Regional Environmental Change

, Volume 16, Issue 4, pp 927–939 | Cite as

Forests and global change: what can genetics contribute to the major forest management and policy challenges of the twenty-first century?

  • Bruno FadyEmail author
  • Joan Cottrell
  • Lennart Ackzell
  • Ricardo Alía
  • Bart Muys
  • Arantxa Prada
  • Santiago C. González-Martínez
Review Article


The conservation and sustainable use of forests in the twenty-first century pose huge challenges for forest management and policy. Society demands that forests provide a wide range of ecosystem services, from timber products, raw materials and renewable energy to sociocultural amenities and habitats for nature conservation. Innovative management and policy approaches need to be developed to meet these often-conflicting demands in a context of environmental change of uncertain magnitude and scale. Genetic diversity is a key component of resilience and adaptability. Overall, forest tree populations are genetically very diverse, conferring them an enormous potential for genetic adaptation via the processes of gene flow and natural selection. Here, we review the main challenges facing our forests in the coming century and focus on how recent progress in genetics can contribute to the development of appropriate practical actions that forest managers and policy makers can adopt to promote forest resilience to climate change. Emerging knowledge will inform and clarify current controversies relating to the choice of appropriate genetic resources for planting, the effect of silvicultural systems and stand tending on adaptive potential and the best ways to harness genetic diversity in breeding and conservation programs. Gaps in our knowledge remain, and we identify where additional information is needed (e.g., the adaptive value of peripheral populations or the genetic determinism of key adaptive traits) and the types of studies that are required to provide this key understanding.


Sustainable forestry Assisted migration Climate change Adaptation Genetic diversity Gene conservation 



This paper stems from the work of the stakeholder panel of the EU supported EraNet BiodivERsA project “Linking genetic variability with ecological responses to environmental changes: forest trees as model systems (LinkTree)” whose financial help is acknowledged. BF wishes to thank the French “Commission des ressources génétiques forestières (” (CRGF) and EUFORGEN ( for insightful discussions. SCG-M acknowledges receipt of a Senior Marie Curie Intra European Fellowship within the 7th European Community Framework Programme (PIEF-GA-2012-328146) at the Department of Ecology and Evolution, University of Lausanne, Switzerland.

Supplementary material

10113_2015_843_MOESM1_ESM.doc (44 kb)
Supplementary material 1 (DOC 43 kb)


  1. Alberto F, Aitken S, Alía R, González-Martínez SC, Hänninen H, Kremer A, Lefèvre F, Lenormand T, Yeaman S, Whetten R, Savolainen O (2013) Potential for evolutionary responses to climate change—evidence from tree populations. Glob Change Biol 19:1645–1661. doi: 10.1111/gcb.12181 CrossRefGoogle Scholar
  2. Alfaro RI, Fady B, Vendramin GG, Dawson IK, Fleming RA, Sáenz-Romero C, Lindig-Cisneros RA, Murdock T, Vinceti B, Navarro CM, Skrøppa T, Baldinelli G, El-Kassaby YA, Loo J (2014) The role of forest genetic resources in responding to biotic and abiotic factors in the context of anthropogenic climate change. For Ecol Manage 333:76–87. doi: 10.1016/j.foreco.2014.04.006 CrossRefGoogle Scholar
  3. Alia R, Majada J (2013) Phenotyping for the future and the future of phenotyping. In “Novel Tree Breeding” Eds. Lee S. & Woolliams, J. pp 53-62, PublINIA, Madrid, Spain.
  4. Amm A, Pichot C, Dreyfus P, Davi H, Fady B (2012) Improving the estimation of landscape scale seed dispersal by integrating seedling recruitment. Ann For Sci 69:845–856. doi: 10.1007/s13595-012-0208-1 CrossRefGoogle Scholar
  5. Aravanopoulos FA (2011) Genetic monitoring in natural perennial plant populations. Botany 89:75–81. doi: 10.1139/b10-087 CrossRefGoogle Scholar
  6. Bartoli M, Musch B (2003) Plus d’un siècle d’intervention humaine dans les flux des gènes des Pins à crochets et Sapins français. Revue Forestière Française 55:543–556. doi: 10.4267/2042/5212 CrossRefGoogle Scholar
  7. Benito-Garzón M, Alia R, Robson TR, Zavala MA (2011) Intra-specific variability and plasticity influence potential tree species. Glob Ecol Biogeogr 20:766–778. doi: 10.1111/j.1466-8238.2010.00646.x CrossRefGoogle Scholar
  8. Bernier P, Schoene D (2009) Adapting forests and their management to climate change: an overview. Unasylva 231/232:5-11.
  9. Biesbroek GR, Swart RJ, Carter TR, Cowan C, Henrichs T, Mela H, Morecroft MD, Rey D (2010) Europe adapts to climate change: comparing National adaptation strategies. Glob Environ Change 20:440–450. doi: 10.1016/j.gloenvcha.2010.03.005 CrossRefGoogle Scholar
  10. Bouffier L, Raffin A, Alía R (2013) Maritime pine—Pinus pinaster Ait. In: T.J. Mullin, S.J. Lee, dir., Best practice for tree breeding in Europe (p. 65-76). Uppsala, SWE : Skogforsk. ISBN: 978-91-977649-6-4Google Scholar
  11. Chambel MR, Climent JM, Alía R (2007) Divergence among species and populations of Mediterranean pines in biomass allocation of seedlings grown under two watering regimes. Ann For Sci 64:87–97. doi: 10.1051/forest:2006092 CrossRefGoogle Scholar
  12. Charry JC (1996) Actions de correction et de prévention, la restauration des terrains en montagne (RTM). C. R Académie d’Agriculture de France 82:27–36Google Scholar
  13. Dawson JC, Murphy KM, Jones SS (2008) Decentralized selection and participatory approaches in plant breeding for low-input systems. Euphytica 160:143–154. doi: 10.1007/s10681-007-9533-0 CrossRefGoogle Scholar
  14. Domínguez-Torreiro M, Soliño M (2011) Provided and perceived status quo in choice experiments: implications for valuing the outputs of multifunctional rural areas. Ecol Econ 70:2523–2531. doi: 10.1016/j.ecolecon.2011.08.021 CrossRefGoogle Scholar
  15. Ducousso A, Guyon JP, Kremer A (1996) Latitudinal and altitudinal variation of bud burst in western populations of sessile oak (Quercus petraea (Matt) Liebl). Ann For Sci 53:775–782. doi: 10.1051/forest:19960253 CrossRefGoogle Scholar
  16. El-Kassaby YA, Lstiburek M (2009) Breeding without breeding. Genet Res 91:111–120. doi: 10.1017/S001667230900007X CrossRefGoogle Scholar
  17. Ennos RA, Worrell R, Malcolm DC (1998) The genetic management of native species in Scotland. Forestry 71:1–23. doi: 10.1093/forestry/71.1.1-a CrossRefGoogle Scholar
  18. Espelta JM, Retana J, Habrouk A (2003) An economic and ecological multi-criteria evaluation of reforestation methods to recover burned Pinus nigra forests in NE Spain. For Ecol Manage 180:185–198. doi: 10.1016/S0378-1127(02)00599-6 CrossRefGoogle Scholar
  19. Eveno E, Collada C, Guevara MA, Léger V, Soto A, Díaz L, Léger P et al (2008) Contrasting patterns of selection at Pinus pinaster Ait. Drought stress candidate genes as revealed by genetic differentiation analyses. Mol Biol Evol 25:417–437. doi: 10.1093/molbev/msm272 CrossRefGoogle Scholar
  20. Eysn L, Pfeifer N, Ressl C, Hollaus M, Graft A, Morsdorf F (2013) A practical approach for extracting tree models in forest environments based on equirectangular projections of terrestrial laser scans. Remote Sens 5:5424–5448. doi: 10.3390/rs5115424 CrossRefGoogle Scholar
  21. Farizo BA, Joyce J, Soliño M (2014) Dealing with heterogeneous preferences using multilevel mixed models. Land Econ 90:181–198CrossRefGoogle Scholar
  22. Fins L, Dhakal LP, Dvorak W, El-Kassaby Y, Fady B, Libby WJ, Isik K, Isik F (2006) Background Points and Recommendations. In IUFRO Division 2 Joint Conference “Low Input Breeding and Conservation of Forest Genetic Resources”, 9-13 October 2006, Antalya, Turkey.
  23. González-Martínez SC, Krutovsky KV, Neale DB (2006) Forest tree population genomics and adaptive evolution. New Phytol 170:227–238. doi: 10.1111/j.1469-8137.2006.01686 CrossRefGoogle Scholar
  24. Grattapaglia D, Resende MDV (2010) Genomic selection in forest tree breeding. Tree Genet Genomes 7:241–255. doi: 10.1007/s11295-010-0328-4 CrossRefGoogle Scholar
  25. Graudal L, Aravanopoulos F, Bennadji Z, Changtragoon S, Fady B, Kjaer ED, Loo J, Ramamonjisoa L, Vendramin GG (2014) Global to local genetic diversity indicators of evolutionary potential in tree species within and outside forests. For Ecol Manage 333:35–51. doi: 10.1016/j.foreco.2014.05.002 CrossRefGoogle Scholar
  26. Grivet D, Sebastiani F, Alia R, Bataillon T, Torre S, Zabal-Aguirre M, Vendramin GG, Gonzalez-Martinez SC (2011) Molecular footprints of local adaptation in two Mediterranean conifers. Mol Biol Evol 28:101–116. doi: 10.1093/molbev/msq190 CrossRefGoogle Scholar
  27. Hampe A, Petit RJ (2005) Conserving biodiversity under climate change: the rear edge matters. Ecol Lett 8:461–467. doi: 10.1111/j.1461-0248.2005.00739.x CrossRefGoogle Scholar
  28. Hancock AM, Brachi B, Faure N, Horton MW, Jarymowycz LB, Sperone FG, Toomajian C et al (2011) Adaptation to climate across the Arabidopsis thaliana genome. Science 334:83–86. doi: 10.1126/science.1209244 CrossRefGoogle Scholar
  29. Hedrick PW, Adams JR, Vucetich JA (2011) Reevaluating and broadening the definition of genetic rescue. Conserv Biol 25:1069–1070. doi: 10.1111/j.1523-1739.2011.01751.x CrossRefGoogle Scholar
  30. Houle D (1992) Comparing evolvability and variability of quantitative traits. Genetics 130:195–204Google Scholar
  31. Hubert J, Cottrell J (2007) The role of forest genetic resources in helping British forests respond to climate change. Forestry Commission Information Note FCIN086, pp 1-12.$FILE/FCIN086.pdfGoogle Scholar
  32. Ignatieva M, Stewart GH, Meurk C (2011) Planning and design of ecological networks in urban areas. Landsc Ecol Eng 7:1860–1871. doi: 10.1007/s11355-010-0143-y Google Scholar
  33. Jump AS, Marchant R, Peñuelas J (2008) Environmental change and the option value of genetic diversity. Trends Plant Sci 14:51–58. doi: 10.1016/j.tplants.2008.10.002 CrossRefGoogle Scholar
  34. Karlman M (2001) Risks associated with the introduction of Pinus contorta in northern Sweden with respect to pathogens. For Ecol Manage 141:97–105. doi: 10.1016/S0378-1127(00)00492-8 CrossRefGoogle Scholar
  35. Klein C, Wilson K, Watts M, Stein J, Berry S, Carwardine J, Stafford Smith M, Mackey B, Possingham H (2009) Incorporating ecological and evolutionary processes into continental-scale conservation planning. Ecol Appl 19:206–217. doi: 10.1890/07-1684.1 CrossRefGoogle Scholar
  36. Kleinschmit J (1993) Intra-specific variation of growth and adaptive traits in European oak species. Ann For Sci. doi: 10.1051/forest:19930716 Google Scholar
  37. Kleinschmit J, Kleinschmit JRG (2009) Genetics and Tree Breeding. In “Valuable Broadleaved Forests in Europe” Ed. Spiecker, H, Hein, S, Makkonen-Spiecker, K. & Thies, M. European Forest Institute Report 22. ISBN 978-90-04-16795-7 Chapter 3.2. pp 45-60.
  38. Konnert M, Maurer W, Degen B, Katzel R (2011) Genetic monitoring in forests - early warning and controlling system for ecosystemic changes. Forest 4:77–81. doi: 10.3832/ifor0571-004 Google Scholar
  39. Koskela J, Buck A, Teissier du Cros E (2007) Climate change and forest genetic diversity: Implications for sustainable forest management in Europe. Bioversity International, Rome, Italy. 111 pp.
  40. Koskela J, Lefèvre F, Schüler S, Kraigher H, Olrik DC, Hubert J et al (2013) Translating conservation genetics into management: pan-European minimum requirements for dynamic conservation units of forest tree genetic diversity. Biol Conserv 157:39–49. doi: 10.1016/j.biocon.2012.07.023 CrossRefGoogle Scholar
  41. Kremer A, Ronce O, Robledo-Arnuncio JJ, Guillaume F, Bohrer G, Nathan R, Bridle JR, Gomulkiewicz R et al (2012) Long-distance gene flow and adaptation of forest trees to rapid climate change. Ecol Lett 15:378–392. doi: 10.1111/j.1461-0248.2012.01746.x CrossRefGoogle Scholar
  42. Kuparinen A, Savolainen O, Schurr FM (2010) Increased mortality can promote evolutionary adaptation of forest trees to climate change. For Ecol Manage 259:1003–1008. doi: 10.1016/j.foreco.2009.12.006 CrossRefGoogle Scholar
  43. Ledig FT, Kitzmiller JH (1992) Genetic strategies for reforestation in the face of global climate change. For Ecol Manage 50:153–169CrossRefGoogle Scholar
  44. Lefèvre F, Boivin T, Bontemps A, Courbet F, Davi H, Durand-Gillmann M, Fady B et al (2013) Considering evolutionary processes in adaptive forestry. Ann For Sci 71:723–739. doi: 10.1007/s13595-013-0272-1 CrossRefGoogle Scholar
  45. Leimu R, Fischer M (2008) A meta-analysis of local adaptation in plants. PLoS ONE 3:e4010. doi: 10.1371/journal.pone.0004010 CrossRefGoogle Scholar
  46. Lenormand T (2002) Gene flow and the limits to natural selection. Trends Ecol Evol 17:183–189. doi: 10.1016/S0169-5347(02)02497-7 CrossRefGoogle Scholar
  47. Lesica P, Allendorf FW (1995) When are peripheral populations valuable for conservation? Conserv Biol 9:753–760. doi: 10.1046/j.1523-1739.1995.09040753.x CrossRefGoogle Scholar
  48. Lindgren D, Wei R-P (2006) Low-Input Tree Breeding Strategies. In: Proceedings of the IUFRO Division 2 Joint Conference “Low Input Breeding and Conservation of Forest Genetic Resources”, Antalya, Turkey, 9-13 October 2006, 124-138.
  49. Loarie SR, Duffy PB, Hamilton H, Asner GP, Field CB, Ackerly DD (2009) The velocity of climate change. Nature 462:1052–1055. doi: 10.1038/nature08649 CrossRefGoogle Scholar
  50. Lundqvist L, Spreer S, Karlsson C (2013) Volume production in different silvicultural systems for 85 years in a mixed Picea abiesPinus sylvestris forest in central Sweden. Silva Fennica 47:1–14. doi: 10.14214/sf.897 CrossRefGoogle Scholar
  51. MCPFE (2008) Pan-European Guidelines for Afforestation and Reforestation with a special focus on the provisions of the UNFCC. MCPFE liaison unit, Oslo.
  52. MEA (2005) Millennium Ecosystem Assessment: Ecosystems and Human Well-being: Synthesis. Island Press, Washington, DC, USAGoogle Scholar
  53. Millar CI, Stephenson NL, Stephens SL (2007) Climate change and forests of the future: managing in the face of uncertainty. Ecol Appl 17:2145–2151. doi: 10.1890/06-1715.1 CrossRefGoogle Scholar
  54. Morrissey RC, Jacobs DF, Davis AS, Rathfon RA (2010) Survival and competitiveness of Quercus rubra regeneration associated with planting stock type and harvest opening intensity. New For 40:273–287. doi: 10.1007/s11056-010-9199-7 CrossRefGoogle Scholar
  55. Mutke S, Gordo J, Chambel MR, Prada MA, Alvarez D, Iglesias S, Gil L (2010) Phenotypic plasticity is stronger than adaptive differentiation among Mediterranean stone pine provenances. For Syst 19:354–366. doi: 10.5424/fs/2010193-9097 Google Scholar
  56. Neale DB, Kremer A (2011) Forest tree genomics: growing resources and applications. Nat Rev Genet 12:111–122. doi: 10.1038/nrg2931 CrossRefGoogle Scholar
  57. Noss RF (2001) Beyond Kyoto: forest management in a time of rapid climate change. Conserv Biol 15:578–590. doi: 10.1046/j.1523-1739.2001.015003578.x CrossRefGoogle Scholar
  58. Oney B, Reineking B, O’Neill G, Kreyling J (2013) Intraspecific variation buffers projected climate change impacts on Pinus contorta. Ecol Evol 3:437–449. doi: 10.1002/ece3.426 CrossRefGoogle Scholar
  59. Parchman TL, Gompert Z, Mudge J, Schilkey FD, Benkman CW, Buerkle CA (2012) Genome-wide association genetics of an adaptive trait in lodgepole pine. Mol Ecol 21:2991–3005. doi: 10.1111/j.1365-294X.2012.05513.x CrossRefGoogle Scholar
  60. Peterken GF (1977) Habitat conservation priorities in British and European woodlands. Biol Conserv 11:223–236. doi: 10.1016/0006-3207(77)90006-4 CrossRefGoogle Scholar
  61. Plomion C, Bastien C, Bogeat-Triboulot M-B, Bouffier L, Déjardin A, Duplessis S, Fady B, Heuertz M, Le Gac A-L, Le Provost G, Legué V, Lelu-Walter M-A, Leplé J-C, Maury S, Morel A, Oddou-Muratorio S, Pilate G, Sanchez L, Scotti I, Scotti-Saintagne C, Segura V, Trontin J-F, Vacher V (2015) Forest tree genomics: 10 achievements from the past 10 years and future prospects. Ann For Sci. doi: 10.1007/s13595-015-0488-3 Google Scholar
  62. Prunier J, Gerardi S, Beaulieu J, Bousquet J (2012) Parallel and lineage-specific molecular adaptation to climate in boreal black spruce. Mol Ecol 21:4270–4286. doi: 10.1111/j.1365-294X.2012.05691.x CrossRefGoogle Scholar
  63. Rehfeldt GE, Tchebakova NM, Parfenova YI, Wykoff WR, Kuzmina NA, Milyutin LI (2002) Intraspecific responses to climate in Pinus sylvestris. Glob Change Biol 8:912–929. doi: 10.1046/j.1365-2486.2002.00516.x CrossRefGoogle Scholar
  64. Richardson DM, Hellmann JJ, McLachlan JS, Sax DF, Schwartz MW, Gonzalez P, Brennan E, Camacho A et al (2009) Multidimensional evaluation of managed relocation. Proc Natl Acad Sci USA 106:9721–9724. doi: 10.1073/pnas.0902327106 CrossRefGoogle Scholar
  65. Sagnard F, Barberot C, Fady B (2002) Structure of genetic diversity in Abies alba Mill. from southwestern Alps: multivariate analysis of adaptive and non-adaptive traits for conservation in France. For Ecol Manage 157:175–189. doi: 10.1016/S0378-1127(00)00664-2 CrossRefGoogle Scholar
  66. Sagnard F, Oddou-Muratorio S, Pichot C, Vendramin GG, Fady B (2011) Effect of seed dispersal, adult tree and seedling density on the spatial genetic structure of regeneration at fine temporal and spatial scales. Tree Genet Genomes 7:37–48. doi: 10.1007/s11295-010-0313-y CrossRefGoogle Scholar
  67. Sala OE, Chapin FS, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Huber-Sanwald E, Huenneke LF, Jackson RB, Kinzig A et al (2000) Biodiversity - Global biodiversity scenarios for the year 2100. Science 287:1770–1774. doi: 10.1126/science.287.5459.1770 CrossRefGoogle Scholar
  68. Salmela MJ, Cavers S, Cottrell JE, Iason GR, Ennos RA (2011) Seasonal patterns of photochemical capacity and spring phenology reveal genetic differentiation among native Scots pine (Pinus sylvestris L.) populations in Scotland. For Ecol Manage 262:1020–1029. doi: 10.1016/j.foreco.2011.05.037 CrossRefGoogle Scholar
  69. Savolainen O, Pyhäjärvi T, Knürr T (2007) Gene flow and local adaptation in trees. Annu Rev Ecol Evol Syst 38:595–619. doi: 10.1146/annurev.ecolsys.38.091206.095646 CrossRefGoogle Scholar
  70. Scotti I (2010) Adaptive potential in forest tree populations: what is it, and how can we measure it? Ann For Sci 67:801. doi: 10.1051/forest/2010053 CrossRefGoogle Scholar
  71. Soliño M, Farizo BA, Vázquez MX, Prada A (2012) Generating electricity with forest biomass: consistency and payment timeframe effects in choice experiments. Energy Policy 41:798–806. doi: 10.1016/j.enpol.2011.11.048 CrossRefGoogle Scholar
  72. TEEB (2012) The economics of ecosystems and biodiversity in business and enterprise. In Bishop J (ed) Earthscan, London, UK and New York, USAGoogle Scholar
  73. Thorsen BJ, Kjær ED (2007) Forest genetic diversity and climate change: economic considerations. In J. Koskela, A. Buck, E. Teissier du Cros (Eds.), Climate change and forest genetic diversity: Implications for sustainable forest management in Europe (p. 69-84). Rome, Italy: Bioversity International.
  74. Thuiller W, Lavorel S, Araujo MB, Sykes MT, Prentice IC (2005) Climate change threats to plant diversity in Europe. Proc Natl Acad Sci USA 102:8245–8250. doi: 10.1073/pnas.0409902102 CrossRefGoogle Scholar
  75. Timbal J, Bonneau M, Landmann G, Trouvilliez J, Bouhot-Delduc L (2005) European non boreal conifer forests. In: Andersson FA (ed) Ecosystems of the world (6): Coniferous forests. Elsevier, Amsterdam, pp 131–162Google Scholar
  76. van Eeten M (1999) Dialogues of the deaf: defining new agendas for environmental deadlocks. Eburon Publishers, DelftGoogle Scholar
  77. Vanhanen H, Toppinen A, Tikkanen I, Mery G (2007) Making European forest work for people and nature. EFI Policy Brief 1, 16 pp.
  78. Vranckx G, Jacquemyn H, Muys B, Honnay O (2011) Meta-analysis of susceptibility of woody plants to loss of genetic diversity through habitat fragmentation. Conserv Biol 26:228–237. doi: 10.1111/j.1523-1739.2011.01778.x CrossRefGoogle Scholar
  79. Vranckx G, Jacquemyn H, Mergeay J, Cox K, Kint V, Muys B, Honnay O (2014) Transmission of genetic variation from the adult generation to naturally established seedling cohorts in small forest stands of pedunculate oak (Quercus robur L.). For Ecol Manage 312:19–27. doi: 10.1016/j.foreco.2013.10.027 CrossRefGoogle Scholar
  80. Wang X-R, Torimaru T, Lindgren D, Fries A (2010) Marker-based parentage analysis facilitates low input “breeding without breeding” strategies for forest trees. Tree Genet Genomes 6:227–235. doi: 10.1007/s11295-009-0243-8 CrossRefGoogle Scholar
  81. Willi Y, Fischer M (2005) Genetic rescue in interconnected populations of small and large size of the self-incompatible Ranunculus reptans. Heredity 95:437–443. doi: 10.1038/sj.hdy.6800732 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Bruno Fady
    • 1
    Email author
  • Joan Cottrell
    • 2
  • Lennart Ackzell
    • 3
  • Ricardo Alía
    • 4
  • Bart Muys
    • 5
    • 6
  • Arantxa Prada
    • 7
  • Santiago C. González-Martínez
    • 4
  1. 1.INRA, UR629Ecologie des Forêts Méditerranéennes (URFM)AvignonFrance
  2. 2.Forest ResearchNorthern Research StationRoslinScotland, UK
  3. 3.Federation of Swedish Family Forest OwnersStockholmSweden
  4. 4.INIAForest Research Centre (CIFOR)MadridSpain
  5. 5.European Forest InstituteBarcelonaSpain
  6. 6.University of LeuvenLouvainBelgium
  7. 7.General Directorate for EnvironmentValenciaSpain

Personalised recommendations