Regional Environmental Change

, Volume 16, Issue 3, pp 629–642 | Cite as

Can we infer avalanche–climate relations using tree-ring data? Case studies in the French Alps

  • Romain SchläppyEmail author
  • Vincent Jomelli
  • Nicolas Eckert
  • Markus Stoffel
  • Delphine Grancher
  • Daniel Brunstein
  • Christophe Corona
  • Michaël Deschatres
Original Article


Dendrogeomorphology is a powerful tool to determine past avalanche activity, but whether or not the obtained annually resolved chronologies are sufficiently detailed to infer avalanche–climate relationships (in terms of temporal resolution) remains an open question. In this work, avalanche activity is reconstructed in five paths of the French Alps and crossed with a set of snow and weather variables covering the period 1959–2009 on a monthly and annual (winter) basis. The variables which best explain avalanche activity are highlighted with an original variable selection procedure implemented within a logistic regression framework. The same approach is used for historical chronologies available for the same paths, as well as for the composite tree-ring/historical chronologies. Results suggest that dendrogeomorphic time series allow capturing the relations between snow or climate and avalanche occurrences to a certain extent. Weak links exist with annually resolved snow and weather variables and the different avalanche chronologies. On the contrary, clear statistical relations exist between these and monthly resolved snow and weather variables. In detail, tree rings seem to preferentially record avalanches triggered during cold winter storms with heavy precipitation. Conversely, historical avalanche data seem to contain a majority of events that were released later in the season and during episodes of strong positive temperature anomalies.


Dendrogeomorphology Snow avalanche Avalanche–climate relations Logistic regression Hazard assessment French Alps 



The authors gratefully acknowledge Louis Manière and Matthieu Schläppy for their assistance in the field. They also want to thank the Office National des Forêts (ONF) for sampling permissions. This study has been realized within the framework of the MOPERA (MOdélisation Probabiliste pour l’Évaluation du Risque d’Avalanche) program funded by the French National Research Agency (ANR-09-RISK-007-01). SC data have been provided by CNRM-GAME/CEN (Météo-France-CNRS) within the framework of the ECANA (Étude Climatologique de l’Activité Avalancheuse NAturelle) Project, and feedback/comments from S. Morin and G. Giraud are acknowledged. Finally, R.S. acknowledges financial support from the Swiss National Science Foundation (Project P1SKP2_148492).

Supplementary material

10113_2015_823_MOESM1_ESM.pdf (8 kb)
Supplementary material 1 (PDF 8 kb)
10113_2015_823_MOESM2_ESM.pdf (20 kb)
Supplementary material 2 (PDF 20 kb)
10113_2015_823_MOESM3_ESM.pdf (5 kb)
Supplementary material 3 (PDF 4 kb)
10113_2015_823_MOESM4_ESM.pdf (47 kb)
Supplementary material 4 (PDF 46 kb)
10113_2015_823_MOESM5_ESM.pdf (212 kb)
Supplementary material 5 (PDF 212 kb)


  1. Alestalo J (1971) Dendrochronological interpretation of geomorphic processes. Fennia 105:1–139Google Scholar
  2. Brun E, David P, Sudul M, Brunot G (1992) A numerical model to simulate snow-cover stratigraphy for operational avalanche forecasting. J Glaciol 38:13–22Google Scholar
  3. Butler DR, Sawyer CF (2008) Dendrogeomorphology and high-magnitude snow avalanches: a review and case study. Nat Hazards Earth Syst Sci 8:303–309. doi: 10.5194/nhess-8-303-2008 CrossRefGoogle Scholar
  4. Castebrunet H, Eckert N, Giraud G (2012) Snow and weather climatic control on snow avalanche occurrence fluctuations over 50 yr in the French Alps. Clim Past 8:855–875. doi: 10.5194/cp-8-855-2012 CrossRefGoogle Scholar
  5. Castebrunet H, Eckert N, Giraud G et al (2014) Projected changes of snow conditions and avalanche activity in a warming climate: a case study in the French Alps over the 2020–2050 and 2070–2100 periods. Cryosph Discuss 8:581–640. doi: 10.5194/tcd-8-581-2014 CrossRefGoogle Scholar
  6. Casteller A, Villalba R, Araneo D, Stöckli V (2011) Reconstructing temporal patterns of snow avalanches at Lago del Desierto, southern Patagonian Andes. Cold Reg Sci Technol 67:68–78. doi: 10.1016/j.coldregions.2011.02.001 CrossRefGoogle Scholar
  7. Corona C, Rovéra G, Lopez Saez J et al (2010) Spatio-temporal reconstruction of snow avalanche activity using tree rings: Pierres Jean Jeanne avalanche talus, Massif de l’Oisans, France. Catena 83:107–118. doi: 10.1016/j.catena.2010.08.004 CrossRefGoogle Scholar
  8. Corona C, Lopez Saez J, Stoffel M et al (2012) How much of the real avalanche activity can be captured with tree rings? An evaluation of classic dendrogeomorphic approaches and comparison with historical archives. Cold Reg Sci Technol 74–75:31–42. doi: 10.1016/j.coldregions.2012.01.003 CrossRefGoogle Scholar
  9. Dubé S, Filion L, Hétu B (2004) Tree-ring reconstruction of high-magnitude snow avalanches in the Northern Gaspé Peninsula, Québec, Canada. Arct Antarct Alp Res 36:555–564. doi:10.1657/1523-0430(2004)036[0555:TROHSA]2.0.CO;2CrossRefGoogle Scholar
  10. Durand Y, Giraud G, Brun E et al (1999) A computer-based system simulating snowpack structure as a tool for regional avalanche forecasting. J Glaciol 45:469–484Google Scholar
  11. Durand Y, Giraud G, Laternser M et al (2009a) Reanalysis of 47 years of climate in the French Alps (1958–2005): climatology and trends for snow cover. J Appl Meteorol Climatol 48:2487–2512. doi: 10.1175/2009JAMC1810.1 CrossRefGoogle Scholar
  12. Durand Y, Laternser M, Giraud G et al (2009b) Reanalysis of 44 yr of climate in the French Alps (1958–2002): methodology, model validation, climatology, and trends for air temperature and precipitation. J Appl Meteorol Climatol 48:429–449. doi: 10.1175/2008JAMC1808.1 CrossRefGoogle Scholar
  13. Eckert N, Baya H, Deschatres M (2010a) Assessing the response of snow avalanche runout altitudes to climate fluctuations using hierarchical modeling: application to 61 winters of data in France. J Clim 23:3157–3180. doi: 10.1175/2010JCLI3312.1 CrossRefGoogle Scholar
  14. Eckert N, Coleou C, Castebrunet H et al (2010b) Cross-comparison of meteorological and avalanche data for characterising avalanche cycles: the example of December 2008 in the eastern part of the French Alps. Cold Reg Sci Technol 64:119–136. doi: 10.1016/j.coldregions.2010.08.009 CrossRefGoogle Scholar
  15. Eckert N, Parent E, Kies R, Baya H (2010c) A spatio-temporal modelling framework for assessing the fluctuations of avalanche occurrence resulting from climate change: application to 60 years of data in the northern French Alps. Clim Change 101:515–553. doi: 10.1007/s10584-009-9718-8 CrossRefGoogle Scholar
  16. Germain D, Filion L, Hétu B (2009) Snow avalanche regime and climatic conditions in the Chic-Choc Range, eastern Canada. Clim Change 92:141–167. doi: 10.1007/s10584-008-9439-4 CrossRefGoogle Scholar
  17. Hebertson EG, Jenkins MJ (2003) Historic climate factors associated with major avalanche years on the Wasatch Plateau, Utah. Cold Reg Sci Technol 37:315–332. doi: 10.1016/S0165-232X(03)00073-9 CrossRefGoogle Scholar
  18. Jamard A-L, Garcia S, Bélanger L (2002) L’Enquête Permanente sur les Avalanches (EPA) - Statistique descriptive générale des événements et des sitesGoogle Scholar
  19. Jomelli V, Delval C, Grancher D et al (2007) Probabilistic analysis of recent snow avalanche activity and weather in the French Alps. Cold Reg Sci Technol 47:180–192. doi: 10.1016/j.coldregions.2006.08.003 CrossRefGoogle Scholar
  20. Lavigne A, Eckert N, Bel L, Parent E (2015) Adding expert contributions to the spatiotemporal modelling of avalanche activity under different climatic influences. J R Stat Soc Ser C Appl Stat. doi: 10.1111/rssc.12095 Google Scholar
  21. McClung DM, Tweedy J (1993) Characteristics of avalanching: Kootenay Pass. J Glaciol 39:316–322Google Scholar
  22. Naaim M, Durand Y, Eckert N, Chambon G (2013) Dense avalanche friction coefficients: influence of physical properties of snow. J Glaciol 59:771–782CrossRefGoogle Scholar
  23. Nagelkerke NJD (1991) A note on a general definition of the coefficient of determination. Biometrika 78:691–692. doi: 10.1093/biomet/78.3.691 CrossRefGoogle Scholar
  24. R Development Core Team (2011) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
  25. Reardon BA, Pederson GT, Caruso CJ, Fagre DB (2008) Spatial reconstructions and comparisons of historic snow avalanche frequency and extent using tree rings in Glacier National Park, Montana, USA. Arct Antarct Alp Res 40:148–160. doi:10.1657/1523-0430(06-069)[REARDON]2.0.CO;2CrossRefGoogle Scholar
  26. Saporta G (2011) Probabilités, analyse des données et statistique, 3rd edn. France, ParisGoogle Scholar
  27. Schläppy R, Jomelli V, Grancher D et al (2013) A new tree-ring-based, semi-quantitative approach for the determination of snow avalanche events: use of classification trees for validation. Arct Antarct Alp Res 45:383–395. doi: 10.1657/1938-4246-45.3.383 CrossRefGoogle Scholar
  28. Schläppy R, Eckert N, Jomelli V et al (2014) Validation of extreme snow avalanches and related return periods derived from a statistical-dynamical model using tree-ring techniques. Cold Reg Sci Technol 99:12–26. doi: 10.1016/j.coldregions.2013.12.001 CrossRefGoogle Scholar
  29. Stoffel M, Bollschweiler M (2008) Tree-ring analysis in natural hazards research—an overview. Nat Hazards Earth Syst Sci 8:187–202. doi: 10.5194/nhess-8-187-2008 CrossRefGoogle Scholar
  30. Stoffel M, Corona C (2014) Dendroecological dating of geomorphic disturbance in trees. Tree Ring Res 70:3–20. doi: 10.3959/1536-1098-70.1.3 CrossRefGoogle Scholar
  31. Stoffel M, Bollschweiler M, Butler DR, Luckman BH (2010) Tree rings and natural hazards. Springer Science and Business Media, New York. doi: 10.1007/978-90-481-8736-2 CrossRefGoogle Scholar
  32. Stoffel M, Butler DR, Corona C (2013) Mass movements and tree rings: a guide to dendrogeomorphic field sampling and dating. Geomorphology 200:106–120. doi: 10.1016/j.geomorph.2012.12.017 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Romain Schläppy
    • 1
    Email author
  • Vincent Jomelli
    • 1
  • Nicolas Eckert
    • 2
  • Markus Stoffel
    • 3
    • 4
  • Delphine Grancher
    • 1
  • Daniel Brunstein
    • 1
  • Christophe Corona
    • 3
    • 5
  • Michaël Deschatres
    • 2
  1. 1.Laboratoire de Géographie Physique, UMR 8591 CNRSUniversité Paris 1 Panthéon-SorbonneMeudon CedexFrance
  2. 2.IRSTEAUR ETGR Érosion Torrentielle Neige et Avalanches/Université Grenoble AlpesSt-Martin-d’Hères CedexFrance
  3., Institute of Geological SciencesUniversity of BerneBerneSwitzerland
  4. 4.Climatic Change and Climate Impacts, Institute for Environmental SciencesUniversity of GenevaCarougeSwitzerland
  5. 5.Laboratoire de Géographie Physique et Environnementale, UMR 6042 CNRSUniversité Blaise Pascal Clermont-Ferrand 2Clermont-Ferrand Cedex 1France

Personalised recommendations