Advertisement

Regional Environmental Change

, Volume 16, Issue 5, pp 1225–1238 | Cite as

Changes in the spatial patterns of human appropriation of net primary production (HANPP) in Europe 1990–2006

  • Christoph Plutzar
  • Christine Kroisleitner
  • Helmut Haberl
  • Tamara Fetzel
  • Claudia Bulgheroni
  • Tim Beringer
  • Patrick Hostert
  • Thomas Kastner
  • Tobias Kuemmerle
  • Christian Lauk
  • Christian Levers
  • Marcus Lindner
  • Dietmar Moser
  • Daniel Müller
  • Maria Niedertscheider
  • Maria Luisa Paracchini
  • Sibyll Schaphoff
  • Peter H. Verburg
  • Pieter J. Verkerk
  • Karl-Heinz ErbEmail author
Original Article

Abstract

Understanding patterns, dynamics, and drivers of land use is crucial for improving our ability to cope with sustainability challenges. The human appropriation of net primary production (HANPP) framework provides a set of integrated socio-ecological indicators that quantify how land use alters energy flows in ecosystems via land conversions and biomass harvest. Thus, HANPP enables researchers to systematically and consistently assess the outcome of changes in land cover and land-use intensity across spatio-temporal scales. Yet, fine-scale HANPP assessments are so far missing, an information important to address site-specific ecological implications of land use. Here, we provide such an assessment for Europe at a 1-km scale for the years 1990, 2000, and 2006. The assessment was based on a consistent land-use/biomass flow dataset derived from statistical data, remote sensing maps, and a dynamic global vegetation model. We find that HANPP in Europe amounted to ~43 % of potential productivity, well above the global average of ~25 %, with little variation in the European average since 1990. HANPP was highest in Central Europe and lower in Northern and Southern Europe. At the regional level, distinct changes in land-use intensity were observed, most importantly the decline of cropland areas and yields following the breakdown of socialism in Eastern Europe and the subsequent recovery after 2000, or strong dynamics related to storm events that resulted in massive salvage loggings. In sum, however, these local dynamics cancelled each other out at the aggregate level. We conclude that this finding warrants further research into aspects of the scale-dependency of dynamics and stability of land use.

Keywords

Land-use intensity Europe Human appropriation of net primary production Land system change Socio-ecological indicators Spatio-temporal dynamics 

Notes

Acknowledgments

We gratefully acknowledge support by the European Commission (Project VOLANTE FP7-ENV-2010-265104), the European Research Council (ERC-2010-Stg-263522 LUISE), and the Austrian Science Fund (FWF), Project P20812-G11. This article contributes to the Global Land Project (http://www.globallandproject.org). Spatial data presented in this study will be made available at http://www.uni-klu.ac.at/socec/inhalt/1088.htm.

Supplementary material

10113_2015_820_MOESM1_ESM.docx (5.4 mb)
Supplementary material 1 (DOCX 5486 kb)

References

  1. Bach M, Breuer L, Frede HG et al (2006) Accuracy and congruency of three different digital land-use maps. Landsc Urban Plan 78:289–299. doi: 10.1016/j.landurbplan.2005.09.004 CrossRefGoogle Scholar
  2. Bondeau A, Smith PC, Zaehle S et al (2007) Modelling the role of agriculture for the 20th century global terrestrial carbon balance. Glob Change Biol 13:679–706. doi: 10.1111/j.1365-2486.2006.01305.x CrossRefGoogle Scholar
  3. Bouwman AF, Van der Hoek KW, Eickhout B, Soenario I (2005) Exploring changes in world ruminant production systems. Agric Syst 84:121–153. doi: 10.1016/j.agsy.2004.05.006 CrossRefGoogle Scholar
  4. Britz W, Leip A (2009) Development of marginal emission factors for N losses from agricultural soils with the DNDC–CAPRI meta-model. Agric Ecosyst Environ 133:267–279. doi: 10.1016/j.agee.2009.04.026 CrossRefGoogle Scholar
  5. Britz W, Witzke P (2008) CAPRI model documentation 2008: version 2Google Scholar
  6. Britz W, Heckelei T, Kempen M (2008) Description of the CAPRI modeling system. Final Report. Universität Bonn, BonnGoogle Scholar
  7. Caetano M, Mata F, Freire S (2006) Accuracy assessment of the Portuguese CORINE Land Cover map. Glob Dev Environ Earth Obs Space 459–467Google Scholar
  8. Cihlar J, Jansen LJM (2001) from land cover to land use: a methodology for efficient land use mapping over large areas. Prof Geogr 53:275–289. doi: 10.1111/0033-0124.00285 CrossRefGoogle Scholar
  9. Copernicus Programme (2014) Copernicus land monitoring services. http://land.copernicus.eu/pan-european/corine-land-cover
  10. Creutzig F, Ravindranath NH, Berndes G et al (2014) Bioenergy and climate change mitigation: an assessment. Glob Change Biol Bioenergy. doi: 10.1111/gcbb.12205
  11. Crutzen PJ, Mosier AR, Smith KA, Winiwarter W (2008) N2O release from agro-biofuel production negates global warming reduction by replacing fossil fuels. Atmos Chem Phys 8:389–395. doi: 10.5194/acp-8-389-2008 CrossRefGoogle Scholar
  12. Doxa A, Paracchini ML, Pointereau P et al (2012) Preventing biotic homogenization of farmland bird communities: the role of high nature value farmland. Agric Ecosyst Environ 148:83–88. doi: 10.1016/j.agee.2011.11.020 CrossRefGoogle Scholar
  13. Elith J, Graham CH, Anderson RP et al (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29:129–151. doi: 10.1111/j.2006.0906-7590.04596.x CrossRefGoogle Scholar
  14. Ellis EC, Kaplan JO, Fuller DQ et al (2013) Used planet: a global history. Proc Natl Acad Sci 110:7978–7985. doi: 10.1073/pnas.1217241110 CrossRefGoogle Scholar
  15. Erb K-H (2004) Land use-related changes in aboveground carbon stocks of Austria’s terrestrial ecosystems. Ecosystems 7:563–572. doi: 10.1007/s10021-004-0234-4 CrossRefGoogle Scholar
  16. Erb K-H (2012) How a socio-ecological metabolism approach can help to advance our understanding of changes in land-use intensity. Ecol Econ 76:8–14. doi: 10.1016/j.ecolecon.2012.02.005 CrossRefGoogle Scholar
  17. Erb KH, Gaube V, Krausmann F et al (2007) A comprehensive global 5 min resolution land-use data set for the year 2000 consistent with national census data. J Land Use Sci 2:191–224CrossRefGoogle Scholar
  18. Erb K-H, Krausmann F, Gaube V et al (2009) Analyzing the global human appropriation of net primary production—processes, trajectories, implications. An introduction. Ecol Econ 69:250–259. doi: 10.1016/j.ecolecon.2009.07.001 CrossRefGoogle Scholar
  19. Erb K-H, Haberl H, Jepsen MR et al (2013) A conceptual framework for analysing and measuring land-use intensity. Curr Opin Environ Sustain 5:464–470. doi: 10.1016/j.cosust.2013.07.010 CrossRefGoogle Scholar
  20. EUROSTAT (2014) NUTS—nomenclature of territorial units for statistics. http://epp.eurostat.ec.europa.eu/portal/page/portal/nuts_nomenclature/introduction
  21. Evans JM, Fletcher RJ, Alavalapati J (2010) Using species distribution models to identify suitable areas for biofuel feedstock production: modeling biofuel feedstock production. GCB Bioenergy 2:63–78. doi: 10.1111/j.1757-1707.2010.01040.x CrossRefGoogle Scholar
  22. Fetzel T, Gradwohl M, Erb K-H (2014) Conversion, intensification, and abandonment: a human appropriation of net primary production approach to analyze historic land-use dynamics in New Zealand 1860–2005. Ecol Econ 97:201–208. doi: 10.1016/j.ecolecon.2013.12.002 CrossRefGoogle Scholar
  23. Fisher M, Carver S, Kun S et al (2010) Review of status and conservation of wild land in Europe. http://www.wildlandresearch.org/our-work/downloads/
  24. Foley JA, DeFries R, Asner GP et al (2005) Global consequences of land use. Science 309:570–574. doi: 10.1126/science.1111772 CrossRefGoogle Scholar
  25. Forest Europe, UNECE, FAO (2011) State of Europe’s forests 2011. Status and trends in sustainable forest management in Europe. Ministerial conference on the protection of forests in Europe. Forest Europe Liaison Unit Oslo, OsloGoogle Scholar
  26. Gardiner B, Blennow K, Carnus J-M et al (2010) Destructive storms in European forests: past and forthcoming impacts. Final report to European Commission—DG environment. European Forest Institute, Atlantic European Regional Office—EFIATLANTIC, BordeauxGoogle Scholar
  27. Garnett T, Appleby MC, Balmford A et al (2013) Sustainable intensification in agriculture: premises and policies. Science 341:33–34. doi: 10.1126/science.1234485 CrossRefGoogle Scholar
  28. Griffiths P, Müller D, Kuemmerle T, Hostert P (2013) Agricultural land change in the Carpathian ecoregion after the breakdown of socialism and expansion of the European Union. Environ Res Lett 8:045024. doi: 10.1088/1748-9326/8/4/045024 CrossRefGoogle Scholar
  29. Haberl H, Erb KH, Krausmann F et al (2007) Quantifying and mapping the human appropriation of net primary production in earth’s terrestrial ecosystems. Proc Natl Acad Sci 104:12942–12947. doi: 10.1073/pnas.0704243104 CrossRefGoogle Scholar
  30. Haberl H, Erb K-H, Krausmann F (2014) Human appropriation of net primary production: patterns, trends, and planetary boundaries. Annu Rev Environ Resour 39:363–391. doi: 10.1146/annurev-environ-121912-094620 CrossRefGoogle Scholar
  31. Hatna E, Bakker MM (2011) Abandonment and expansion of arable land in Europe. Ecosystems 14:720–731. doi: 10.1007/s10021-011-9441-y CrossRefGoogle Scholar
  32. Hijmans RJ, Cameron SE, Parra JL et al (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978. doi: 10.1002/joc.1276 CrossRefGoogle Scholar
  33. IAASTD (2009) Agriculture at a crossroads. International assessment of agricultural knowledge, science and technology for development (IAASTD), Global report. Island Press, Washington, DCGoogle Scholar
  34. Jarvis A, Reuter HI, Nelson A, Guevara E (2008) Holefilled seamless SRTM data V4Google Scholar
  35. Kopecky M, Kahabka H (2009) Updated delivery report European mosaicGoogle Scholar
  36. Krausmann F, Erb K-H, Gingrich S et al (2008) Global patterns of socioeconomic biomass flows in the year 2000: a comprehensive assessment of supply, consumption and constraints. Ecol Econ 65:471–487. doi: 10.1016/j.ecolecon.2007.07.012 CrossRefGoogle Scholar
  37. Krausmann F, Gingrich S, Haberl H et al (2012) Long-term trajectories of the human appropriation of net primary production: lessons from six national case studies. Ecol Econ 77:129–138. doi: 10.1016/j.ecolecon.2012.02.019 CrossRefGoogle Scholar
  38. Krausmann F, Erb K-H, Gingrich S et al (2013) Global human appropriation of net primary production doubled in the 20th century. Proc Natl Acad Sci 110:10324–10329. doi: 10.1073/pnas.1211349110 CrossRefGoogle Scholar
  39. Kuemmerle T, Erb K, Meyfroidt P et al (2013) Challenges and opportunities in mapping land use intensity globally. Curr Opin Environ Sustain 5:484–493. doi: 10.1016/j.cosust.2013.06.002 CrossRefGoogle Scholar
  40. Lambin EF, Meyfroidt P (2011) Global land use change, economic globalization, and the looming land scarcity. Proc Natl Acad Sci 108:3465–3472. doi: 10.1073/pnas.1100480108 CrossRefGoogle Scholar
  41. Leip A, Marchi G, Koeble R et al (2008) Linking an economic model for European agriculture with a mechanistic model to estimate nitrogen and carbon losses from arable soils in Europe. Biogeosciences 5:73–94CrossRefGoogle Scholar
  42. Levers C, Verkerk PJ, Müller D et al (2014) Drivers of forest harvesting intensity patterns in Europe. For Ecol Manag 315:160–172. doi: 10.1016/j.foreco.2013.12.030 CrossRefGoogle Scholar
  43. Lindenmayer D, Cunningham S, Young A (2012) Land use intensification: effects on agriculture, biodiversity and ecological processes. Csiro, CanberraGoogle Scholar
  44. Lindroth A, Lagergren F, Grelle A et al (2009) Storms can cause Europe-wide reduction in forest carbon sink. Glob Change Biol 15:346–355. doi: 10.1111/j.1365-2486.2008.01719.x CrossRefGoogle Scholar
  45. Luyssaert S, Jammet M, Stoy PC et al (2014) Land management and land-cover change have impacts of similar magnitude on surface temperature. Nat Clim Change 4:389–393. doi: 10.1038/nclimate2196 CrossRefGoogle Scholar
  46. Matson PA, Parton WJ, Power AG, Swift MJ (1997) Agricultural intensification and ecosystem properties. Science 277:504–509. doi: 10.1126/science.277.5325.504 CrossRefGoogle Scholar
  47. Millennium Ecosystem Assessment (2005) Ecosystems and human well-being: current state and trends, vol 1. Island Press, WashingtonGoogle Scholar
  48. Müller D, Kuemmerle T, Rusu M, Griffiths P (2009) Lost in transition: determinants of post-socialist cropland abandonment in Romania. J Land Use Sci 4:109–129. doi: 10.1080/17474230802645881 CrossRefGoogle Scholar
  49. Neumann K, Elbersen BS, Verburg PH et al (2009) Modelling the spatial distribution of livestock in Europe. Landsc Ecol 24:1207–1222. doi: 10.1007/s10980-009-9357-5 CrossRefGoogle Scholar
  50. Niedertscheider M, Erb K (2014) Land system change in Italy from 1884 to 2007: analysing the north–south divergence on the basis of an integrated indicator framework. Land Use Policy 39:366–375. doi: 10.1016/j.landusepol.2014.01.015 CrossRefGoogle Scholar
  51. Niedertscheider M, Kuemmerle T, Müller D, Erb K-H (2014) Exploring the effects of drastic institutional and socio-economic changes on land system dynamics in Germany between 1883 and 2007. Glob Environ Change 28:98–108. doi: 10.1016/j.gloenvcha.2014.06.006 CrossRefGoogle Scholar
  52. Panagos P, Van Liedekerke M, Jones A, Montanarella L (2012) European Soil Data Centre: response to European policy support and public data requirements. Land Use Policy 29:329–338. doi: 10.1016/j.landusepol.2011.07.003 CrossRefGoogle Scholar
  53. Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259. doi: 10.1016/j.ecolmodel.2005.03.026 CrossRefGoogle Scholar
  54. Ramankutty N, Evan AT, Monfreda C, Foley JA (2008) Farming the planet: 1. Geographic distribution of global agricultural lands in the year 2000. Glob Biogeochem Cycles 22:GB1003Google Scholar
  55. Rounsevell MDA, Pedroli B, Erb K-H et al (2012) Challenges for land system science. Land Use Policy 29:899–910. doi: 10.1016/j.landusepol.2012.01.007 CrossRefGoogle Scholar
  56. Rozelle S, Swinnen JF (2004) Success and failure of reform: Insights from the transition of agriculture. J Econ Lit 42(2):404–456CrossRefGoogle Scholar
  57. Smith P, Bustamante M, Ahammad H et al (2014a) Agriculture, forestry and other land use (AFOLU). In: Edenhofer O, Pichs-Madruga R, Soukuba Y (eds) Climate change 2014: contributions of working group III to the 5th assessment report of the IPCC. Intergovernmental Panel on Climate Change, Cambridge University Press, Geneva, Switzerland, Cambridge, UK (in press)Google Scholar
  58. Smith WK, Cleveland CC, Reed SC, Running SW (2014b) Agricultural conversion without external water and nutrient inputs reduces terrestrial vegetation productivity. Geophys Res Lett. doi: 10.1002/2013GL058857 Google Scholar
  59. Tilman D, Balzer C, Hill J, Befort BL (2011) Global food demand and the sustainable intensification of agriculture. Proc Natl Acad Sci 108:20260–20264. doi: 10.1073/pnas.1116437108 CrossRefGoogle Scholar
  60. Tüxen R (1956) Die heutige potentielle natürliche Vegetation als Gegenstand der Vegetationskartierung. Angew Pflanzensoziol 13:5–42Google Scholar
  61. UN (2000) Forest Resources of Europe, CIS, North America, Australia, Japan and New Zealand (industrialized temperate/boreal countries). UN-ECE/FAO contribution to the global forest resources assessment 2000. Main Report ECE/TIM/SP/17. United Nations Publications, New YorkGoogle Scholar
  62. Verburg PH, Neumann K, Nol L (2011) Challenges in using land use and land cover data for global change studies. Glob Change Biol 17:974–989. doi: 10.1111/j.1365-2486.2010.02307.x CrossRefGoogle Scholar
  63. Verburg PH, Mertz O, Erb K-H et al (2013) Land system change and food security: towards multi-scale land system solutions. Curr Opin Environ Sustain 5:494–502. doi: 10.1016/j.cosust.2013.07.003 CrossRefGoogle Scholar
  64. Vitousek PM, Ehrlich PR, Ehrlich AH, Matson PA (1986) Human appropriation of the products of photosynthesis. Bioscience 36:368–373. doi: 10.2307/1310258 CrossRefGoogle Scholar
  65. Verkerk PJ, Levers C, Kuemmerle T et al (submitted) Mapping wood production in European forests. For Ecol ManagGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Christoph Plutzar
    • 1
  • Christine Kroisleitner
    • 1
  • Helmut Haberl
    • 1
    • 5
  • Tamara Fetzel
    • 1
  • Claudia Bulgheroni
    • 2
  • Tim Beringer
    • 3
  • Patrick Hostert
    • 4
    • 5
  • Thomas Kastner
    • 1
  • Tobias Kuemmerle
    • 4
    • 5
  • Christian Lauk
    • 1
  • Christian Levers
    • 4
  • Marcus Lindner
    • 6
  • Dietmar Moser
    • 7
  • Daniel Müller
    • 4
    • 5
    • 8
  • Maria Niedertscheider
    • 1
  • Maria Luisa Paracchini
    • 2
  • Sibyll Schaphoff
    • 3
  • Peter H. Verburg
    • 9
  • Pieter J. Verkerk
    • 6
  • Karl-Heinz Erb
    • 1
    Email author
  1. 1.Institute of Social Ecology ViennaAlpen-Adria Universität Klagenfurt, Wien, GrazViennaAustria
  2. 2.Institute for Environment and SustainabilityJoint Research Centre of the European CommissionIspraItaly
  3. 3.Earth System AnalysisPotsdam Institute for Climate Impact ResearchPotsdamGermany
  4. 4.Department of GeographyHumboldt-Universität zu BerlinBerlinGermany
  5. 5.Integrative Research Institute on Transformations in Human Environment SystemsHumboldt-Universität zu Berlin, Quartier StadtmitteBerlinGermany
  6. 6.Sustainability and Climate Change ProgrammeEuropean Forest InstituteJoensuuFinland
  7. 7.Department of Conservation Biology, Vegetation- and Landscape Ecology, Faculty Centre of BiodiversityUniversity of ViennaViennaAustria
  8. 8.Leibniz Institute of Agricultural Development in Transition Economies (IAMO)Halle (Saale)Germany
  9. 9.Faculty of Earth and Life SciencesVU University AmsterdamAmsterdamThe Netherlands

Personalised recommendations