347. doi: 10.1126/science.1164033 CrossRefGoogle Scholar
  186. Popescu I, Brandimarte L, Peviani M (2014) Effects of climate change over energy production in La Plata Basin. Int J River Basin Manag. doi: 10.1080/15715124.2014.917317 Google Scholar
  187. Porter JR, Liyong X, Challinor A, Cochrane K, Howden M, Iqbal MM, Lobell D, Travasso MI (2014) Chapter 7: food security and food production systems. IPCC 2014: climate change 2014: impacts, adaptation, and vulnerability. Contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change. Final draft. IPCC AR5 WGII, Cambridge University Press, Cambridge, pp 1–82Google Scholar
  188. Portmann FT, Döll P, Eisner S, Flörke M (2013) Impact of climate change on renewable groundwater resources: assessing the benefits of avoided greenhouse gas emissions using selected CMIP5 climate projections. Environ Res Lett 8:1–14. doi: 10.1088/1748-9326/8/2/024023 CrossRefGoogle Scholar
  189. Pörtner H-O, Karl D, Boyd PW, Cheung W, Lluch-Cota SE, Nojiri Y, Schmidt D, Zavialov P (2014) Ocean systems. In: Drinkwater K, Polonsky A (eds) Climate change 2014: impacts, adaptation and vulnerability. Contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change. Chapter 6. Final draft. IPCC AR5 WGII, Cambridge University Press, Cambridge, pp 1–100Google Scholar
  190. Poulter B, Aragão L, Heyder U, Gumpenberger M, Heinke J, Langerwisch F, Rammig A, Thonicke K, Cramer W (2010) Net biome production of the Amazon Basin in the 21st century. Glob Chang Biol 16:2062–2075. doi: 10.1111/j.1365-2486.2009.02064.x CrossRefGoogle Scholar
  191. Poveda G, Pineda K (2010) Advances in geosciences reassessment of Colombia’s tropical glaciers retreat rates: are they bound to disappear during the 2010–2020 decade? Adv Geosci 22:107–116CrossRefGoogle Scholar
  192. Poveda G, Jaramillo A, Gil MM, Quiceno N, Mantilla RI (2001) Seasonality in ENSO-related precipitation, river discharges, soil moisture, and vegetation index in Colombia. Water Resour Res 37:2169–2178CrossRefGoogle Scholar
  193. Power S, Delage F, Chung C, Kociuba G, Keay K (2013) Robust twenty-first-century projections of El Niño and related precipitation variability. Nature 502:541–545. doi: 10.1038/nature12580 CrossRefGoogle Scholar
  194. Prudhomme C, Giuntoli I, Robinson EL, Clark DB, Arnell NW, Dankers R, Fekete BM, Franssen W, Gerten D, Gosling SN, Hagemann S, Hannah DM, Kim H, Masaki Y, Satoh Y, Stacke T, Wada Y, Wisser D (2013) Hydrological droughts in the 21st century, hotspots and uncertainties from a global multimodel ensemble experiment. Proc Natl Acad Sci. doi: 10.1073/pnas.1222473110 Google Scholar
  195. Rabatel A, Francou B, Soruco A, Gomez J, Cáceres B, Ceballos JL, Basantes R, Vuille M, Sicart J-E, Huggel C, Scheel M, Lejeune Y, Arnaud Y, Collet M, Condom T, Consoli G, Favier V, Jomelli V, Galarraga R, Ginot P, Maisincho L, Mendoza J, Ménégoz M, Ramirez E, Ribstein P, Suarez W, Villacis M, Wagnon P (2013) Current state of glaciers in the tropical Andes: a multi-century perspective on glacier evolution and climate change. Cryosph 7:81–102. doi: 10.5194/tc-7-81-2013 CrossRefGoogle Scholar
  196. Radić V, Bliss A, Beedlow AC, Hock R, Miles E, Cogley JG (2013) Regional and global projections of twenty-first century glacier mass changes in response to climate scenarios from global climate models. Clim Dyn 142:37–58. doi: 10.1007/s00382-013-1719-7 Google Scholar
  197. Rammig A, Jupp T, Thonicke K, Tietjen B, Heinke J, Ostberg S, Lucht W, Cramer W, Cox P (2010) Estimating the risk of Amazonian forest dieback. New Phytol 187:694–706. doi: 10.1111/j.1469-8137.2010.03318.x CrossRefGoogle Scholar
  198. RIMISP (2011) Poverty and inequality: Latin American report. Latin American Center for Rural Development (RIMISP), SantiagoGoogle Scholar
  199. Romero-Lankao P, Smith JB, Davidson DJ, Diffenbaugh NS, Kinney PL, Kirshen P, Kovacs P, Villers Ruiz L (2014) North America. In: Barros VR, Field CB, Dokken DJ, Mastrandrea MD, Mach KJ, Bilir TE, Chatterjee M, Ebi KL, Estrada YO, Genova RC, Girma B, Kissel ES, Levy AN, MacCracken S, Mastrandrea PR, White LL (eds) Climate change 2014: impacts, adaptation, and vulnerability. Part B: regional aspects. Contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 1439–1498Google Scholar
  200. Rosenzweig C, Jones JW, Hatfield JL, Ruane AC, Boote KJ, Thorburn P, Antle JM, Nelson GC, Porter C, Janssen S, Asseng S, Basso B, Ewert F, Wallach D, Baigorria G, Winter JM (2013) The agricultural model intercomparison and improvement project (AgMIP): protocols and pilot studies. Agric For Meteorol 170:166–182CrossRefGoogle Scholar
  201. Saatchi SS, Harris NL, Brown S, Lefsky M, Mitchard ETA, Salas W, Zutta BR, Buermann W, Lewis SL, Hagen S, Petrova S, White L, Silman M, Morel A (2011) Benchmark map of forest carbon stocks in tropical regions across three continents. Proc Natl Acad Sci USA 108:9899–9904. doi: 10.1073/pnas.1019576108 CrossRefGoogle Scholar
  202. Sale PF, Butler MJ IV, Hooten AJ, Kritzer JP, Lindeman KC, Sadovy de Mitcheson YJ, Steneck RS, van Lavieren H (2008) Stemming decline of the coastal ocean: rethinking environmental management. UNU-UNWEH, HamiltonGoogle Scholar
  203. Sampaio G, Nobre C, Costa MH, Satyamurty P, Soares-Filho BS, Cardoso M (2007) Regional climate change over eastern Amazonia caused by pasture and soybean cropland expansion. Geophys Res Lett 34:L17709. doi: 10.1029/2007GL030612 CrossRefGoogle Scholar
  204. Schaefer M, Machguth H, Falvey M, Casassa G (2013) Modeling past and future surface mass balance of the Northern Patagonia Icefield. J Geophys Res Earth Surf 118:571–588. doi: 10.1002/jgrf.20038 CrossRefGoogle Scholar
  205. Schellnhuber HJ, Reyer C, Hare B, Waha K, Otto IM, Serdeczny O, Schaeffer M, Schleußner C-F, Reckien D, Marcus R, Kit O, Eden A, Adams S, Aich V, Albrecht T, Baarsch F, Boit A, Canales Trujillo N, Cartsburg M, Coumou D, Fader M, Hoff H, Jobbins G, Jones L, Krummenauer L, Langerwisch F, Le Masson V, Ludi E, Mengel M, Möhring J, Mosello B, Norton A, Perette M, Pereznieto P, Rammig A, Reinhardt J, Robinson A, Rocha M, Sakschewski B, Schaphoff S, Schewe J, Stagl J, Thonicke K (2014) Turn down the heat: confronting the new climate normal. The World Bank, Washington, DCGoogle Scholar
  206. Schewe J, Heinke J, Gerten D, Haddeland I, Arnell NW, Clark DB, Dankers R, Eisner S, Fekete B, Colón-González FJ, Gosling SN, Kim H, Liu X, Masaki Y, Portmann FT, Satoh Y, Stacke T, Tang Q, Wada Y, Wisser D, Albrecht T, Frieler K, Piontek F, Warszawski L, Kabat P (2013) Multi-model assessment of water scarcity under climate change. Proc Natl Acad Sci USA 104:1–6. doi: 10.1073/pnas.0709640104 Google Scholar
  207. Schloss CA, Nunez TA, Lawler JJ (2012) Dispersal will limit ability of mammals to track climate change in the Western Hemisphere. Proc Natl Acad Sci 109:8606–8611. doi: 10.1073/pnas.1116791109 CrossRefGoogle Scholar
  208. Seo SN, McCarl BA, Mendelsohn R (2010) From beef cattle to sheep under global warming? An analysis of adaptation by livestock species choice in South America. Ecol Econ 69:2486–2494. doi: 10.1016/j.ecolecon.2010.07.025 CrossRefGoogle Scholar
  209. Seoane R, López P (2007) Assessing the effects of climate change on the hydrological regime of the Limay River basin. GeoJournal 70:251–256. doi: 10.1007/s10708-008-9138-8 CrossRefGoogle Scholar
  210. Sieber J (2013) Impacts of, and adaptation options to, extreme weather events and climate change concerning thermal power plants. Clim Change 121:55–66. doi: 10.1007/s10584-013-0915-0 CrossRefGoogle Scholar
  211. Sillmann J, Kharin VV, Zhang X, Zwiers FW, Bronaugh D (2013a) Climate extremes indices in the CMIP5 multimodel ensemble: part 1. Model evaluation in the present climate. J Geophys Res Atmos 118:1716–1733. doi: 10.1002/jgrd.50203 CrossRefGoogle Scholar
  212. Sillmann J, Kharin VV, Zhang X, Zwiers FW, Bronaugh D (2013b) Climate extremes indices in the CMIP5 multimodel ensemble: part 2. Future climate projections. J Geophys Res Atmos 118:2473–2493. doi: 10.1002/jgrd.50188 CrossRefGoogle Scholar
  213. Silvestrini RA, Soares-Filho BS, Nepstad D, Coe M, Rodrigues H, Assunção R (2011) Simulating fire regimes in the Amazon in response to climate change and deforestation. Ecol Appl Publ Ecol Soc Am 21:1573–1590Google Scholar
  214. Simon LM, Oliveira G, Barreto BS, Nabout JC, Rangel TFLVB, Diniz-Filho JAF (2013) Effects of global climate changes on geographical distribution patterns of economically important plant species in Cerrado. Viçosa-MG 37:267–274Google Scholar
  215. Simpson M, Scott D, Trotz U (2011) Climate change’s impact on the Caribbean’s ability to sustain tourism, natural assets, and livelihoods. Inter-American Development Bank, Washington, DCGoogle Scholar
  216. Sinervo B, Méndez-de-la-Cruz F, Miles DB, Heulin B, Bastiaans E, Villagrán-Santa Cruz M, Lara-Resendiz R, Martínez-Méndez N, Calderón-Espinosa ML, Meza-Lázaro RN, Gadsden H, Avila LJ, Morando M, De la Riva IJ, Victoriano Sepulveda P, Rocha CFD, Ibargüengoytía N, Aguilar Puntriano C, Massot M, Lepetz V, Oksanen TA, Chapple DG, Bauer AM, Branch WR, Clobert J, Sites JW (2010) Erosion of lizard diversity by climate change and altered thermal niches. Science 328:894–899. doi: 10.1126/science.1184695 CrossRefGoogle Scholar
  217. Siraj AS, Santos-Vega M, Bouma MJ, Yadeta D, Carrascal DR, Pascual M (2014) Altitudinal changes in malaria incidence in highlands of Ethiopia and Colombia. Science 343:1154–1158CrossRefGoogle Scholar
  218. Skansi MDLM, Brunet M, Sigró J, Aguilar E, Arevalo Groening JA, Bentancur OJ, Castellón Geier YR, Correa Amaya RL, Jácome H, Malheiros Ramos A, Oria Rojas C, Pasten AM, Sallons Mitro S, Villaroel Jiménez C, Martínez R, Alexander LV, Jones PD (2013) Warming and wetting signals emerging from analysis of changes in climate extreme indices over South America. Glob Planet Change 100:295–307. doi: 10.1016/j.gloplacha.2012.11.004 CrossRefGoogle Scholar
  219. Soares-Filho B, Silvestrini R, Nepstad D, Brando P, Rodrigues H, Alencar A, Coe M, Locks C, Lima L, Hissa L, Stickler C (2012) Forest fragmentation, climate change and understory fire regimes on the Amazonian landscapes of the Xingu headwaters. Landsc Ecol 27:585–598. doi: 10.1007/s10980-012-9723-6 CrossRefGoogle Scholar
  220. Souza TV, Lorini ML, Alves MAS, Cordeiro P, Vale MM (2011) Redistribution of threatened and endemic atlantic forest birds under climate change. Nat Conserv 9:214–218. doi: 10.4322/natcon.2011.028 CrossRefGoogle Scholar
  221. Stocker TF, Qin D, Plattner G-K, Alexander LV, Allen SK, Bindoff NL, Bréon F-M, Church JA, Cubasch U, Emori S, Forster P, Friedlingstein P, Gillett N, Gregory JM, Hartmann DL, Jansen E, Kirtman B, Knutti R, Kumar KK, Lemke P, Marotzke J, Masson-Delmotte V, Meehl GA, Mokhov II, Piao S, Ramaswamy V, Randall D, Rhein M, Rojas M, Sabine C, Shindell D, Talley LD, Vaughan DG, Xie S-P (2013) Technical summary. Climate change 2013: physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge, UKGoogle Scholar
  222. Strobl E (2012) The economic growth impact of natural disasters in developing countries: evidence from hurricane strikes in the Central American and Caribbean regions. J Dev Econ 97:130–141. doi: 10.1016/j.jdeveco.2010.12.002 CrossRefGoogle Scholar
  223. Teixeira MG, Costa CNM, Barreto F F, Barreto ML (2009) Dengue: twenty-five years since remeergence in Brazil. Cad Saúde Pública 35:S7–S18CrossRefGoogle Scholar
  224. Thomas CD, Cameron A, Green RE, Bakkenes M, Beaumont LJ, Collingham YC, Erasmus BFN, De Siqueira MF, Grainger A, Hannah L, Hughes L, Huntley B, Van Jaarsveld AS, Midgley GF, Miles L, Ortega-Huerta MA, Peterson AT, Phillips OL, Williams SE (2004) Extinction risk from climate change. Nature 427:145–148. doi: 10.1038/nature02121 CrossRefGoogle Scholar
  225. Timmermann A, McGregor S, Jin F-F (2010) Wind effects on past and future regional sea level trends in the Southern Indo-Pacific. J Clim 23:4429–4437. doi: 10.1175/2010JCLI3519.1 CrossRefGoogle Scholar
  226. Torres R, Pablo Jayat J, Pacheco S (2012) Modelling potential impacts of climate change on the bioclimatic envelope and conservation of the Maned Wolf (Chrysocyon brachyurus). Mamm Biol - Zeitschrift für Säugetierkd 78:41–49. doi: 10.1016/j.mambio.2012.04.008 CrossRefGoogle Scholar
  227. Tory KJ, Chand SS, McBride JL, Ye H, Dare RA (2013) Projected changes in late-twenty-first-century tropical cyclone frequency in 13 coupled climate models from phase 5 of the coupled model intercomparison project. J Clim 26:9946–9959. doi: 10.1175/JCLI-D-13-00010.1 CrossRefGoogle Scholar
  228. Trab Nielsen S (2010) Coastal livelihoods and climate change. In: Verner D (ed) Reducing poverty, protectinglivelihoods, and building assets in a changing climate social implications of climate change for Latin America and the Caribbean. The World Bank, Washington, DC, pp 123–166Google Scholar
  229. Trenberth K, Dai A, Van Der Schrier G, Jones PD, Barichivich J, Briffa KR, Sheffield J (2014) Global warming and changes in drought. Nat Clim Chang 4:3–8. doi: 10.1038/NCLIMATE2067 CrossRefGoogle Scholar
  230. Van Hooidonk R, Maynard JA, Planes S (2013) Temporary refugia for coral reefs in a warming world. Nat Clim Chang 3:508–511. doi: 10.1038/nclimate1829 CrossRefGoogle Scholar
  231. Van Lieshout M, Kovats RS, Livermore MTJ, Martens P (2004) Climate change and malaria: analysis of the SRES climate and socio-economic scenarios. Glob Environ Chang 14:87–99. doi: 10.1016/j.gloenvcha.2003.10.009 CrossRefGoogle Scholar
  232. Vergara W, Deeb A, Valencia A, Bradley R, Francou B, Zarzar A, Grünwaldt A, Haeussling SM (2007) Economic impacts of rapid glacier retreat in the Andes. EOS Trans Am Geophys Union 88:261–264CrossRefGoogle Scholar
  233. Vergara W, Toba N, Mira-Salama D, Deeb A (2009) Latin America and Caribbean region sustainable development working paper 32. Assessing the potential consequences of climate destabilization in Latin America. World Bank, Washington DCGoogle Scholar
  234. Vicuña S, Gironás J, Meza FJ, Cruzat ML, Jelinek M, Bustos E, Poblete D, Bambach N (2013) Exploring possible connections between hydrological extreme events and climate change in central south Chile. Hydrol Sci J 58:1598–1619. doi: 10.1080/02626667.2013.840380 CrossRefGoogle Scholar
  235. Villarini G, Vecchi GA (2013) Projected increases in North Atlantic tropical cyclone intensity from CMIP5 models. J Clim 26:3231–3240. doi: 10.1175/JCLI-D-12-00441.1 CrossRefGoogle Scholar
  236. Viviroli D, Archer DR, Buytaert W, Fowler HJ, Greenwood GB, Hamlet AF, Huang Y, Koboltschnig G, Litaor MI, López-Moreno JI, Lorentz S, Schädler B, Schreier H, Schwaiger K, Vuille M, Woods R (2011) Climate change and mountain water resources: overview and recommendations for research, management and policy. Hydrol Earth Syst Sci 15:471–504. doi: 10.5194/hess-15-471-2011 CrossRefGoogle Scholar
  237. Vuille M, Francou B, Wagnon P, Juen I, Kaser G, Mark BG, Bradley RS (2008) Climate change and tropical Andean glaciers: past, present and future. Earth Sci Rev 89:79–96. doi: 10.1016/j.earscirev.2008.04.002 CrossRefGoogle Scholar
  238. Vuuren DP, Sala OE, Pereira HM (2006) The future of vascular plant diversity under four global scenarios. Ecol Soc 11:25CrossRefGoogle Scholar
  239. Wang R, Wu L (2013) Climate changes of Atlantic tropical cyclone formation derived from twentieth-century reanalysis. J Clim 26:8995–9005. doi: 10.1175/JCLI-D-13-00056.1 CrossRefGoogle Scholar
  240. Warszawski L, Friend A, Ostberg S, Frieler K, Lucht W, Schaphoff S, Beerling D, Cadule P, Ciais P, Clark DB, Kahana R, Ito A, Keribin R, Kleidon A, Lomas M, Nishina K, Pavlick R, Rademacher TT, Buechner M, Piontek F, Schewe J, Serdeczny O, Schellnhuber HJ (2013) A multi-model analysis of risk of ecosystem shifts under climate change. Environ Res Lett 8:044018. doi: 10.1088/1748-9326/8/4/044018 CrossRefGoogle Scholar
  241. Warszawski L, Frieler K, Huber V, Piontek F, Serdeczny O, Schewe J (2014) The Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP): project framework. Proc Natl Acad Sci USA 111:3228–3232. doi: 10.1073/pnas.1312330110 CrossRefGoogle Scholar
  242. Woodruff JD, Irish JL, Camargo SJ (2013) Coastal flooding by tropical cyclones and sea-level rise. Nature 504:44–52. doi: 10.1038/nature12855 CrossRefGoogle Scholar
  243. World Bank (2014a) Population dynamics. World Development Indicators. Accessed 05 Jan 2014
  244. World Bank (2014b) Structure of output. World Development Indicators. Accessed 05 Jan 2014
  245. World Bank (2014c) Size of the economy. World Development Indicators. Accessed 05 Jan 2014
  246. World Bank (2014d) Social gains in the balance—a fiscal policy challenge for Latin America and the Caribbean. LAC Poverty and Labor Brief (February), World Bank, Washington, DC. doi:  10.1596/978-1-4648-0291-1. License: Creative Commons Attribution CC BY 3.0 IGO
  247. Zemp DC, Schleussner C-F, Barbosa HMJ, van der Ent RJ, Donges JF, Heinke J, Sampaio G, Rammig A (2014) On the importance of cascading moisture recycling in South America. Atmos Chem Phys 14:13337–13359CrossRefGoogle Scholar
  248. Zullo J, Pinto HS, Assad ED, Ávila AMH (2011) Potential for growing Arabica coffee in the extreme south of Brazil in a warmer world. Clim Change 109:535–548. doi: 10.1007/s10584-011-0058-0 CrossRefGoogle Scholar

Copyright information

© International Bank for Reconstruction and Development/The World Bank 2015

Authors and Affiliations

  • Christopher P.O. Reyer
    • 1
    Email author
  • Sophie Adams
    • 2
    • 3
  • Torsten Albrecht
    • 1
  • Florent Baarsch
    • 2
  • Alice Boit
    • 1
  • Nella Canales Trujillo
    • 4
  • Matti Cartsburg
    • 5
  • Dim Coumou
    • 1
  • Alexander Eden
    • 1
  • Erick Fernandes
    • 6
  • Fanny Langerwisch
    • 1
  • Rachel Marcus
    • 4
  • Matthias Mengel
    • 1
  • Daniel Mira-Salama
    • 6
  • Mahé Perette
    • 1
  • Paola Pereznieto
    • 4
  • Anja Rammig
    • 1
    • 7
  • Julia Reinhardt
    • 1
  • Alexander Robinson
    • 1
    • 8
    • 9
  • Marcia Rocha
    • 2
  • Boris Sakschewski
    • 1
  • Michiel Schaeffer
    • 2
  • Carl-Friedrich Schleussner
    • 2
  • Olivia Serdeczny
    • 2
  • Kirsten Thonicke
    • 1
  1. 1.Potsdam Institute for Climate Impact ResearchPotsdamGermany
  2. 2.Climate AnalyticsBerlinGermany
  3. 3.University of New South WalesKensingtonAustralia
  4. 4.Overseas Development InstituteLondonUK
  5. 5.Agripol - Network for Policy Advice GbRBerlinGermany
  6. 6.Climate Change Policy and Finance DepartmentThe World BankWashingtonUSA
  7. 7.TUM School of Life Sciences Weihenstephan, Land Surface-Atmosphere InteractionsTechnische Universität MünchenFreisingGermany
  8. 8.Universidad Complutense de MadridMadridSpain
  9. 9.Instituto de GeocienciasUCM-CSICMadridSpain

Personalised recommendations