Regional Environmental Change

, Volume 15, Issue 8, pp 1569–1580 | Cite as

Adaptive management and debarking schedule optimization of Quercus suber L. stands under climate change: case study in Chamusca, Portugal

  • João H. N. PalmaEmail author
  • Joana Amaral Paulo
  • Sónia Pacheco Faias
  • Jordi Garcia-Gonzalo
  • Jose G. Borges
  • Margarida Tomé
Original Article


Cork oak stands are one of the major sources of income from Portuguese Mediterranean forests. Future climate is projected to increase temperatures, reduce precipitation and decrease current forests’ productivity and therefore, adapting management, is a key strategy to mitigate impacts of future climate on cork supply. The central objective of this research was to compare conventional and adaptive management regimes under scenarios of climate change. The adaptive management focussed on adopting optimal harvest schedules while considering different management objectives. The study focused on the Chamusca region, one of the most productive areas of cork, and considered four distinct spatial scales for analysis. For each scale, the management objective was defined according to field information and considered the maximization of cork production while targeting different cork harvesting flows: (a) more frequent and regular or (b) less frequent and concentrated. A forest growth model was used to simulate climate change impact on future yield of cork oak stands under different forest management alternatives. A mixed integer programming model was developed to find the most adequate cork debarking cycle calendar for cork oak stands. Our results suggest that (1) business as usual management under climate change scenarios could decrease cork supply and carbon stock in the tree component of the forests by up to 20 and 30 %, respectively, (2) the development of adaptive management strategies, including cork extraction schedule optimization, to address climate change has advantages over traditional practices and (3) may contribute further to increase cork production (up to double productivity in mid-long term) while addressing concerns with the regulation of cork extraction flows through the adaptation of debarking periods. The mixed integer programming allowed the spatial visualization of the debarking cycle delay. Furthermore, results underline the relevance of an approach to develop adaptive management strategies that can consider different management goals, with different constraints to address climate change.


Cork oak Optimization Landscape Region Ecosystem services Regulation Adaptive forest management 



This research has received funding from the European Union’s Seventh Programme for research, technological development and demonstration under grant agreements: (1) Nr 226544 MOTIVE (Models for Adaptive Forest Management), (2) Nr PIRSES-GA-2010-269257 (ForEAdapt, Knowledge exchange between Europe and America on forest growth models and optimisation for adaptive forestry) and (3) Nr 613520 AGFORWARD (Agroforestry that Will Advance Agroforestry in Europe). It was also partially supported by Project SADRI (PTDC/AGR-FOR/4526/2012)—Models and Decision Support Systems for Addressing Risk and Uncertainty in Forest Planning. The authors wish to thank the helpful comments of two anonymous reviewers, the helpful comments of Tim Payn, and to the ALTRI Company for providing part of the data used in this study.

Supplementary material

10113_2015_818_MOESM1_ESM.pdf (80 kb)
Supplementary material 1 (PDF 81 kb)
10113_2015_818_MOESM2_ESM.pdf (11 kb)
Supplementary material 2 (PDF 11 kb)
10113_2015_818_MOESM3_ESM.pdf (23 kb)
Supplementary material 3 (PDF 23 kb)
10113_2015_818_MOESM4_ESM.pdf (84 kb)
Supplementary material 4 (PDF 84 kb)
10113_2015_818_MOESM5_ESM.pdf (262 kb)
Supplementary material 5 (PDF 262 kb)


  1. AFN (2010) Inventário Florestal Nacional Portugal Continental IFN5, 2005–2006. Autoridade Florestal Nacional, LisboaGoogle Scholar
  2. APCOR (2013) Anuário. Asociação Portuguesa da Cortiça, Santa Maria de LamasGoogle Scholar
  3. Besson CK et al (2014) Cork oak physiological responses to manipulated water availability in a Mediterranean woodland. Agric For Meteorol 184:230–242. doi: 10.1016/j.agrformet.2013.10.004 CrossRefGoogle Scholar
  4. Borges JG, Oliveira AC, Costa MA (1997) A quantitative approach to cork oak forest management. For Ecol Manag 97:223–229. doi: 10.1016/S0378-1127(97)00064-9 CrossRefGoogle Scholar
  5. Borges JG, Garcia-Gonzalo J, Bushenkov V, McDill ME, Marques S, Oliveira MM (2014) Addressing multicriteria forest management with pareto frontier methods: an application in Portugal. For Sci 60:63–72. doi: 10.5849/forsci.12-100 Google Scholar
  6. Bugmann H, Trasobares A (2013) Adaptive forest managemnt—overview of the MOTIVE case studies. In: Fitzgerald J, Lindner M (eds) Adapting to climate change in European forests—results of the MOTIVE project. Pensoft Publishers, Sofia, pp 34–38Google Scholar
  7. Caldeira MC, Ibáñez I, Nogueira C, Bugalho MN, Lecomte X, Moreira A, Pereira JS (2014) Direct and indirect effects of tree canopy facilitation in the recruitment of Mediterranean oaks. J Appl Ecol 51:349–358. doi: 10.1111/1365-2664.12189 CrossRefGoogle Scholar
  8. Caritat A, Gutierrez E, Molinas M (2000) Influence of weather on cork-ring width. Tree Physiol 20:893–900. doi: 10.1093/treephys/20.13.893 CrossRefGoogle Scholar
  9. Christensen J et al (2007) Regional climate projections. In: Solomon S et al (eds) Climate change 2007: the physical science basis contribution of working group i to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 847–940Google Scholar
  10. Coelho MMD, Paulo JA, Palma JHN, Tomé M (2011) Contribution of cork oak plantations installed after 1990 in Portugal to the Kyoto commitments and to the landowners economy. For Policy Econ 17:59–68. doi: 10.1016/j.forpol.2011.10.005 CrossRefGoogle Scholar
  11. Collins M, Booth B, Harris G, Murphy J, Sexton D, Webb M (2006) Towards quantifying uncertainty in transient climate change. Clim Dyn 27:127–147. doi: 10.1007/s00382-006-0121-0 CrossRefGoogle Scholar
  12. Costa A, Oliveira AC, Vidas F, Borges JG (2010) An approach to cork oak forest management planning: a case study in southwestern Portugal. Eur J For Res 129:233–241. doi: 10.1007/s10342-009-0326-y CrossRefGoogle Scholar
  13. David TS, Cabral MT, Sardinha R (1992) A mortalidade dos sobreiros e a seca. Finisterra 27:17–24Google Scholar
  14. David T et al (2007) Water use strategies in two co-occurring Mediterranean evergreen oaks: surviving the summer drought. Tree Physiol 27:793–803. doi: 10.1093/treephys/27.6.793 CrossRefGoogle Scholar
  15. David TS et al (2013) Root functioning, tree water use and hydraulic redistribution in Quercus suber trees: a modeling approach based on root sap flow. For Ecol Manage 307:136–146. doi: 10.1016/j.foreco.2013.07.012 CrossRefGoogle Scholar
  16. DR (2001) Decreto-Lei n.o 169/2001 de 25 de Maio I SERIE A:3053-3059Google Scholar
  17. DR (2004) Decreto-Lei n.o 155/2004 de 30 de Junho I SERIE A:3967-3968Google Scholar
  18. Dufresne JL et al (2013) Climate change projections using the IPSL-CM5 Earth System Model: from CMIP3 to CMIP5. Clim Dyn 40:2123–2165. doi: 10.1007/s00382-012-1636-1 CrossRefGoogle Scholar
  19. EC (2005) Council Regulation (EC) no 1698/2005 of 20 September 2005 on support for rural development by the European Fund for Rural Development OJ L 277, 21.10.2005; Bull. 9-2005Google Scholar
  20. EC (2013) Regulation (EU) No 1305/2013 of the European Parliament and of the Council of 17 December 2013 on support for rural development by the European Agricultural Fund for Rural Development (EAFRD) and repealing Council Regulation (EC) No 1698/2005 OJ L 347, vol 56. pp. 487–548Google Scholar
  21. Faias S, Palma JHN, Barreiro S, Paulo JA, Tomé M (2012) Resource communication. sIMfLOR—platform for the Portuguese forest simulators. For Syst 21:543–548. doi: 10.5424/fs/2012213-02951 Google Scholar
  22. Falcão A, Borges JG (2005) Designing decision support tools for Mediterranean forest ecosystems management: a case study in Portugal. Ann For Sci 62:751–760. doi: 10.1051/forest:2005061 CrossRefGoogle Scholar
  23. Garcia-Gonzalo J et al (2012) Modelling wildfire risk in pure and mixed forest stands in Portugal. Allg Forst Jagdztg 183:238–248Google Scholar
  24. Garcia-Gonzalo J, Palma JHN, Freire J, Tomé M, Mateus R, Luiz Carlos E Rodríguez, Bushenkov V, Borges JG (2013) A decision support system for a multi stakeholder’s decision process in a Portuguese National Forest. For Syst 22:359–373. doi: 10.5424/fs/2013222-03793 Google Scholar
  25. Garcia-Gonzalo J, Borges JG, Palma JHN, Zubizarreta-Gerendiain A (2014) A decision support system for management planning of Eucalyptus plantations facing climate change. Ann For Sci. doi: 10.1007/s13595-013-0337-1 Google Scholar
  26. Garcia-Gonzalo J, Bushenkov V, McDill ME, Borges JG (2015) A decision support system for assessing trade-offs between ecosystem management goals: an application in Portugal. Forests 6:65–87. doi: 10.3390/f6010065 CrossRefGoogle Scholar
  27. Gilks WR, Richardson S, Spiegelhalter D (1996) Markov Chain Monte Carlo in practice. Chapman and Hall, CRC Interdisciplinary Statistics, LondonGoogle Scholar
  28. Jacob D et al (2014) EURO-CORDEX: new high-resolution climate change projections for European impact research. Reg Environ Change 14:563–578. doi: 10.1007/s10113-013-0499-2 CrossRefGoogle Scholar
  29. Johnson KN, Scheurman HL (1977) Techniques for prescribing optimal timber harvest and investment under different objectives-discussion and synthesis. For Sci 23:a0001–z0001Google Scholar
  30. Kurz-Besson C et al (2006) Hydraulic lift in cork oak trees in a savannah-type Mediterranean ecosystem and its contribution to the local water balance. Plant Soil 282:361–378. doi: 10.1007/s11104-006-0005-4 CrossRefGoogle Scholar
  31. Louro G, Marques H, Salinas F (1999) Elementos de apoio à elaboração de projectos florestais. Direcção Geral das Florestas, LisboaGoogle Scholar
  32. MADRP (2007) PRODER—Programa de Desenvolvimento Rural 2007–2013—Continente. MADRP, LisboaGoogle Scholar
  33. Moreira F, Duarte I, Catry F, Acácio V (2007) Cork extraction as a key factor determining post-fire cork oak survival in a mountain region of southern Portugal. For Ecol Manage 253:30–37. doi: 10.1016/j.foreco.2007.07.001 CrossRefGoogle Scholar
  34. Mosquera-Losada MR et al (2012) Past, present, and future of agroforestry in Europe. In: Nair PK, Garrity D (eds) Agroforestry—the future of global land use. Springer, Dordrecht, pp 285–312CrossRefGoogle Scholar
  35. Natividade JV (1950) Subericultura. D.G.S.F.A, LisboaGoogle Scholar
  36. Oliveira G, Martins-Loucao MA, Correia O (2002) The relative importance of cork harvesting and climate for stem radial growth of Quercus suber L. Ann For Sci 59:439–443. doi: 10.1051/forest:2002018 CrossRefGoogle Scholar
  37. Paulo JA (2011) Desenvolvimento de um sistema para apoio à gestão sustentável de montados de sobro. Instituto Superior de Agronomia, Universidade Técnica de Lisboa, LisbonGoogle Scholar
  38. Paulo JA, Tome M (2010) Predicting mature cork biomass with t years of growth from one measurement taken at any other age. For Ecol Manage 259:1993–2005. doi: 10.1016/j.foreco.2010.02.010 CrossRefGoogle Scholar
  39. Paulo JA, Palma JHN, Gomes A, Faias S, Tomé J, Tomé M (2014) Predicting site index from climate and soil variables for cork oak (Quercus suber L.) stands in Portugal. New For. doi: 10.1007/s11056-014-9462-4 Google Scholar
  40. Peñuelas J, Ogaya R, Boada M, Jump AS (2007) Migration, invasion and decline: changes in recruitment and forest structure in a warming-linked shift of European beech forest in Catalonia (NE Spain). Ecography 30:829–837. doi: 10.1111/j.2007.0906-7590.05247.x CrossRefGoogle Scholar
  41. Pereira J, Correia A, Correia A, Ferreira M, Onofre N, Freitas H, Godinho F (2006) Florestas e Biodiversidade. In: Santos F, Miranda P (eds) Alterações Climáticas em Portugal—Cenários, Impactos e Medidas de Adaptação—Projecto SIAM II. Gradiva, Lisboa, pp 301–343Google Scholar
  42. Prieto I, Kikvidze Z, Pugnaire F (2010) Hydraulic lift: soil processes and transpiration in the Mediterranean leguminous shrub Retama sphaerocarpa (L.) Boiss. Plant Soil 329:447–456. doi: 10.1007/s11104-009-0170-3 CrossRefGoogle Scholar
  43. Rammer W, Schauflinger C, Vacik H, Palma JHN, Garcia-Gonzalo J, Borges JG, Lexer MJ (2014) A web-based ToolBox approach to support adaptive forest management under climate change. Scand J For Res 26:96–107. doi: 10.1080/02827581.2013.851277 CrossRefGoogle Scholar
  44. Rêgo FC, Vasco I, Carvalho J, Bugalho M, Morgado A, Silva LN (2013) Sobreiro, uma barreira contra a desertificação. WWF, Rome. Accessed 26 May 2015
  45. Rigueiro-Rodríguez A, Fernández-Núñez E, González-Hernández P, McAdam JH, Mosquera-Losada MR (2008) Agroforestry systems in europe: productive, ecological and social perspectives. In: Rigueiro-Rodríguez A, McAdam J, Mosquera-Losada R (eds) Agroforestry in Europe, Advances in Agroforestry, vol 6. Springer, Netherlands, pp 43–65. doi: 10.1007/978-1-4020-8272-6_3
  46. Rivest D, Rolo V, López-Díaz L, Moreno G (2011) Shrub encroachment in Mediterranean silvopastoral systems: Retama sphaerocarpa and Cistus ladanifer induce contrasting effects on pasture and Quercus ilex production. Agric Ecosyst Environ 141:447–454. doi: 10.1016/j.agee.2011.04.018 CrossRefGoogle Scholar
  47. Robles AB, Ruiz-Mirazo J, Ramos ME, González-Rebollar JL (2008) Role of livestock grazing in sustainable use, naturalness promotion in naturalization of marginal ecosystems of Southeastern Spain (Andalusia). In: Rigueiro-Rodríguez A, McAdam J, Mosquera-Losada R (eds) Agroforestry in Europe, Advances in agroforestry, vol 6. Springer, Netherlands, pp 211–231. doi: 10.1007/978-1-4020-8272-6_10
  48. Rolo V, López-Díaz ML, Moreno G (2012) Shrubs affect soil nutrients availability with contrasting consequences for pasture understory and tree overstory production and nutrient status in Mediterranean grazed open woodlands. Nutr Cycl Agroecosyst 93:89–102. doi: 10.1007/s10705-012-9502-4 CrossRefGoogle Scholar
  49. Silva JS, Catry F (2006) Forest fires in cork oak (Quercus suber L.) stands in Portugal. Int J Environ Stud 63:235–257. doi: 10.1080/00207230600720829 CrossRefGoogle Scholar
  50. Soares PMM, Cardoso RM, Miranda PMA, Medeiros J, Belo-Pereira M, Espírito-Santo F (2012a) WRF high resolution dynamical downscaling of ERA-Interim for Portugal. Clim Dyn 39:2497–2522. doi: 10.1007/s00382-012-1315-2 CrossRefGoogle Scholar
  51. Soares PMM, Cardoso RM, Miranda PMA, Viterbo P, Belo-Pereira M (2012b) Assessment of the ENSEMBLES regional climate models in the representation of precipitation variability and extremes over Portugal. J Geophys Res Atmos 117:D07114. doi: 10.1029/2011JD016768 CrossRefGoogle Scholar
  52. Tomé M (2004) Modelo de crescimento e produção para a gestão do montado de sobro em Portugal. Projecto POCTI/AGR/35172/99. Relatório Final—Relatório de Execução Material (Volume I). Centro de Estudos Florestais—Instituto Superior de Agronomia—Universidade Técnica de Lisboa, Lisboa—PortugalGoogle Scholar
  53. Tome J, Tome M, Barreiro S, Paulo JA (2006) Age-independent difference equations for modelling tree and stand growth. Can J Forest Res 36:1621–1630. doi: 10.1139/x06-065 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Centro de Estudos Florestais, Instituto Superior de AgronomiaUniversidade de LisboaLisbonPortugal

Personalised recommendations