Regional Environmental Change

, Volume 16, Issue 4, pp 1089–1096 | Cite as

Remobilization of trace elements by forest fire in Patagonia, Chile

  • Kingsley O. OdigieEmail author
  • Ethel Khanis
  • Sharon A. Hibdon
  • Patricia Jana
  • Alberto Araneda
  • Roberto Urrutia
  • A. Russell Flegal
Original Article


Temporal changes in the amounts of trace elements (As, Co, Cu, Mn, Ni, Pb, and Zn) and their correlations with temporal changes in charcoal abundance in age-dated sediments collected from Lake Thompson in Patagonia, Chile, attest to the substantial pyrogenic remobilization of contaminants that occurred in Patagonia during the mid-1900s. This remobilization was concurrent with the extensive slash and burn period in the region during that period. The changes in concentrations of Co, Cu, and Ni in relation to charcoal abundance in the lacustrine sediments over time were small compared to those of As, Mn, Pb, and Zn. However, the relatively low enrichment factors of all those trace elements, normalized to Fe, indicate that they were predominantly derived from local, natural sources impacted by fires rather than industrial sources. The primarily local source of Pb in the sediments was corroborated by the temporal consistency of its isotopic ratios (206Pb/207Pb:208Pb/206Pb), which were similar to previously reported values for natural lead in Central and Southern Chile. However, the pyrogenic remobilization of both natural and industrial trace elements by forest fires in Chile and elsewhere is expected to rise as a consequence of climate change, which is projected to increase both the frequency and intensity of forest fires on a global scale.


Pyrogenic remobilization Trace elements Lead isotopic composition Wildfire 



The authors are grateful to Rob Franks of UCSC for analytical support and all members of the WIGS Laboratory for their support with this project. This work was partly supported by the US Department of Energy (DOE) Office of Science Graduate Fellowship Program, University of California Cota Robles Fellowship, Chilean government through the Fondecyt projects 1120765 and 1120807, and the Fulbright U.S. Scholar Program. All opinions expressed in this work are the authors’ and do not necessarily reflect the policies and views of the DOE Office of Science. Data for this study are provided in the supporting information file.

Supplementary material

10113_2015_825_MOESM1_ESM.docx (1.5 mb)
Supplementary material 1 (DOCX 1585 kb)


  1. Allison JD, Allison TL (2005) Partition coefficients for metals in surface water, soil, and waste, U.S. Environmental Protection Agency, Report EPA/600/R-05/074, pp 93Google Scholar
  2. Araneda A, Jana P, Ortega C, Torrejon F, Bertrand S, Vargas P, Fagel N, Alvarez D, Stehr A, Urrutia R (2013) Changes in sub-fossil chironomid assemblages in two Northern Patagonian lake systems associated with the occurrence of historical fires. J Paleolimnol 50:41–56. doi: 10.1007/s10933-013-9703-0 CrossRefGoogle Scholar
  3. Bertrand S, Araneda A, Vargas P, Jana P, Fagel N, Urrutia R (2012) Using the N/C ratio to correct bulk radiocarbon ages from lake sediments: insights from Chilean Patagonia. Quat Geochronol 12:23–29. doi: 10.1016/j.quageo.2012.06.003 CrossRefGoogle Scholar
  4. Biswas A, Blum JD, Klaue B, Keeler GJ (2007) Release of mercury from Rocky Mountain forest fires. Global Biogeochem Cycles 21:GB1002. doi: 10.1029/2006gb002696
  5. Böllhofer A, Rosman KJR (2000) Isotopic source signatures for atmospheric lead: the Southern Hemisphere. Geochim Cosmochim Acta 64:3251–3262. doi: 10.1016/S0016-7037(00)00436-1 CrossRefGoogle Scholar
  6. Boutron CF, Candelone JP, Hong SM (1995) Greenland snow and ice cores: unique archives of large-scale pollution of the troposphere of the Northern Hemisphere by lead and other heavy metals. Sci Total Environ 160–161:233–241. doi: 10.1016/0048-9697(95)04359-9 CrossRefGoogle Scholar
  7. Boyle EA, Bergquist BA, Kayser RA, Mahowald N (2005) Iron, manganese, and lead at Hawaii Ocean Time-series station ALOHA: temporal variability and an intermediate water hydrothermal plume. Geochim Cosmochim Acta 69:933–952. doi: 10.1016/j.gca.2004.07.034 CrossRefGoogle Scholar
  8. Brucker RP, McManus J, Severmann S, Owens J, Lyons TW (2011) Trace metal enrichments in Lake Tanganyika sediments: controls on trace metal burial in lacustrine systems. Geochim Cosmochim Acta 75:483–499. doi: 10.1016/j.gca.2010.09.041 CrossRefGoogle Scholar
  9. Callender E, vanMetre PC (1997) Reservoir sediment cores show US lead declines. Environ Sci Technol 31:A424–A428CrossRefGoogle Scholar
  10. Cereceda-Balic F, Palomo-Marin MR, Bernalte E, Vidal V, Christie J, Fadic X, Guevara JL, Miro C, Gil EP (2012) Impact of Santiago de Chile urban atmospheric pollution on anthropogenic trace elements enrichment in snow precipitation at Cerro Colorado, Central Andes. Atmos Environ 47:51–57. doi: 10.1016/j.atmosenv.2011.11.045 CrossRefGoogle Scholar
  11. Charlatchka R, Cambier P (2000) Influence of reducing conditions on solubility of trace metals in contaminated soils. Water Air Soil Pollut 118:143–167. doi: 10.1023/A:1005195920876 CrossRefGoogle Scholar
  12. Chirinos LR, Urrutia R, Fagel N, Bertrand S, Gamboa N, Araneda A, Zaror C (2005) Chemical profiles in lake sediments in Laguna Chica de San Pedro (Bio-Bio Region, Chile). J Chil Chem Soc 50:697–710CrossRefGoogle Scholar
  13. Chow TJ, Snyder CB, Earl JL (1972) Lead aerosol baseline: concentration at White Mountain and Laguna Mountain, California. Science 178:401–402. doi: 10.1126/science.178.4059.401 CrossRefGoogle Scholar
  14. Coffman GC, Ambrose RF, Rundel PW (2010) Wildfire promotes dominance of invasive giant reed (Arundo donax) in riparian ecosystems. Biol Invasions 12:2723–2734. doi: 10.1007/s10530-009-9677-z CrossRefGoogle Scholar
  15. Cohen AS, Palacios-Fest MR, McGill J, Swarzenski PW, Verschuren D, Sinyinza R, Songori T, Kakagozo B, Syampila M, O’Reilly CM, Alin SR (2005) Paleolimnological investigations of anthropogenic environmental change in Lake Tanganyika: I. An introduction to the project. J Paleolimnol 34:1–18. doi: 10.1007/s10933-005-2392-6 CrossRefGoogle Scholar
  16. De Vleeschouwer F, Ibanez M, Mattielli N, Maerschalk C, Fagel N (2008) Geochemical and Pb isotopic signature of peaty sediments from central-south Chile: identification of particle supplies over the Holocene. J Chil Chem Soc 53:1640–1649CrossRefGoogle Scholar
  17. Dunlap CE, Alpers CN, Bouse R, Taylor HE, Unruh DM, Flegal AR (2008) The persistence of lead from past gasoline emissions and mining drainage in a large riparian system: evidence from lead isotopes in the Sacramento River, California. Geochim Cosmochim Acta 72:5935–5948. doi: 10.1016/j.gca.2008.10.006 CrossRefGoogle Scholar
  18. Edelstein DL (2014) Arsenic in mineral commodity summaries. Published in February 2014 by the U.S. Geological SurveyGoogle Scholar
  19. Ellam RM (2010) The graphical presentation of lead isotope data for environmental source apportionment. Sci Total Environ 408:3490–3492. doi: 10.1016/j.scitotenv.2010.03.037 CrossRefGoogle Scholar
  20. Erel Y, Veron A, Halicz L (1997) Tracing the transport of anthropogenic lead in the atmosphere and in soils using isotopic ratios. Geochim Cosmochim Acta 61:4495–4505. doi: 10.1016/S0016-7037(97)00353-0 CrossRefGoogle Scholar
  21. Fagel N, Bertrand S, Mattielli N, Gilson D, Chirinos L, Lepoint G, Urrutia R (2010) Geochemical evidence (C, N and Pb isotopes) of recent anthropogenic impact in south-central Chile from two environmentally distinct lake sediment records. J Quat Sci 25:1100–1112. doi: 10.1002/Jqs.1364 CrossRefGoogle Scholar
  22. Falcon-Lang H (1998) The impact of wildfire on an Early Carboniferous coastal environment, North Mayo, Ireland. Palaeogeogr Palaeoclimatol Palaeoecol 139:121–138. doi: 10.1016/S0031-0182(97)00142-9 CrossRefGoogle Scholar
  23. Ferreccio C, Gonzalez C, Milosavjlevic V, Marshall G, Sancha AM, Smith AH (2000) Lung cancer and arsenic concentrations in drinking water in Chile. Epidemiology 11:673–679. doi: 10.1097/00001648-200011000-00010 CrossRefGoogle Scholar
  24. Flannigan MD, Logan KA, Amiro BD, Skinner WR, Stocks BJ (2005) Future area burned in Canada. Clim Change 72:1–16. doi: 10.1007/s10584-005-5935-y CrossRefGoogle Scholar
  25. Flegal AR, Gallon C, Hibdon S, Kuspa ZE, Laporte LF (2010) Declining-but persistent-atmospheric contamination in Central California from the resuspension of historic leaded gasoline emissions as recorded in the lace lichen (Ramalina menziesii Taylor) from 1892 to 2006. Environ Sci Technol 44:5613–5618. doi: 10.1021/es100246e CrossRefGoogle Scholar
  26. Friedland AJ, Johnson AH, Siccama TG (1984) Trace metal content of the forest floor in the Green Mountains of Vermont: spatial and temporal patterns. Water Air Soil Pollut 21:161–170. doi: 10.1007/Bf00163621 CrossRefGoogle Scholar
  27. Glasser NF, Harrison S, Jansson KN, Anderson K, Cowley A (2011) Global sea-level contribution from the Patagonian Icefields since the Little Ice Age maximum. Nat Geosci 4:303–307. doi: 10.1038/ngeo1122 CrossRefGoogle Scholar
  28. Gonzalez ME, Lara A, Urrutia R, Bosnich J (2011) Climatic change and its potential impact on forest fire occurrence in south-central Chile (33°–42° S). Bosque 32:215–219. doi: 10.4067/s0717-92002011000300002 CrossRefGoogle Scholar
  29. Hopenhayn-Rich C, Browning SR, Hertz-Picciotto I, Ferreccio C, Peralta C, Gibb H (2000) Chronic arsenic exposure and risk of infant mortality in two areas of Chile. Environ Health Perspect 108:667–673. doi: 10.2307/3434889 CrossRefGoogle Scholar
  30. Hornberger MI, Luoma SN, van Geen A, Fuller C, Anima R (1999) Historical trends of metals in the sediments of San Francisco Bay, California. Mar Chem 64:39–55. doi: 10.1016/S0304-4203(98)80083-2 CrossRefGoogle Scholar
  31. IPCC (2013) Climate change 2013: the physical science basis. Cambridge University Press, New YorkGoogle Scholar
  32. Kelly EN, Schindler DW, St Louis VL, Donald DB, Vladicka KE (2006) Forest fire increases mercury accumulation by fishes via food web restructuring and increased mercury inputs. Proc Natl Acad Sci USA 103:19380–19385. doi: 10.1073/pnas.0609798104 CrossRefGoogle Scholar
  33. Kraus KA, Moore GE (1953) Anion exchange studies. VI. The divalent transition elements manganese to zinc in hydrochloric acid. J Am Chem Soc 75:1460–1462. doi: 10.1021/ja01102a054 CrossRefGoogle Scholar
  34. Kristensen LJ, Taylor MP, Odigie KO, Hibdon SA, Flegal AR (2014) Lead isotopic compositions of ash sourced from Australian bushfires. Environ Pollut 190:159–165. doi: 10.1016/j.envpol.2014.03.025 CrossRefGoogle Scholar
  35. Lima AL, Bergquist BA, Boyle EA, Reuer MK, Dudas FO, Reddy CM, Eglinton TI (2005) High-resolution historical records from Pettaquamscutt River basin sediments: 2. Pb isotopes reveal a potential new stratigraphic marker. Geochim Cosmochim Acta 69:1813–1824. doi: 10.1016/j.gca.2004.10.008 CrossRefGoogle Scholar
  36. Moreira F, Ferreira A, Abrantes N, Catry F, Fernandes P, Roxo L, Keizer JJ, Silva J (2013) Occurrence of native and exotic invasive trees in burned pine and eucalypt plantations: implications for post-fire forest conversion. Ecol Eng 58:296–302. doi: 10.1016/j.ecoleng.2013.07.014 CrossRefGoogle Scholar
  37. Ng A, Patterson CC (1982) Changes of lead and barium with time in California off-shore basin sediments. Geochim Cosmochim Acta 46:2307–2321CrossRefGoogle Scholar
  38. Nriagu JO (1990) The rise and fall of leaded gasoline. Sci Total Environ 92:13–28. doi: 10.1016/0048-9697(90)90318-O CrossRefGoogle Scholar
  39. Nriagu JO (1996) A history of global metal pollution. Science 272:223–224. doi: 10.1126/science.272.5259.223 CrossRefGoogle Scholar
  40. Nriagu JO, Pacyna JM (1988) Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature 333:134–139. doi: 10.1038/333134a0 CrossRefGoogle Scholar
  41. Obrist D, Moosmuller H, Schurmann R, Chen LWA, Kreidenweis SM (2008) Particulate-phase and gaseous elemental mercury emissions during biomass combustion: controlling factors and correlation with particulate matter emissions. Environ Sci Technol 42:721–727. doi: 10.1021/es071279n CrossRefGoogle Scholar
  42. Odigie KO, Flegal AR (2011) Pyrogenic remobilization of historic industrial lead depositions. Environ Sci Technol 45:6290–6295. doi: 10.1021/es200944w CrossRefGoogle Scholar
  43. Odigie KO, Flegal AR (2014) Trace metal inventories and lead isotopic composition chronicle a forest fire’s remobilization of industrial contaminants deposited in the Angeles National Forest. PLoS One 9:e107835. doi: 10.1371/journal.pone.0107835 CrossRefGoogle Scholar
  44. Palma-Fleming H, Quiroz E, Campillay C, Figueroa M, Varas A, Velasquez D, Jara B, Palma-Larrea X (2012) Temporal and spatial trends of total aliphatic hydrocarbons of diesel range and trace elements in sediments and mussels of the Corral Bay Area, Valdivia, South Central Chile. J Chil Chem Soc 57:1074–1082CrossRefGoogle Scholar
  45. Pang L, Close M, Flintoft M (2004) Attenuation and transport characteristics of cadmium, zinc and lead in selected New Zealand aquifer systems. J Hydrol (NZ) 43:95–110Google Scholar
  46. Pino P, Walter T, Oyarzun MJ, Burden MJ, Lozoff B (2004) Rapid drop in infant blood lead levels during the transition to unleaded gasoline use in Santiago, Chile. Arch Environ Health 59:182–187. doi: 10.3200/Aeoh.59.4.182-187 CrossRefGoogle Scholar
  47. Renberg I, Bindler R, Brannvall ML (2001) Using the historical atmospheric lead-deposition record as a chronological marker in sediment deposits in Europe. Holocene 11:511–516. doi: 10.1191/095968301680223468 CrossRefGoogle Scholar
  48. Rignot E, Rivera A, Casassa G (2003) Contribution of the Patagonia Icefields of South America to sea level rise. Science 302:434–437. doi: 10.1126/science.1087393 CrossRefGoogle Scholar
  49. Schiff KC, Weisberg SB (1999) Iron as a reference element for determining trace metal enrichment in Southern California coastal shelf sediments. Mar Environ Res 48:161–176. doi: 10.1016/S0141-1136(99)00033-1 CrossRefGoogle Scholar
  50. Segura R, Arancibia V, Zuniga MC, Pasten P (2006) Distribution of copper, zinc, lead and cadmium concentrations in stream sediments from the Mapocho River in Santiago, Chile. J Geochem Explor 91:71–80. doi: 10.1016/j.gexplo.2006.03.003 CrossRefGoogle Scholar
  51. Sen IS, Peucker-Ehrenbrink B (2012) Anthropogenic disturbance of element cycles at the earth’s surface. Environ Sci Technol 46:8601–8609. doi: 10.1021/Es301261x CrossRefGoogle Scholar
  52. Siccama TG, Smith WH, Mader DL (1980) Changes in lead, zinc, copper, dry weight, and organic matter content of the forest floor of white pine stands in Central Massachusetts over 16 years. Environ Sci Technol 14:54–56. doi: 10.1021/Es60161a002 CrossRefGoogle Scholar
  53. Soto-Jimenez MF, Hibdon SA, Rankin CW, Aggarawl J, Ruiz-Fernandez AC, Paez-Osuna F, Flegal AR (2006) Chronicling a century of lead pollution in Mexico: stable lead isotopic composition analyses of dated sediment cores. Environ Sci Technol 40:764–770. doi: 10.1021/es048478g CrossRefGoogle Scholar
  54. Stein ED, Brown JS, Hogue TS, Burke MP, Kinoshita A (2012) Stormwater contaminant loading following southern California wildfires. Environ Toxicol Chem 31:2625–2638. doi: 10.1002/etc.1994 CrossRefGoogle Scholar
  55. Tchernitchin AN, Lapin N, Molina L, Molina G, Tchernitchin NA, Acevedo C, Alonso P (2005) Human exposure to lead in Chile. Rev Environ Contam Toxicol 185:93–139Google Scholar
  56. Tierney JE, Mayes MT, Meyer N, Johnson C, Swarzenski PW, Cohen AS, Russell JM (2010) Late-twentieth-century warming in Lake Tanganyika unprecedented since AD 500. Nat Geosci 3:422–425. doi: 10.1038/ngeo865 CrossRefGoogle Scholar
  57. Tume P, Bech J, Sepulveda B, Tume L, Bech J (2008) Concentrations of heavy metals in urban soils of Talcahuano (Chile): a preliminary study. Environ Monit Assess 140:91–98. doi: 10.1007/s10661-007-9850-8 CrossRefGoogle Scholar
  58. Urrutia R, Yevenes M, Barra R (2002) Background concentration of trace metals in sediments of three Chilean Andean lakes: Chungara, Laja and Castor lakes. Bol Soc Chil Quim 47:457–467Google Scholar
  59. Van Metre PC, Mahler BJ (2004) Contaminant trends in reservoir sediment cores as records of influent stream quality. Environ Sci Technol 38:2978–2986. doi: 10.1021/Es049859x CrossRefGoogle Scholar
  60. Vince G (2010) Dams for Patagonia. Science 329:382–385. doi: 10.1126/science.329.5990.382 CrossRefGoogle Scholar
  61. Warrick JA, Hatten JA, Pasternack GB, Gray AB, Goni MA, Wheatcroft RA (2012) The effects of wildfire on the sediment yield of a coastal California watershed. Geol Soc Am Bull 124:1130–1146. doi: 10.1130/B30451.1 CrossRefGoogle Scholar
  62. Westerling AL, Hidalgo HG, Cayan DR, Swetnam TW (2006) Warming and earlier spring increase western US forest wildfire activity. Science 313:940–943. doi: 10.1126/science.1128834 CrossRefGoogle Scholar
  63. Wheeler W, Brown MJ (2013) Blood lead levels in children aged 1–5 years—United States, 1999–2010. CDC MMWR 62:245–248Google Scholar
  64. Wiedinmyer C, Friedli H (2007) Mercury emission estimates from fires: an initial inventory for the United States. Environ Sci Technol 41:8092–8098. doi: 10.1021/es071289o CrossRefGoogle Scholar
  65. Young DR, Jan TK (1977) Fire fallout of metals off California. Mar Pollut Bull 8:109–112. doi: 10.1016/0025-326x(77)90133-3 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Kingsley O. Odigie
    • 1
    Email author
  • Ethel Khanis
    • 1
  • Sharon A. Hibdon
    • 1
  • Patricia Jana
    • 2
  • Alberto Araneda
    • 2
  • Roberto Urrutia
    • 2
  • A. Russell Flegal
    • 1
    • 2
  1. 1.WIGS Laboratory, Environmental ToxicologyUniversity of California at Santa CruzSanta CruzUSA
  2. 2.Group of Paleolimnological Studies (GEP), Aquatic Systems Research Unit, Environmental Sciences Center EULA-ChileUniversity of ConcepcionConcepciónChile

Personalised recommendations