Advertisement

Regional Environmental Change

, Volume 16, Issue 4, pp 1133–1146 | Cite as

A framework for understanding climate change impacts on coral reef social–ecological systems

  • Joshua Eli Cinner
  • Morgan Stuart Pratchett
  • Nicholas Anthony James Graham
  • Vanessa Messmer
  • Mariana Menezes Prata Bezerra Fuentes
  • Tracy Ainsworth
  • Natalie Ban
  • Line Kolind Bay
  • Jessica Blythe
  • Delphine Dissard
  • Simon Dunn
  • Louisa Evans
  • Michael Fabinyi
  • Pedro Fidelman
  • Joana Figueiredo
  • Ashley John Frisch
  • Christopher John Fulton
  • Christina Chemtai Hicks
  • Vimoksalehi Lukoschek
  • Jennie Mallela
  • Aurelie Moya
  • Lucie Penin
  • Jodie Lynn Rummer
  • Stefan Walker
  • David Hall Williamson
Original Article

Abstract

Corals and coral-associated species are highly vulnerable to the emerging effects of global climate change. The widespread degradation of coral reefs, which will be accelerated by climate change, jeopardizes the goods and services that tropical nations derive from reef ecosystems. However, climate change impacts to reef social–ecological systems can also be bi-directional. For example, some climate impacts, such as storms and sea level rise, can directly impact societies, with repercussions for how they interact with the environment. This study identifies the multiple impact pathways within coral reef social–ecological systems arising from four key climatic drivers: increased sea surface temperature, severe tropical storms, sea level rise and ocean acidification. We develop a novel framework for investigating climate change impacts in social–ecological systems, which helps to highlight the diverse impacts that must be considered in order to develop a more complete understanding of the impacts of climate change, as well as developing appropriate management actions to mitigate climate change impacts on coral reef and people.

Keywords

Social–ecological Coral reef Climate change Multiple impacts 

Notes

Acknowledgments

This work was funded by the ARC Centre of Excellence for Coral Reef Studies, as part of an early career researcher development workshop.

References

  1. Adger WN, Hughes TP, Folke C, Carpenter SR, Röckstrom J (2005) Social-ecological resilience to coastal disasters. Science 309:1036–1039. doi: 10.1126/science.1112122 CrossRefGoogle Scholar
  2. Albright R, Langdon C, Anthony KRN (2013) Dynamics of seawater carbonate chemistry, production, and calcification of a coral reef flat, central Great Barrier Reef. Biogeosciences 10:6747–6758. doi: 10.5194/bg-10-6747-2013 CrossRefGoogle Scholar
  3. Allison EH, Perry AL, Badjeck M-C, Adger WN, Brown K, Conway D, Halls AS, Pilling GM, Reynolds JD, Andrew NL, Dulvy NK (2009) Vulnerability of national economies to the impacts of climate change on fisheries. Fish Fish 10:173–196. doi: 10.1111/j.1467-2979.2008.00310.x CrossRefGoogle Scholar
  4. Anthony KRN, Kline DI, Diaz-Pulido G, Dove S, Hoegh-Guldberg O (2008) Ocean acidification causes bleaching and productivity loss in coral reef builders. Proc Natl Acad Sci USA 105:17442–17446. doi: 10.1073/pnas.0804478105 CrossRefGoogle Scholar
  5. Badjeck MC, Allison EH, Halls AS, Dulvy NK (2010) Impacts of climate variability and change on fishery-based livelihoods. Mar Policy 34:375–383. doi: 10.1016/j.marpol.2009.08.007 CrossRefGoogle Scholar
  6. Baird AH, Campbell SJ, Anggoro AW, Ardiwijaya RL, Fadli N, Herdiana Y, Kartawijaya T, Mahyiddin D, Mukminin A, Pardede ST, Pratchett MS, Rudi E, Siregar AM (2005) Acehnese reefs in the wake of the Asian tsunami. Curr Biol 15:1926–1930. doi: 10.1016/j.cub.2005.09.036 CrossRefGoogle Scholar
  7. Ban SS, Graham NAJ, Connolly SR (2014) Evidence for multiple stressor interactions and effects on coral reefs. Global Change Biol 20:681–697CrossRefGoogle Scholar
  8. Barange M, Merino G, Blanchard JL, Scholtens J, Harle J, Allison EH, Allen JI, Holt J, Jennings S (2014) Impacts of climate change on marine ecosystem production in societies dependent on fisheries. Nat Clim Change 4:211–216. doi: 10.1038/Nclimate2119 CrossRefGoogle Scholar
  9. Barnett J, O’Neill S (2010) Maladaptation. Global Environ Chang 20:211–213. doi: 10.1016/j.gloenvcha.2009.11.004 CrossRefGoogle Scholar
  10. Baschieri A, Kovats S (2010) Climate and child health in rural areas of low and middle income countries: a review of the epidemiological evidence. Int Public Health J 2:431–445Google Scholar
  11. Bell JD, Ganachaud A, Gehrke PC, Griffiths SP, Hobday AJ, Hoegh-Guldberg O, Johnson JE, Le Borgne R, Lehodey P, Lough JM, Matear RJ, Pickering TD, Pratchett MS, Gupta AS, Senina I, Waycott M (2013) Mixed responses of tropical Pacific fisheries and aquaculture to climate change. Nat Clim Change 3:591–599. doi: 10.1038/Nclimate1838 Google Scholar
  12. Béné C, Wood RG, Newsham A, Davies M (2012) Resilience: new utopia or new tyranny? Reflection about the potentials and limits of the concept of resilience in relation to vulnerability reduction programmes. IDS Working Papers 2012, pp 1–61. doi: 10.1111/j.2040-0209.2012.00405.x
  13. Black R, Bennett SRG, Thomas SM, Beddington JR (2011) Migration as adaptation. Nature 478:447–449CrossRefGoogle Scholar
  14. Blanchon P, Eisenhauer A, Fietzke J, Liebetrau V (2009) Rapid sea-level rise and reef back-stepping at the close of the last interglacial highstand. Nature 458:881–884CrossRefGoogle Scholar
  15. Blythe JL, Murray G, Flaherty MS (2013) Historical perspectives and recent trends in the coastal Mozambican fishery. Ecol Soc 18:65. doi: 10.5751/Es-05759-180465 CrossRefGoogle Scholar
  16. Bridges KW, McClatchey WC (2009) Living on the margin: Ethnoecological insights from Marshall Islanders at Rongelap atoll. Global Environ Change 19:140–146. doi: 10.1016/j.gloenvcha.2009.01.009 CrossRefGoogle Scholar
  17. Burge CA, Friedman CS, Froelich B, Hershberger PK, Hofmann EE, Petes LE, Prager KC, Weil E, Willis BL, Ford SE, Harvell CD (2014) Climate change influences on marine infectious diseases: implications for management and society. Annu Rev Mar Sci 6:249–277. doi: 10.1146/annurev-marine-010213-135029 CrossRefGoogle Scholar
  18. Burke L, Reytar K, Spalding M, Perry A (2011) Reefs at risk revisited. World Resources Institute, Washington DCGoogle Scholar
  19. Burrows MT, Schoeman DS, Richardson AJ, Molinos JG, Hoffmann A, Buckley LB, Moore PJ, Brown CJ, Bruno JF, Duarte CM, Halpern BS, Hoegh-Guldberg O, Kappel CV, Kiessling W, O’Connor MI, Pandolfi JM, Parmesan C, Sydeman WJ, Ferrier S, Williams KJ, Poloczanska ES (2014) Geographical limits to species-range shifts are suggested by climate velocity. Nature 507:492–495. doi: 10.1038/Nature12976 CrossRefGoogle Scholar
  20. Butler CD, Oluoch-Kosura W (2006) Linking future ecosystem services and future human well-being. Ecol Soc 11:30Google Scholar
  21. Caldeira K, Wickett ME (2003) Anthropogenic carbon and ocean pH. Nature 425:365. doi: 10.1038/425365a CrossRefGoogle Scholar
  22. Callaghan J, Power SB (2011) Variability and decline in the number of severe tropical cyclones making land-fall over eastern Australia since the late nineteenth century. Clim Dynam 37:647–662. doi: 10.1007/s00382-010-0883-2 CrossRefGoogle Scholar
  23. Carpenter SR, Mooney HA, Agard J, Capistrano D, DeFries RS, Díaz S, Dietz T, Duraiappah AK, Oteng-Yeboah A, Pereira HM, Perrings C, Reid WV, Sarukhan J, Scholes RJ, Whyte A (2009) Science for managing ecosystem services: beyond the Millennium Ecosystem Assessment. P Natl Acad Sci USA 106:1305–1312. doi: 10.1073/pnas.0808772106 CrossRefGoogle Scholar
  24. Ceccarelli D, Colwell RR (2014) Vibrio ecology, pathogenesis, and evolution. Front Microbiol 5:256CrossRefGoogle Scholar
  25. Chateau-Degat ML, Chinain M, Cerf N, Gingras S, Hubert B, Dewailly E (2005) Seawater temperature, Gambierdiscus spp. variability and incidence of ciguatera poisoning in French Polynesia. Harmful Algae 4:1053–1062. doi: 10.1016/j.hal.2005.03.003 CrossRefGoogle Scholar
  26. Cheal AJ, Emslie M, MacNeil MA, Miller I, Sweatman H (2013) Spatial variation in the functional characteristics of herbivorous fish communities and the resilience of coral reefs. Ecol Appl 23:174–188CrossRefGoogle Scholar
  27. Cheung WWL, Lam VWY, Sarmiento JL, Kearney K, Watson R, Pauly D (2009) Projecting global marine biodiversity impacts under climate change scenarios. Fish Fish 10:235–251. doi: 10.1111/j.1467-2979.2008.00315.x CrossRefGoogle Scholar
  28. Cheung WWL, Lam VWY, Sarmiento JL, Kearney K, Watson REG, Zeller D, Pauly D (2010) Large-scale redistribution of maximum fisheries catch potential in the global ocean under climate change. Global Change Biol 16:24–35. doi: 10.1111/j.1365-2486.2009.01995.x CrossRefGoogle Scholar
  29. Chivers DP, McCormick MI, Nilsson GE, Munday PL, Watson SA, Meekan MG, Mitchell MD, Corkill KC, Ferrari MC (2014) Impaired learning of predators and lower prey survival under elevated CO2: a consequence of neurotransmitter interference. Global Change Biol 20:515–522. doi: 10.1111/Gcb.12291 CrossRefGoogle Scholar
  30. Cinner JE, Folke C, Daw T, Hicks CC (2011) Responding to change: Using scenarios to understand how socioeconomic factors may influence amplifying or dampening exploitation feedbacks among Tanzanian fishers. Global Environ Change 21:7–12. doi: 10.1016/j.gloenvcha.2010.09.001 CrossRefGoogle Scholar
  31. Cinner JE, McClanahan TR, Graham NAJ, Daw TM, Maina J, Stead SM, Wamukota A, Brown K, Bodin Ö (2012) Vulnerability of coastal communities to key impacts of climate change on coral reef fisheries. Global Environ Change 22:12–20. doi: 10.1016/j.gloenvcha.2011.09.018 CrossRefGoogle Scholar
  32. Cinner JE, Huchery C, Darling ES, Humphries AT, Graham NA, Hicks CC, Marshall N, McClanahan TR (2013) Evaluating social and ecological vulnerability of coral reef fisheries to climate change. PLoS One 8:e74321. doi: 10.1371/journal.pone.0074321 CrossRefGoogle Scholar
  33. Collins M, Knutti R, Arblaster J, Dufresne JL, Fichefet T, Friedlingstein P, Gao X, Gutowski WJ, Johns T, Krinner G, Shongwe M, Tebaldi C, Weaver AJ, Wehner M (2013) Long-term climate change: projections, commitments and irreversibility. In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung AJ, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge. doi: 10.1017/CB09781107415324.024
  34. Couturier CS, Stecyk JAW, Rummer JL, Munday PL, Nilsson GE (2013) Species-specific effects of near-future CO2 on the respiratory performance of two tropical prey fish and their predator. Comp Biochem Physiol A 166:482–489. doi: 10.1016/j.cbpa.2013.07.025 CrossRefGoogle Scholar
  35. Daufresne M, Lengfellner K, Sommer U (2009) Global warming benefits the small in aquatic ecosystems. Proc Natl Acad Sci USA 106:12788–12793. doi: 10.1073/pnas.0902080106 CrossRefGoogle Scholar
  36. Daw T, Adger WN, Brown K, Badjeck M-C (2009) Climate change and capture fisheries: potential impacts, adaptation and mitigation. In: Cochrane K, De Young C, Soto D, Bahri T (eds) Climate change implications for fisheries and aquaculture: overview of current scientific knowledge, vol FAO Fisheries and Aquaculture Technical Paper. No. 530. FAO, RomeGoogle Scholar
  37. De’ath G, Lough JM, Fabricius KE (2009) Declining coral calcification on the Great Barrier Reef. Science 323:116–119. doi: 10.1126/science.1165283 CrossRefGoogle Scholar
  38. De’ath G, Fabricius KE, Sweatman H, Puotinen M (2012) The 27-year decline of coral cover on the Great Barrier Reef and its causes. Proc Natl Acad Sci USA 109:17995–17999. doi: 10.1073/pnas.1208909109 CrossRefGoogle Scholar
  39. Dillon ME, Wang G, Huey RB (2010) Global metabolic impacts of recent climate warming. Nature 467:U704–U788. doi: 10.1038/Nature09407 CrossRefGoogle Scholar
  40. Dissard D, Douville E, Reynaud S, Juillet-Leclerc A, Montagna P, Louvat P, McCulloch M (2012) Light and temperature effects on 11B and B/Ca ratios of the zooxanthellate coral Acropora sp.: results from culturing experiments. Biogeosciences 9:4589–4605. doi: 10.5194/bg-9-4589-2012 CrossRefGoogle Scholar
  41. Dixson DL, Munday PL, Jones GP (2010) Ocean acidification disrupts the innate ability of fish to detect predator olfactory cues. Ecol Lett 13:68–75. doi: 10.1111/j.1461-0248.2009.01400.x CrossRefGoogle Scholar
  42. Domenici P, Allan B, McCormick MI, Munday PL (2012) Elevated carbon dioxide affects behavioural lateralization in a coral reef fish. Biol Lett 8:78–81. doi: 10.1098/rsbl.2011.0591 CrossRefGoogle Scholar
  43. Donelson JM, Munday PL, McCormick MI, Pankhurst NW, Pankhurst PM (2010) Effects of elevated water temperature and food availability on the reproductive performance of a coral reef fish. Mar Ecol Prog Ser 401:233–243. doi: 10.3354/Meps08366 CrossRefGoogle Scholar
  44. Doney SC, Fabry VJ, Feely RA, Kleypas JA (2009) Ocean acidification: The other CO2 problem. Annu Rev Mar Sci 1:169–192. doi: 10.1146/annurev.marine.010908.163834 CrossRefGoogle Scholar
  45. Donner SD (2009) Coping with commitment: projected thermal stress on coral reefs under different future scenarios. PLoS One 4:e5712. doi: 10.1371/journal.pone.0005712 CrossRefGoogle Scholar
  46. Donner SD, Skirving WJ, Little CM, Oppenheimer M, Hoegh-Guldberg O (2005) Global assessment of coral bleaching and required rates of adaptation under climate change. Global Change Biol 11:2251–2265. doi: 10.1111/j.1365-2486.2005.01073.x CrossRefGoogle Scholar
  47. Eakin CM, Morgan JA, Heron SF, Smith TB, Liu G, Alvarez-Filip L, Baca B, Bartels E, Bastidas C, Bouchon C, Brandt M, Bruckner AW, Bunkley-Williams L, Cameron A, Causey BD, Chiappone M, Christensen TR, Crabbe MJ, Day O, de la Guardia E, Díaz-Pulido G, DiResta D, Gil-Agudelo DL, Gilliam DS, Ginsburg RN, Gore S, Guzmán HM, Hendee JC, Hernández-Delgado EA, Husain E, Jeffrey CF, Jones RJ, Jordán-Dahlgren E, Kaufman LS, Kline DI, Kramer PA, Lang JC, Lirman D, Mallela J, Manfrino C, Maréchal JP, Marks K, Mihaly J, Miller WJ, Mueller EM, Muller EM, Orozco Toro CA, Oxenford HA, Ponce-Taylor D, Quinn N, Ritchie KB, Rodríguez S, Ramírez AR, Romano S, Samhouri JF, Sánchez JA, Schmahl GP, Shank BV, Skirving WJ, Steiner SC, Villamizar E, Walsh SM, Walter C, Weil E, Williams EH, Roberson KW, Yusuf Y (2010) Caribbean corals in crisis: Record thermal stress, bleaching, and mortality in 2005. PLoS One 5:e13969. doi: 10.1371/journal.pone.0013969 CrossRefGoogle Scholar
  48. Elsner JB, Kossin JP, Jagger TH (2008) The increasing intensity of the strongest tropical cyclones. Nature 455:92–95. doi: 10.1038/Nature07234 CrossRefGoogle Scholar
  49. Fabricius KE, Wolanski E (2000) Rapid smothering of coral reef organisms by muddy marine snow. Estuar Coast Shelf Sci 50:115–120. doi: 10.1006/ecss.1999.0538 CrossRefGoogle Scholar
  50. Fabricius KE, Langdon C, Uthicke S, Humphrey C, Noonan S, Death G, Okazaki R, Muehllehner N, Glas MS, Lough JM (2011) Losers and winners in coral reefs acclimatized to elevated carbon dioxide concentrations. Nat Clim Change 1:165–169. doi: 10.1038/nclimate1122 CrossRefGoogle Scholar
  51. Farbotko C, Lazrus H (2012) The first climate refugees? Contesting global narratives of climate change in Tuvalu. Global Environ Change 22:382–390. doi: 10.1016/j.gloenvcha.2011.11.01 CrossRefGoogle Scholar
  52. Fenner DP (1991) Effects of hurricane Gilbert on coral reefs, fishes and sponges at Cozumel, Mexico. Bull Mar Sci 48:719–730Google Scholar
  53. Ferrari MCO, McCormick MI, Munday PL, Meekan MG, Dixson DL, Lonnstedt O, Chivers DP (2012) Effects of ocean acidification on visual risk assessment in coral reef fishes. Funct Ecol 26:553–558. doi: 10.1111/j.1365-2435.2011.01951.x CrossRefGoogle Scholar
  54. Figueiredo J, Baird AH, Harii S, Connolly SR (2014) Increased local retention of reef coral larvae as a result of ocean warming. Nat Clim Change 4:498–502. doi: 10.1038/nclimate2210 CrossRefGoogle Scholar
  55. Fulton CJ, Depczynski M, Holmes TH, Noble MM, Radford B, Wernberg T, Wilson SK (2014) Sea temperature shapes seasonal fluctuations in seaweed biomass within the Ningaloo coral reef ecosystem. Limnol Oceanogr 59:156–166. doi: 10.4319/lo.2014.59.01.0156 CrossRefGoogle Scholar
  56. Goatley CHR, Bellwood DR (2012) Sediment suppresses herbivory across a coral reef depth gradient. Biol Lett 8:1016–1018. doi: 10.1098/rsbl.2012.0770 CrossRefGoogle Scholar
  57. Goto K, Miyagi K, Kawana T, Takahashi J, Imamura F (2011) Emplacement and movement of boulders by known storm waves—field evidence from the Okinawa Islands, Japan. Mar Geol 283:66–78. doi: 10.1016/j.margeo.2010.09.007 CrossRefGoogle Scholar
  58. Graham NAJ, Nash KL (2013) The importance of structural complexity in coral reef ecosystems. Coral Reefs 32:315–326. doi: 10.1007/s00338-012-0984-y CrossRefGoogle Scholar
  59. Graham NAJ, Wilson SK, Jennings S, Polunin NVC, Bijoux JP, Robinson J (2006) Dynamic fragility of oceanic coral reef ecosystems. Proc Natl Acad Sci USA 103:8425–8429. doi: 10.1073/pnas.0600693103 CrossRefGoogle Scholar
  60. Graham NAJ, Wilson SK, Jennings S, Polunin NVC, Robinson JAN, Bijoux JP, Daw TM (2007) Lag effects in the impacts of mass coral bleaching on coral reef fish, fisheries, and ecosystems. Conserv Biol 21:1291–1300. doi: 10.1111/j.1523-1739.2007.00754.x CrossRefGoogle Scholar
  61. Graham NAJ, Cinner JE, Norström AV, Nyström M (2014) Coral reefs as novel ecosystems: embracing new futures. Curr Opin Environ Sustain 7:9–14. doi: 10.1016/j.cosust.2013.11.023 CrossRefGoogle Scholar
  62. Guadayol O, Silbiger NJ, Donahue MJ, Thomas FIM (2014) Patterns in temporal variability of temperature, oxygen and pH along an environmental gradient in a coral reef. PLoS One 9:e85213. doi: 10.1371/journal.pone.0085213 CrossRefGoogle Scholar
  63. Haig J, Nott J, Reichart GJ (2014) Australian tropical cyclone activity lower than at any time over the past 550–1,500 years. Nature 505:667–671. doi: 10.1038/Nature12882 CrossRefGoogle Scholar
  64. Halford A, Cheal AJ, Ryan D, Williams DM (2004) Resilience to large-scale disturbance in coral and fish assemblages on the Great Barrier Reef. Ecology 85:1892–1905. doi: 10.1890/03-4017 CrossRefGoogle Scholar
  65. Hallegraeff GM (2010) Ocean climate change, phytoplankton community responses, and harmful algal blooms: a formidable predictive challenge. J Phycol 46:220–235. doi: 10.1111/j.1529-8817.2010.00815.x CrossRefGoogle Scholar
  66. Hamilton TJ, Holcombe A, Tresguerres M (2014) CO2-induced ocean acidification increases anxiety in Rockfish via alteration of GABA(A) receptor functioning. Proc R Soc B Biol Sci 281:20132509. doi: 10.1098/Rspb.2013.2509 CrossRefGoogle Scholar
  67. Harmelin-Vivien ML (1994) The effects of storms and cyclones on coral reefs: a review. J Coast Res 12:211–231Google Scholar
  68. Hartmann DL, Klein Tank AMG, Rusticucci M, Alexander LV, Brönnimann S, Charabi Y, Dentener FJ, Dlugokencky EJ, Easterling DR, Kaplan A, Soden BJ, Thorne PW, Wild M, Zhai PM (2013) Observations: atmosphere and surface. In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung AJ, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge. doi: 10.1017/CB09781107415324.008
  69. Heupel MR, Simpfendorfer CA, Hueter RE (2003) Running before the storm: blacktip sharks respond to falling barometric pressure associated with Tropical Storm Gabrielle. J Fish Biol 63:1357–1363. doi: 10.1046/j.1095-8649.2003.00250.x CrossRefGoogle Scholar
  70. Heyward AJ, Negri AP (2010) Plasticity of larval pre-competency in response to temperature: observations on multiple broadcast spawning coral species. Coral Reefs 29:631–636. doi: 10.1007/s00338-009-0578-5 CrossRefGoogle Scholar
  71. Hicks CC (2011) How do we value our reefs? Risks and tradeoffs across scales in “biomass-based” economies. Coast Managt 39:358–376. doi: 10.1080/08920753.2011.589219 CrossRefGoogle Scholar
  72. Hoegh-Guldberg O, Mumby PJ, Hooten AJ, Steneck RS, Greenfield P, Gomez E, Harvell CD, Sale PF, Edwards AJ, Caldeira K, Knowlton N, Eakin CM, Iglesias-Prieto R, Muthiga N, Bradbury RH, Dubi A, Hatziolos ME (2007) Coral reefs under rapid climate change and ocean acidification. Science 318:1737–1742. doi: 10.1126/science.1152509 CrossRefGoogle Scholar
  73. Hofmann GE, Smith JE, Johnson KS, Send U, Levin LA, Micheli F, Paytan A, Price NN, Peterson B, Takeshita Y, Matson PG, Crook ED, Kroeker KJ, Gambi MC, Rivest EB, Frieder CA, Yu PC, Martz TR (2011) High-frequency dynamics of ocean pH: a multi-ecosystem comparison. PLoS One 6:e28983. doi: 10.1371/journal.pone.0028983 CrossRefGoogle Scholar
  74. Howells EJ, Berkelmans R, van Oppen MJH, Willis BL, Bay LK (2013) Historical thermal regimes define limits to coral acclimatization. Ecology 94:1078–1088. doi: 10.1890/12-1257.1 CrossRefGoogle Scholar
  75. Hoyos CD, Agudelo PA, Webster PJ, Curry JA (2006) Deconvolution of the factors contributing to the increase in global hurricane intensity. Science 312:94–97. doi: 10.1126/science.1123560 CrossRefGoogle Scholar
  76. Hughes L (2000) Biological consequences of global warming: is the signal already apparent? Trends Ecol Evol 15:56–61. doi: 10.1016/S0169-5347(99)01764-4 CrossRefGoogle Scholar
  77. Hughes TP, Baird AH, Bellwood DR, Card M, Connolly SR, Folke C, Grosberg R, Hoegh-Guldberg O, Jackson JB, Kleypas J, Lough JM, Marshall P, Nyström M, Palumbi SR, Pandolfi JM, Rosen B, Roughgarden J (2003) Climate change, human impacts, and the resilience of coral reefs. Science 301:929–933. doi: 10.1126/science.1085046 CrossRefGoogle Scholar
  78. Hughes TP, Graham NAJ, Jackson JBC, Mumby PJ, Steneck RS (2010) Rising to the challenge of sustaining coral reef resilience. Trends Ecol Evol 25:633–642. doi: 10.1016/j.tree.2010.07.011 CrossRefGoogle Scholar
  79. Kawabata Y, Okuyama J, Asami K, Okuzawa K, Yoseda K, Arai N (2010) Effects of a tropical cyclone on the distribution of hatchery-reared black-spot tuskfish Choerodon schoenleinii determined by acoustic telemetry. J Fish Biol 77:627–642. doi: 10.1111/j.1095-8649.2010.02702.x Google Scholar
  80. Kirtman B, Power SB, Adedoyin JA, Boer GJ, Bojariu R, Camilloni I, Doblas-Reyes FJ, Fiore AM, Kimoto M, Meehl GA, Prather M, Sarr A, Schär C, Sutton R, van Oldenborgh GJ, Vecchi G, Wang HJ (2013) Near-term climate change: projections and predictability. In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung AJ, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate Change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge. doi: 10.1017/CB09781107415324.023
  81. Kittinger JN, Finkbeiner EM, Glazier EW, Crowder LB (2012) Human dimensions of coral reef social-ecological systems. Ecol Soc 17:17. doi: 10.5751/ES-05115-170417 Google Scholar
  82. Kleypas JA, Langdon C (2006) Coral reefs and changing seawater chemistry. Chapter 5. In: Phinney JT, Hoegh-Guldberg O, Kleypas J, Skirving W, Strong A (eds) Coral Reefs and Climate Change: Science and Management, vol 61. AGU Monograph Series. Coastal and Estuarine Studies, American Geophysical Union, Washington DCGoogle Scholar
  83. Kleypas JA, Yates KK (2009) Coral reefs and ocean acidification. Oceanography 22:108–117CrossRefGoogle Scholar
  84. Klotzbach PJ (2006) Trends in global tropical cyclone activity over the past twenty years (1986–2005). Geophys Res Lett 33:L10805. doi: 10.1029/2006gl025881 CrossRefGoogle Scholar
  85. Knutson TR, McBride JL, Chan J, Emanuel K, Holland G, Landsea C, Held I, Kossin JP, Srivastava AK, Sugi M (2010) Tropical cyclones and climate change. Nat Geosci 3:157–163. doi: 10.1038/Ngeo779 CrossRefGoogle Scholar
  86. Kothari U (2014) Political discourses of climate change and migration: resettlement policies in the Maldives. Geogr J 180:130–140. doi: 10.1111/Geoj.12032 CrossRefGoogle Scholar
  87. Kronen M, Vunisea A (2009) Fishing impact and food security—gender differences in finfisheries across Pacific Island countries and cultural groups. Secretariat of the Pacific Community Women in Fisheries Information Bulletin 19. http://www.spc.int/coastfish/en/publications/bulletins/women-in-fisheries/115-women-in-fisheries-information-bulletin-19.html
  88. Landsea CW, Harper BA, Hoarau K, Knaff JA (2006) Can we detect trends in extreme tropical cyclones? Science 313:452–454. doi: 10.1126/science.1128448 CrossRefGoogle Scholar
  89. Langdon C, Atkinson MJ (2005) Effect of elevated pCO(2) on photosynthesis and calcification of corals and interactions with seasonal change in temperature/irradiance and nutrient enrichment. J Geophys Res Oceans 110:s07. doi: 10.1029/2004jc002576 CrossRefGoogle Scholar
  90. Lassig BR (1983) The effects of a cyclonic storm on coral reef assemblages. Environ Biol Fish 9:55–63CrossRefGoogle Scholar
  91. Lipp EK, Huq A, Colwell RR (2002) Effects of global climate on infectious disease: the cholera model. Clin Microbiol Rev 15:757–770. doi: 10.1128/cmr.15.4.757-770.2002 CrossRefGoogle Scholar
  92. Locascio JV, Mann DA (2005) Effects of hurricane Charley on fish chorusing. Biol Lett 1:362–365. doi: 10.1098/rsbl.2005.0309 CrossRefGoogle Scholar
  93. Lough JM (2012) Small change, big difference: sea surface temperature distributions for tropical coral reef ecosystems, 1950-2011. J Geophys Res Oceans 117:C09018. doi: 10.1029/2012jc008199 CrossRefGoogle Scholar
  94. MacNeil MA, Graham NA, Cinner JE, Dulvy NK, Loring PA, Jennings S, Polunin NV, Fisk AT, McClanahan TR (2010) Transitional states in marine fisheries: adapting to predicted global change. Philos Trans R Soc B 365:3753–3763. doi: 10.1098/rstb.2010.0289 CrossRefGoogle Scholar
  95. Madin JS, O’Donnell MJ, Connolly SR (2008) Climate-mediated mechanical changes to post-disturbance coral assemblages. Biol Lett 4:490–493. doi: 10.1098/rsbl.2008.0249 CrossRefGoogle Scholar
  96. Mahon R (2002) Adaptation of fisheries and fishing communities to the impacts of climate change in the CARICOM region: issue paper-draft. Mainstreaming adaptation to climate change (MACC) of the Caribbean Center for Climate Change (CCCC), Washington, DCGoogle Scholar
  97. Mallela J, Roberts C, Harrod C, Goldspink CR (2007) Distributional patterns and community structure of Caribbean coral reef fishes within a river-impacted bay. J Fish Biol 70:523–537. doi: 10.1111/j.1095-8649.2007.01323.x CrossRefGoogle Scholar
  98. Marino E (2012) The long history of environmental migration: assessing vulnerability construction and obstacles to successful relocation in Shishmaref, Alaska. Global Environ Change 22:374–381. doi: 10.1016/j.gloenvcha.2011.09.016 CrossRefGoogle Scholar
  99. Marino E, Ribot J (2012) Special issue introduction: adding insult to injury: climate change and the inequities of climate intervention. Global Environ Change 22:323–328. doi: 10.1016/j.gloenvcha.2012.03.001 CrossRefGoogle Scholar
  100. Marshall P, Marshall N (2012) Extreme weather: adaptation insights from the Great Barrier Reef. Marine Adaptation Bulletin (MAB), vol 3, Issue 4, Summer 2011–2012. http://arnmbr.org/content/index.php/site/resources_extended/mab_v3_i4_marshall
  101. Martin S, Gattuso JP (2009) Response of Mediterranean coralline algae to ocean acidification and elevated temperature. Global Change Biol 15:2089–2100. doi: 10.1111/j.1365-2486.2009.01874.x CrossRefGoogle Scholar
  102. McAdoo BG, Ah-Leong JS, Bell L, Ifopo P, Ward J, Lovell E, Skelton P (2011) Coral reefs as buffers during the 2009 South Pacific tsunami, Upolu Island, Samoa. Earth-Sci Rev 107:147–155. doi: 10.1016/j.earscirev.2010.11.005 CrossRefGoogle Scholar
  103. McCarthy J, Canziani O, Leary N, Dokken D, White K (eds) (2001) Climate change 2001: impacts, adaptation & vulnerability. Cambridge University Press, CambridgeGoogle Scholar
  104. McClanahan TR (2004) The relationship between bleaching and mortality of common corals. Mar Biol 144:1239–1245. doi: 10.1007/s00227-003-1271-9 CrossRefGoogle Scholar
  105. McClanahan TR, Cinner J (2012) Adapting to a changing environment: confronting the consequences of climate change. Oxford University Press, New YorkGoogle Scholar
  106. McClanahan TR, Hicks CC, Darling ES (2008) Malthusian overfishing and efforts to overcome it on Kenyan coral reefs. Ecol Appl 18:1516–1529. doi: 10.1890/07-0876.1 CrossRefGoogle Scholar
  107. McClanahan TR, Weil E, Cortés J, Baird AH, Ateweberhan M (2009) Consequences of coral bleaching for sessile reef organisms. In: van Oppen MJHLJ (ed) Coral bleaching. Springer-Verlag, BerlinGoogle Scholar
  108. McCulloch M, Falter J, Trotter J, Montagna P (2012) Coral resilience to ocean acidification and global warming through pH up-regulation. Nat Clim Change 2:623–633. doi: 10.1038/Nclimate1473 CrossRefGoogle Scholar
  109. McLeod IM, Rummer JL, Clark TD, Jones GP, McCormick MI, Wenger AS, Munday PL (2013) Climate change and the performance of larval coral reef fishes: the interaction between temperature and food availability. Conserv Physiol 1:cot024. doi: 10.1093/conphys/cot024 CrossRefGoogle Scholar
  110. Messmer V, Jones GP, Munday PL, Holbrook SJ, Schmitt RJ, Brooks AJ (2011) Habitat biodiversity as a determinant of fish community structure on coral reefs. Ecology 92:2285–2298CrossRefGoogle Scholar
  111. Miller GM, Watson SA, Donelson JM, McCormick MI, Munday PL (2012) Parental environment mediates impacts of increased carbon dioxide on a coral reef fish. Nat Clim Change 2:858–861. doi: 10.1038/Nclimate1599 CrossRefGoogle Scholar
  112. Miller GM, Watson SA, McCormick MI, Munday PL (2013) Increased CO2 stimulates reproduction in a coral reef fish. Global Change Biol 19:3037–3045. doi: 10.1111/Gcb.12259 CrossRefGoogle Scholar
  113. Munday PL, Jones GP, Pratchett MS, Williams AJ (2008) Climate change and the future for coral reef fishes. Fish Fish 9:261–285. doi: 10.1111/j.1467-2979.2008.00281.x CrossRefGoogle Scholar
  114. Munday PL, Dixson DL, Donelson JM, Jones GP, Pratchett MS, Devitsina GV, Doving KB (2009) Ocean acidification impairs olfactory discrimination and homing ability of a marine fish. Proc Natl Acad Sci USA 106:1848–1852. doi: 10.1073/pnas.0809996106 CrossRefGoogle Scholar
  115. Munday PL, McCormick MI, Nilsson GE (2012) Impact of global warming and rising CO2 levels on coral reef fishes: what hope for the future? J Exp Biol 215:3865–3873. doi: 10.1242/Jeb.074765 CrossRefGoogle Scholar
  116. Munday P, Pratchett M, Dixson D, Donelson J, Endo GK, Reynolds A, Knuckey R (2013) Elevated CO2 affects the behavior of an ecologically and economically important coral reef fish. Mar Biol 160:2137–2144. doi: 10.1007/s00227-012-2111-6 CrossRefGoogle Scholar
  117. Munday PL, Cheal AJ, Dixson DL, Rummer JL, Fabricius KE (2014) Behavioural impairment in reef fishes caused by ocean acidification at CO2 seeps. Nat Clim Change 4:487–492. doi: 10.1038/nclimate2195 CrossRefGoogle Scholar
  118. Nakamura M, Ohki S, Suzuki A, Sakai K (2011) Coral larvae under ocean acidification: survival, metabolism, and metamorphosis. PLoS One 6:e14521. doi: 10.1371/journal.pone.0014521 CrossRefGoogle Scholar
  119. Nilsson GE, Dixson DL, Domenici P, McCormick MI, Sorensen C, Watson SA, Munday PL (2012) Near-future carbon dioxide levels alter fish behaviour by interfering with neurotransmitter function. Nat Clim Change 2:201–204. doi: 10.1038/Nclimate1352 CrossRefGoogle Scholar
  120. Nott J, Hayne M (2001) High frequency of ‘super-cyclones’ along the Great Barrier Reef over the past 5,000 years. Nature 413:508–512. doi: 10.1038/35097055 CrossRefGoogle Scholar
  121. Nyström M, Norström A, Blenckner T, de la Torre-Castro M, Eklöf JS, Folke C, Österblom H, Steneck RS, Thyresson M, Troell M (2012) Confronting feedbacks of degraded marine ecosystems. Ecosystems 15:695–710. doi: 10.1007/s10021-012-9530-6 CrossRefGoogle Scholar
  122. O’Connor MI, Bruno JF, Gaines SD, Halpern BS, Lester SE, Kinlan BP, Weiss JM (2007) Temperature control of larval dispersal and the implications for marine ecology, evolution, and conservation. Proc Natl Acad Sci USA 104:1266–1271. doi: 10.1073/pnas.0603422104 CrossRefGoogle Scholar
  123. Orr JC, Fabry VJ, Aumont O, Bopp L, Doney SC, Feely RA, Gnanadesikan A, Gruber N, Ishida A, Joos F, Key RM, Lindsay K, Maier-Reimer E, Matear R, Monfray P, Mouchet A, Najjar RG, Plattner GK, Rodgers KB, Sabine CL, Sarmiento JL, Schlitzer R, Slater RD, Totterdell IJ, Weirig MF, Yamanaka Y, Yool A (2005) Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437:681–686. doi: 10.1038/Nature04095 CrossRefGoogle Scholar
  124. Overpeck JT, Otto-Bliesner BL, Miller GH, Muhs DR, Alley RB, Kiehl JT (2006) Paleoclimatic evidence for future ice-sheet instability and rapid sea-level rise. Science 311:1747–1750. doi: 10.1126/science.1115159 CrossRefGoogle Scholar
  125. Pandolfi JM, Connolly SR, Marshall DJ, Cohen AL (2011) Projecting coral reef futures under global warming and ocean acidification. Science 333:418–422. doi: 10.1126/science.1204794 CrossRefGoogle Scholar
  126. Pörtner HO, Farrell AP (2008) Ecology physiology and climate change. Science 322:690–692. doi: 10.1126/science.1163156 CrossRefGoogle Scholar
  127. Pörtner HO, Karl DM, Boyd PW, Cheung WWL, Lluch-Cota SE, Nojiri Y, Schmidt DN, Zavialov PO (2014) Ocean systems. In: Field CB, Barros VR, Dokken DJ, Mach KJ, Mastrandrea MD, Bilir TE, Chatterjee M, Ebi KL, Estrada YO, Genova RC, Girma B, Kissel ES, Levy AN, MacCracken S, Mastrandrea PR, White LL (eds) Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, CambridgeGoogle Scholar
  128. Pratchett MS, Munday PL, Wilson SK, Graham NAJ, Cinner JE, Bellwood DR, Jones GP, Polunin NVC, Mcclanahan TR (2008) Effects of climate-induced coral bleaching on coral-reef fishes—ecological and economic consequences. Oceanogr Mar Biol 49:251–296Google Scholar
  129. Pratchett MS, Hoey AS, Wilson SK, Messmer V, Graham NAJ (2011) Changes in biodiversity and functioning of reef fish assemblages following coral bleaching and coral loss. Diversity 3:424–452CrossRefGoogle Scholar
  130. Reuveny R (2007) Climate change-induced migration and violent conflict. Polit Geogr 26:656–673. doi: 10.1016/j.polgeo.2007.05.001 CrossRefGoogle Scholar
  131. Rhein M, Rintoul SR, Aoki S, Campos E, Chambers D, Feely RA, Gulev S, Johnson GC, Josey SA, Kostianoy A, Mauritzen C, Roemmich D, Talley LD, Wang F (2013) Observations: Ocean. In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung AJ, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge. doi: 10.1017/CB09781107415324.010
  132. Rongo T, van Woesik R (2012) Socioeconomic consequences of ciguatera poisoning in Rarotonga, southern Cook Islands. Harmful Algae 20:92–100. doi: 10.1016/j.hal.2012.08.003 CrossRefGoogle Scholar
  133. Rummer JL, Stecyk JAW, Couturier CS, Watson S-A, Nilsson GE, Munday PL (2013) Elevated CO2 enhances aerobic scope of a coral reef fish. Conserv Physiol 1:cot023. doi: 10.1093/conphys/cot023 CrossRefGoogle Scholar
  134. Rummer JL, Couturier CS, Stecyk JAW, Gardiner NM, Kinch JP, Nilsson GE, Munday PL (2014) Life on the edge: thermal optima for aerobic scope of equatorial reef fishes are close to current day temperatures. Global Change Biol 20:1055–1066. doi: 10.1111/Gcb.12455 CrossRefGoogle Scholar
  135. Sandin L (2009) The relationship between land-use, hydromorphology and river biota at different spatial and temporal scales: a synthesis of seven case studies. Fund Appl Limnol 174:1–5. doi: 10.1127/1863-9135/2009/0174-0001 CrossRefGoogle Scholar
  136. Scoffin TP (1993) The geological effects of hurricanes on coral-reefs and the interpretation of storm deposits. Coral Reefs 12:203–221. doi: 10.1007/Bf00334480 CrossRefGoogle Scholar
  137. Shaw EC, Munday PL, McNeil BI (2013) The role of CO2 variability and exposure time for biological impacts of ocean acidification. Geophys Res Lett 40:4685–4688. doi: 10.1002/Grl.50883 CrossRefGoogle Scholar
  138. Stella JS, Pratchett MS, Hutchings PA, Jones GP (2011) Coral-associated invertebrates: Diversity, ecological importance and vulnerability to disturbance. Oceanogr Mar Biol 49:43–104Google Scholar
  139. Teh LSL, Teh LCL, Sumaila UR (2013) A global estimate of the number of coral reef fishers. PLoS One 8:e65397. doi: 10.1371/journal.pone.0065397 CrossRefGoogle Scholar
  140. Tester PA, Feldman RL, Nau AW, Kibler SR, Litaker RW (2010) Ciguatera fish poisoning and sea surface temperatures in the Caribbean Sea and the West Indies. Toxicon 56:698–710. doi: 10.1016/j.toxicon.2010.02.026 CrossRefGoogle Scholar
  141. Tewksbury JJ, Huey RB, Deutsch CA (2008) Putting the heat on tropical animals. Science 320:1296–1297. doi: 10.1126/science.1159328 CrossRefGoogle Scholar
  142. Thurber RV, Burkepile DE, Correa AM, Thurber AR, Shantz AA, Welsh R, Pritchard C, Rosales S (2012) Macroalgae decrease growth and alter microbial community structure of the reef-building coral, Porites astreoides. Plos One 7:e44246. doi: 10.1371/journal.pone.0044246 CrossRefGoogle Scholar
  143. Tobin A, Schlaff A, Tobin R, Penny A, Ayling T, Ayling A, Krause B, Welch D, Sutton S, Sawynok B, Marshall N, Marshall P, Maynard J (2010) Adapting to change: minimising uncertainty about the effects of rapidly-changing environmental conditions on the Queensland Coral Reef Fin Fish Fishery. Final Report to the Fisheries Research & Development Corporation, Project 2008/103. James Cook University, TownsvilleGoogle Scholar
  144. Vanwoesik R, Ayling AM, Mapstone B (1991) Impact of tropical cyclone Ivor on the Great-Barrier-Reef, Australia. J Coast Res 7:551–557Google Scholar
  145. Walker B, Meyers JA (2004) Thresholds in ecological and social–ecological systems: a developing database. Ecol Soc 9:3Google Scholar
  146. Walther GR, Post E, Convey P, Menzel A, Parmesan C, Beebee TJ, Fromentin JM, Hoegh-Guldberg O, Bairlein F (2002) Ecological responses to recent climate change. Nature 416:389–395. doi: 10.1038/416389a CrossRefGoogle Scholar
  147. Webster PJ, Holland GJ, Curry JA, Chang HR (2005) Changes in tropical cyclone number, duration, and intensity in a warming environment. Science 309:1844–1846. doi: 10.1126/science.1116448 CrossRefGoogle Scholar
  148. Wenger AS, Johansen JL, Jones GP (2012) Increasing suspended sediment reduces foraging, growth and condition of a planktivorous damselfish. J Exp Mar Biol Ecol 428:43–48. doi: 10.1016/j.jembe.2012.06.004 CrossRefGoogle Scholar
  149. Wenger AS, McCormick MI, McLeod IM, Jones GP (2013) Suspended sediment alters predator-prey interactions between two coral reef fishes. Coral Reefs 32:369–374. doi: 10.1007/s00338-012-0991-z CrossRefGoogle Scholar
  150. Wenger AS, McCormick MI, Endo GGK, McLeod IM, Kroon FJ, Jones GP (2014) Suspended sediment prolongs larval development in a coral reef fish. J Exp Biol 217:1122–1128. doi: 10.1242/Jeb.094409 CrossRefGoogle Scholar
  151. Westlund L, Poulain F, Bage H, van Anrooy R (2007) Disaster response and risk management in the fisheries sector. FAO, RomeGoogle Scholar
  152. Westmacott S, Cesar HSJ, Pet-Soede L, Lindén O (2000) Coral bleaching in the Indian Ocean: Socio-economic assessment of effects. In: Cesar HSJ (ed) Collected essays on the economics of coral reefs. CORDIO, University of Kalmar, KalmarGoogle Scholar
  153. Williamson DH, Ceccarelli DM, Evans RD, Jones GP, Russ GR (2014) Habitat dynamics, marine reserve status, and the decline and recovery of coral reef fish communities. Ecol Evol 4:337–354CrossRefGoogle Scholar
  154. Wilson SK, Graham NAJ, Pratchett MS, Jones GP, Polunin NVC (2006) Multiple disturbances and the global degradation of coral reefs: are reef fishes at risk or resilient? Global Change Biol 12:2220–2234. doi: 10.1111/j.1365-2486.2006.01252.x CrossRefGoogle Scholar
  155. Witt V, Wild C, Uthicke S (2012) Interactive climate change and runoff effects alter O-2 fluxes and bacterial community composition of coastal biofilms from the Great Barrier Reef. Aquat Microb Ecol 66:117–131. doi: 10.3354/Ame01562 CrossRefGoogle Scholar
  156. Woodley JD (1980) Hurricane Allen destroys Jamaican coral reefs. Nature 287:387. doi: 10.1038/287387a0 CrossRefGoogle Scholar
  157. Yates KK, Halley RB (2006) CO3 2− concentration and pCO2 thresholds for calcification and dissolution on the Molokai reef flat, Hawaii. Biogeosciences 3:357–369CrossRefGoogle Scholar
  158. Young IR, Zieger S, Babanin AV (2011) Global trends in wind speed and wave height. Science 332:451–455. doi: 10.1126/science.1197219 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Joshua Eli Cinner
    • 1
  • Morgan Stuart Pratchett
    • 1
  • Nicholas Anthony James Graham
    • 1
  • Vanessa Messmer
    • 1
  • Mariana Menezes Prata Bezerra Fuentes
    • 1
    • 2
  • Tracy Ainsworth
    • 1
  • Natalie Ban
    • 1
    • 3
  • Line Kolind Bay
    • 1
    • 4
  • Jessica Blythe
    • 1
    • 5
  • Delphine Dissard
    • 1
    • 6
  • Simon Dunn
    • 7
    • 8
  • Louisa Evans
    • 1
    • 9
  • Michael Fabinyi
    • 1
  • Pedro Fidelman
    • 1
    • 10
  • Joana Figueiredo
    • 1
    • 11
  • Ashley John Frisch
    • 1
  • Christopher John Fulton
    • 12
  • Christina Chemtai Hicks
    • 1
    • 13
  • Vimoksalehi Lukoschek
    • 1
  • Jennie Mallela
    • 14
    • 15
  • Aurelie Moya
    • 1
  • Lucie Penin
    • 1
    • 16
  • Jodie Lynn Rummer
    • 1
  • Stefan Walker
    • 1
  • David Hall Williamson
    • 1
  1. 1.ARC Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleAustralia
  2. 2.Earth, Ocean and Atmospheric ScienceFlorida State UniversityTallahasseeUSA
  3. 3.School of Environmental StudiesUniversity of VictoriaVictoriaCanada
  4. 4.Australian Institute of Marine ScienceTownsvilleAustralia
  5. 5.WorldFishHoniaraSolomon Islands
  6. 6.IRD-Sorbonne Universités (UPMC, Univ Paris 06)-CNRS-MNHN, LOCEAN LaboratoryIRD France-NordBondyFrance
  7. 7.ARC Centre of Excellence for Coral Reef StudiesUniversity of QueenslandSt Lucia, BrisbaneAustralia
  8. 8.School of Biological SciencesUniversity of QueenslandSt Lucia, BrisbaneAustralia
  9. 9.Geography, College of Life and Environmental SciencesUniversity of ExeterExeterUK
  10. 10.Sustainability Research CentreUniversity of the Sunshine CoastMaroochydoreAustralia
  11. 11.Oceanographic CenterNova Southeastern UniversityDania BeachUSA
  12. 12.ARC Centre of Excellence for Coral Reef Studies, Research School of BiologyThe Australian National UniversityCanberraAustralia
  13. 13.Center for Ocean Solutions, Stanford Woods Institute for the EnvironmentStanford UniversityMontereyUSA
  14. 14.ARC Centre of Excellence for Coral Reef Studies, Research School of Earth SciencesThe Australian National UniversityCanberraAustralia
  15. 15.Research School of BiologyThe Australian National UniversityCanberraAustralia
  16. 16.UMR 9220 UR CNRS IRD ENTROPIE - Ecologie mariNe TROpicale des océans Pacifique et IndiEnUniversity of Reunion IslandSaint-DenisFrance

Personalised recommendations