Advertisement

Regional Environmental Change

, Volume 16, Issue 4, pp 995–1009 | Cite as

Range contraction and loss of genetic variation of the Pyrenean endemic newt Calotriton asper due to climate change

  • Philip de Pous
  • Albert Montori
  • Fèlix Amat
  • Delfí Sanuy
Original Article

Abstract

Many studies have identified climate warming to be among the most important threats to biodiversity. Climate change is expected to have stronger effects on species with low genetic diversity, ectothermic physiology, small ranges, low effective populations sizes, specific habitat requirements and limited dispersal capabilities. Despite an ever-increasing number of studies reporting climate change-induced range shifts, few of these have incorporated species’ specific dispersal constraints into their models. Moreover, the impacts of climate change on genetic variation within populations and species have rarely been assessed, while this is a promising direction for future research. Here we explore the effects of climate change on the potential distribution and genetic variation of the endemic Pyrenean newt Calotriton asper over the period 2020–2080. We use species distribution modelling in combination with high-resolution gridded climate data while subsequently applying four different dispersal scenarios. We furthermore use published data on genetic variation of both mtDNA and AFLP loci to test whether populations with high genetic diversity (nucleotide diversity and expected heterozygosity) or evolutionary history (unique haplotypes and K clusters) have an increased extinction risk from climate change. The present study indicates that climate change drastically reduces the potential distribution range of C. asper and reveals dispersal possibilities to be minimal under the most realistic dispersal scenarios. Despite the major loss in suitable climate, the models highlight relatively large stable areas throughout the species core distribution area indicating persistence of populations over time. The results, however, show a major loss of genetic diversity and evolutionary history. This highlights the importance of accounting for intraspecific genetic variation in climate change impact studies. Likewise, the integration of species’ specific dispersal constraints into projections of species distribution models is an important step to fully explore the effects of climate change on species potential distributions.

Keywords

Amphibian Maxent Fragmentation Conservation Species distribution modelling Dispersal 

Notes

Acknowledgments

P.d.P. is funded by a FI-DGR grant from the Generalitat de Catalunya, Spain (2014FI_B2 00197). DS is supported by the Ministerio de Ciencia e Innovación, Spain (CGL2009-12767-C02-01) and ENDESA Enterprise. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript. We would like to thank Lucienne Weber, Philippe Geniez, Matthieu Berroneau, Gilles Pottier and Bruno Le Roux for sharing crucial distribution data. This work was greatly improved following the reviewes of two anonymous reviewers.

Supplementary material

10113_2015_804_MOESM1_ESM.jpg (1.3 mb)
Figure S1 Null model to test for significance of the SDM created using 100 null distributions of random points in the study area. (JPEG 1381 kb)
10113_2015_804_MOESM2_ESM.jpg (14.1 mb)
Figure S2 MESS pictures of the projected SDMs for the period 2020–2080. Red areas in red have one or more environmental variables outside the range present in the training data. (JPEG 14449 kb)
10113_2015_804_MOESM3_ESM.jpg (8.2 mb)
Figure S3 MoD pictures of the projected SDMs for the period 2020–2080 showing the most dissimilar variable, i.e. the one that is furthest outside its training range. (JPEG 8445 kb)
10113_2015_804_MOESM4_ESM.jpg (1.5 mb)
Figure S4 Distribution of K clusters used for assessment of climate change on evolutionary history (JPEG 1505 kb)
10113_2015_804_MOESM5_ESM.pdf (171 kb)
Supplementary material 5 (PDF 171 kb)

References

  1. Allouche O, Tsoar A, Kadmon R (2006) Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J Appl Ecol 43:1223–1232. doi: 10.1111/j.1365-2664.2006.01214.x CrossRefGoogle Scholar
  2. Alsos IG, Ehrich D, Thuiller W, Eidesen PB, Tribsch A, Schönswetter P, Lagaye C, Taberlet P, Brochmann C (2012) Genetic consequences of climate change for northern plants. Proc R Soc B 279:2042–2051. doi: 10.1098/rspb.2011.2363 CrossRefGoogle Scholar
  3. Anderson RP (2013) A framework for using niche models to estimate impacts of climate change on species distributions. Ann N Y Acad Sci 1297:8–28. doi: 10.1111/nyas.12264 CrossRefGoogle Scholar
  4. Angiletta MJ Jr (2009) Thermal adaption: a theoretical and empirical synthesis. Oxford University Press Inc, New YorkCrossRefGoogle Scholar
  5. Araújo MB, Guisan A (2006) Five (or so) challenges for species distribution modelling. J Biogeogr 33:1677–1688. doi: 10.1111/j.1365-2699.2006.01584.x CrossRefGoogle Scholar
  6. Araújo MB, New M (2007) Ensemble forecasting of species distributions. Trends Ecol Evol 22:42–47. doi: 10.1016/j.tree.2006.09.010 CrossRefGoogle Scholar
  7. Araújo MB, Thuiller W, Pearson RG (2006) Climate warming and the decline of amphibians and reptiles in Europe. J Biogeogr 33:1712–1728. doi: 10.1111/j.1365-2699.2006.01482.x CrossRefGoogle Scholar
  8. Bálint M, Domisch S, Engelhardt CHM, Haase P, Lehrian S, Sauer J, Theissinger K, Pauls SU, Nowak C (2011) Cryptic biodiversity loss linked to global climate change. Nat Clim Change 1:313–318. doi: 10.1038/nclimate1191 CrossRefGoogle Scholar
  9. Barbet-Massin M, Thuiller W, Jiguet F (2010) How much do we overestimate future local extinction rates when restricting the range of occurence data in climate suitability models? Ecography 33:878–886. doi: 10.1111/j.1600-0587.2010.06181.x CrossRefGoogle Scholar
  10. Bateman BL, Murphy HT, Reside AE, Mokany K, VanDerWal J (2013) Appropriateness of full-, partial-and no-dispersal scenarios in climate change impact modelling. Divers Distrib 19:1224–1234. doi: 10.1111/ddi.12107 CrossRefGoogle Scholar
  11. Beaumont LJ, Hughes L, Pitman AJ (2008) Why is the choice of future climate scenarios for species distribution modelling important? Ecol Lett 11:1135–1146. doi: 10.1111/j.1461-0248.2008.01231.x Google Scholar
  12. Bellard C, Bertelsmeier C, Leadley P, Thuiller W, Courchamp F (2012) Impacts of climate change on the future of biodiversity. Ecol Lett 15:365–377. doi: 10.1111/j.1461-0248.2011.01736.x CrossRefGoogle Scholar
  13. Böhme W, Grossenbacher K, Thiesmeier B (1999) Handbuch der Reptilien und amphibien Europas, band 4/I:Schwanzlurche (Urodela). Aula-Verlag, WiesbadenGoogle Scholar
  14. Buckley LB (2008) Linking traits to energetics and population dynamics to predict lizard ranges in changing environments. Am Nat 171:E1–E19. doi: 10.1086/523949 CrossRefGoogle Scholar
  15. Buckley LB (2010) The range implications of lizard traits in changing environments. Glob Ecol Biogeogr 19:452–464. doi: 10.1111/j.1466-8238.2010.00538.x Google Scholar
  16. Buckley LB, Urban MC, Angilletta MJ, Crozier LG, Rissler LJ, Sears MW (2010) Can mechanism inform species’ distribution models? Ecol Lett 13:1041–1054. doi: 10.1111/j.1461-0248.2010.01479.x CrossRefGoogle Scholar
  17. Buisson L, Thuiller W, Casajus N, Lek S, Grenouillet G (2010) Uncertainty in ensemble forecasting of species distribution. Glob Change Biol 16:1145–1157. doi: 10.1111/j.1365-2486.2009.02000.x CrossRefGoogle Scholar
  18. Carranza S, Amat F (2005) Taxonomy, biogeography and evolution of (Amphibia: Salamandridae), with the resurrection of the genus Calotriton and the description of a new endemic species from the Iberian Peninsula. Zool J Linn Soc 145:555–582. doi: 10.1111/j.1096-3642.2005.00197.x CrossRefGoogle Scholar
  19. Carvalho SB, Brito JC, Crespo EJ, Possingham HP (2010) From climate change predictions to actions—conserving vulnerable animal groups in hotspots at a regional scale. Glob Change Biol 16:3257–3270. doi: 10.1111/j.1365-2486.2010.02212.x CrossRefGoogle Scholar
  20. Ceia-Hasse A, Sinervo B, Vicente L, Pereira HM (2014) Integrating ecophysiological models into species distribution projections of European reptile range shifts in response to climate change. Ecography 37:679–688. doi: 10.1111/j.1600-0587.2013.00600.x CrossRefGoogle Scholar
  21. Coetzee BWT, Robertson MP, Erasmus BFN, Van Rensburg BJ, Thuiller W (2009) Ensemble models predict important bird areas in southern Africa will become less effective for conserving endemic birds under climate change. Glob Ecol Biogeogr 18:701–710. doi: 10.1111/j.1466-8238.2009.00485.x CrossRefGoogle Scholar
  22. Colomer M, Montori A, García E, Fondevilla C (2014) Using a bioinspired model to determine the extinction risk of Calotriton asper populations as a result of an increase in extreme rainfall in a scenario of climatic change. Ecol Model 281:1–14. doi: 10.1016/j.ecolmodel.2014.02.018 CrossRefGoogle Scholar
  23. Crandall KA, Bininda-Emonds OR, Mace GM, Wayne RK (2000) Considering evolutionary processes in conservation biology. Trends Ecol Evol 15(7):290–295CrossRefGoogle Scholar
  24. D’Amen M, Zimmermann NE, Pearman PB (2013) Conservation of phylogeographic lineages under climate change. Glob Ecol Biogeogr 22:93–104. doi: 10.1111/j.1466-8238.2012.00774.x CrossRefGoogle Scholar
  25. Davis AJ, Jenkinson LS, Lawton JH, Shorrocks B, Wood S (1998) Making mistakes when predicting shifts in species range in response to global warming. Nature 391:783–786. doi: 10.1038/35842 CrossRefGoogle Scholar
  26. Drechsler A, Geller D, Freund K, Schmeller DS, Künzel S, Rupp O, Loyau A, Denoël M, Valbuena-Ureña E, Steinfartz S (2014) What remains from a 454 run: estimation of success rates of microsatellite loci development in selected newt species (Calotriton asper, Lissotriton helveticus, and Triturus cristatus) and comparison with Illumina-based approaches. Ecol Evol 3:3947–3957. doi: 10.1002/ece3.764 CrossRefGoogle Scholar
  27. Dubey S, Pike DA, Shine R (2013) Predicting the impacts of climate change on genetic diversity in an endangered lizard species. Clim Change 117:319–327. doi: 10.1007/s10584-012-0540-3 CrossRefGoogle Scholar
  28. Ekblom R, Galindo J (2011) Applications of next generation sequencing in molecular ecology of non-model organisms. Heredity 107:1–15. doi: 10.1038/hdy.2010.152 CrossRefGoogle Scholar
  29. Elith J, Kearney M, Phillips S (2010) The art of modelling range shifting species. Methods Ecol Evol 1:330–342. doi: 10.1111/j.2041-210X.2010.00036.x CrossRefGoogle Scholar
  30. Ellegren H (2014) Genome sequencing and population genomics in non-model organisms. Trends Ecol Evol 29:51–63. doi: 10.1016/j.tree.2013.09.008 CrossRefGoogle Scholar
  31. Engler R, Guisan A (2009) MigClim: predicting plant distribution and dispersal in a changing climate. Divers Distrib 15:590–601. doi: 10.1111/j.1472-4642.2009.00566.x CrossRefGoogle Scholar
  32. Engler R, Hordijk W, Guisan A (2012) The MIGCLIM R package—seamless integration of dispersal constraints into projections of species distribution models. Ecography 35:872–878. doi: 10.1111/j.1600-0587.2012.07608.x CrossRefGoogle Scholar
  33. Espíndola A, Pellissier L, Maiorano L, Hordijk W, Guisan A, Alvarez N (2012) Predicting present and future intra-specific genetic structure through niche hindcasting across 24 millennia. Ecol Lett 15:649–657. doi: 10.1111/j.1461-0248.2012.01779.x CrossRefGoogle Scholar
  34. European Environment Agency (2013) Corine Land Cover 2006 raster data, version 17. http://www.eea.europa.eu/data-and-maps/data/corine-land-cover-2006-raster-3
  35. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620CrossRefGoogle Scholar
  36. Foden WB, Butchart SHM, Stuart SN, Vie J-C, Akçakaya HR, Angulo A, DeVantier LM, Gutsche A, Turak E, Cao L, Donner SD, Katariya V, Bernard R, Holland RA, Hughes AF, O’Hanlon SE, Garnett T, Şekercioğlu ÇH, Mace GM (2013) Identifying the world’s most climate change vulnerable species: a systematic trait-based assessment of all birds, amphibians and corals. PLoS One 8:e65427. doi: 10.1371/journal.pone.0065427 CrossRefGoogle Scholar
  37. Fordham DA, Akçakaya HR, Araújo MB, Keith DA, Brook BW (2013) Tools for integrating range change, extinction risk and climate change information into conservation management. Ecography 36:956–964. doi: 10.1111/j.1600-0587.2013.00147.x CrossRefGoogle Scholar
  38. Franklin J (2010) Mapping species distributions: spatial inference and prediction. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  39. Franklin J (2013) Species distribution models in conservation biogeography: developments and challenges. Divers Distrib 19:1217–1223. doi: 10.1111/ddi.12125 CrossRefGoogle Scholar
  40. Fraser DJ, Bernatchez L (2001) Adaptive evolutionary conservation: towards a unified concept for defining conservation units. Mol Ecol 10(12):2741–2752CrossRefGoogle Scholar
  41. Giovanelli JGR, Ferreira de Siquera M, Haddad CFB, Alexandrini J (2010) Modelling a spatially restricted distribution in the neotropics: how the size of calibration area affects the performance of five presence-only methods. Ecol Model 221:215–224. doi: 10.1016/j.ecolmodel.2009.10.009 CrossRefGoogle Scholar
  42. Guisan A, Thuiller W (2005) Predicting species distribution: offering more than simple habitat models. Ecol Lett 8:993–1009. doi: 10.1111/j.1461-0248.2005.00792.x CrossRefGoogle Scholar
  43. Habel JC, Roedder D, Schmitt T, Neve G (2011) Global warming will affect the genetic diversity and uniqueness of Lycaena helle populations. Glob Change Biol 17:194–205. doi: 10.1111/j.1365-2486.2010.02233.x CrossRefGoogle Scholar
  44. Heikkinen RK, Luoto M, Araújo MB, Virkkala R, Thuiller W, Sykes MT (2006) Methods and uncertainties in bioclimatic envelope modelling under climate change. Prog Phys Geog 30:751–777. doi: 10.1177/0309133306071957 CrossRefGoogle Scholar
  45. Hernandez PA, Graham CH, Master LL, Albert DL (2006) The effect of sample size and species characteristics on performance of different species distribution modelling methods. Ecography 29:773–785. doi: 10.1111/j.0906-7590.2006.04700.x CrossRefGoogle Scholar
  46. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978. doi: 10.1002/joc.1276 CrossRefGoogle Scholar
  47. Hoffmann AA, Sgrò CM (2011) Climate change and evolutionary adaptation. Nature 470:479–485. doi: 10.1038/nature09670 CrossRefGoogle Scholar
  48. Hughes I (2000) Biological consequences of global warming: is the signal already apparent? Trends Ecol Evol 15:56–61. doi: 10.1016/S0169-5347(99)01764-4 CrossRefGoogle Scholar
  49. Jiménez-Valverde A, Lobo JM (2007) Threshold criteria for conversion of probability of species presence to either—or presence—absence. Acta Oecol 31:361–369. doi: 10.1016/j.actao.2007.02.001 CrossRefGoogle Scholar
  50. Kearney M, Porter WP (2004) Mapping the fundamental niche: physiology, climate, and the distribution of a nocturnal lizard. Ecology 85:3119–3131. doi: 10.1890/03-0820 CrossRefGoogle Scholar
  51. Kearney MR, Wintle BA, Porter WP (2010) Correlative and mechanistic models of species distribution provide congruent forecasts under climate change. Cons Lett 3:203–213. doi: 10.1111/j.1755-263X.2010.00097.x CrossRefGoogle Scholar
  52. Lacy RC (1987) Loss of genetic diversity from managed populations: interacting effects of drift, mutation, immigration, selection, and population subdivision. Cons Biol 1:143–158CrossRefGoogle Scholar
  53. Leimu R, Vergeer P, Angeloni F, Ouborg NJ (2010) Habitat fragmentation, climate change, and inbreeding in plants. Ann N Y Acad Sci 1195:84–98. doi: 10.1111/j.1749-6632.2010.05450.x CrossRefGoogle Scholar
  54. Lischke H, Zimmermann NE, Bolliger J, Rickebusch S, Löffler TJ (2006) TreeMig: a forest-landscape model for simulating spatio-temporal patterns from stand to landscape scale. Ecol Model 199:409–420. doi: 10.1016/j.ecolmodel.2005.11.046 CrossRefGoogle Scholar
  55. Liu C, Berry PM, Dawson TP, Pearson RG (2005) Selecting thresholds of occurrence in the prediction of species distributions. Ecography 28:385–393. doi: 10.1111/j.0906-7590.2005.03957.x CrossRefGoogle Scholar
  56. López-Moreno JI, Beniston M, García-Ruiz JM (2008a) Environmental change and water management in the Pyrenees: facts and future perspectives for Mediterranean mountains. Glob Planet Change 61(3):300–312CrossRefGoogle Scholar
  57. López-Moreno JI, Goyette S, Beniston M (2008b) Climate change prediction over complex areas: spatial variability of uncertainties and predictions over the Pyrenees from a set of regional climate models. Int J Climatol 28:1535–1550. doi: 10.1002/joc.1645 CrossRefGoogle Scholar
  58. López-Moreno JI, Goyette S, Beniston M (2009) Impact of climate change on snowpack in the Pyrenees: horizontal spatial variability and vertical gradients. J Hydrol 374(3):384–396CrossRefGoogle Scholar
  59. Louy D, Habel JC, Schmitt T, Assmann T, Meyer M, Müller P (2007) Strongly diverging population genetic patterns of three skipper species: the role of habitat fragmentation and dispersal ability. Conserv Genet 8:671–681. doi: 10.1007/s10592-006-9213-y CrossRefGoogle Scholar
  60. McCarty JP (2001) Ecological consequences of recent climate change. Conserv Biol 15:320–331. doi: 10.1046/j.1523-1739.2001.015002320.x CrossRefGoogle Scholar
  61. Merow C, Smith MJ, Silander JA (2013) A practical guide to MaxEnt for modeling species’ distributions: what it does, and why inputs and settings matter. Ecography 36:1058–1069. doi: 10.1111/j.1600-0587.2013.07872.x CrossRefGoogle Scholar
  62. Miaud C, Guillaume O (2005) Variation in age, body size and growth among surface and cave-dwelling populations of the Pyrenean newt, Euproctus asper (Amphibia; Urodela). Herpetologica 61:241–249. doi: 10.1655/04-29.1 CrossRefGoogle Scholar
  63. Midgley GF, Davies ID, Albert CH, Altwegg R, Hannah L, Hughes GO, O’Halloran LR, Seo C, Thorne JH, Thuiller W (2010) BioMove—an integrated platform simulating the dynamic response of species to environmental change. Ecography 33:612–616. doi: 10.1111/j.1600-0587.2009.06000.x Google Scholar
  64. Milá B, Carranza S, Guillaume O, Clobert J (2010) Marked genetic structuring and extreme dispersal limitation in the Pyrenean brook newt Calotriton asper (Amphibia: Salamandridae) revealed by genome-wide AFLP but not mtDNA. Mol Ecol 19:108–120. doi: 10.1111/j.1365-294X.2009.04441.x CrossRefGoogle Scholar
  65. Montori A (1990) Skeletochronological results in the Pyrenean newt Euproctus asper (Dugès, 1852) from one prepyrenean population. Ann Sci Nat Zool 11:209–211Google Scholar
  66. Montori A, Llorente GA, Richter-Boix À (2008a) Habitat features affecting the small-scale distribution and longitudinal migration patterns of Calotriton asper in a Pre-Pyrenean population. Amphibia-Reptilia 29:371–381CrossRefGoogle Scholar
  67. Montori A, Llorente GA, García-París M (2008b) Allozyme differentiation among populations of the Pyrenean newt Calotriton asper (Amphibia: Caudata) does not mirror their morphological diversification. Zootaxa 1945:39–50Google Scholar
  68. Montori A, Richter-Boix À, Franch M, Santos X, Garriga N, Llorente GA (2012) Natural fluctuations in a stream dwelling newt as a result of extreme rainfall: a 21-year survey of a Calotriton asper population. Basic Appl Herpetol 26:43–56Google Scholar
  69. Moritz C (2002) Strategies to protect biological diversity and the evolutionary processes that sustain it. Sys Biol 51(2):238–254CrossRefGoogle Scholar
  70. Oromi N, Amat F, Sanuy D, Carranza S (2014) Life history trait differences between a lake and a stream-dwelling population of the Pyrenean brook newt (Calotriton asper). Amphib Reptilia 35:53–62. doi: 10.1163/15685381-00002921 CrossRefGoogle Scholar
  71. Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol Syst 37:637–669. doi: 10.1146/annurev.ecolsys.37.091305.110100 CrossRefGoogle Scholar
  72. Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42. doi: 10.1038/nature01286 CrossRefGoogle Scholar
  73. Pauls SU, Nowak C, Bálint M, Pfenninger M (2013) The impact of global climate change on genetic diversity within populations and species. Mol Ecol 22:925–946. doi: 10.1111/mec.12152 CrossRefGoogle Scholar
  74. Peakall R, Lindenmayer D (2006) Genetic insights into population recovery following experimental perturbation in a fragmented landscape. Biol Conserv 132:520–532. doi: 10.1016/j.biocon.2006.05.013 CrossRefGoogle Scholar
  75. Peterson AT, Soberón J, Pearson RG, Anderson RP, Martínez-Meyer E, Nakamura M, Araújo MB (2011) Ecological niches and geographic distributions. Princeton University Press, Princeton and OxfordGoogle Scholar
  76. Pfenninger M, Bálint M, Pauls SU (2012) Methodological framework for projecting the potential loss of intraspecific genetic diversity due to global climate change. BMC Evol Biol 12:224. doi: 10.1186/1471-2148-12-224 CrossRefGoogle Scholar
  77. Phillips SJ, Anderson RP, Shapire RE (2006) Maximum entropy modelling of species geographic distributions. Ecol Model 190:231–259. doi: 10.1016/j.ecolmodel.2005.03.026 CrossRefGoogle Scholar
  78. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959Google Scholar
  79. Raes N, ter Steege H (2007) A null-model for significance testing of presence-only species distribution models. Ecography 30:727–736CrossRefGoogle Scholar
  80. Randall DA, Wood RA, Bony S, Colman R, Fichefet T, Fyfe J, Kattsov V, Pitman A, Shukla J, Srinivasan J, Stouffer RJ, Sumi A, Taylor KE (2007) Climate models and their evaluation. In: Solomon S, Qin D, Manning M, Chen Z, Marquis, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, PrincetonGoogle Scholar
  81. Randin CF, Engler R, Normand S, Zappa M, Zimmermann NE, Pearman PB, Vittoz P, Thuiller W, Guisan A (2009) Climate change and plant distribution: local models predict high-elevation persistence. Glob Change Biol 15:1557–1569. doi: 10.1111/j.1365-2486.2008.01766.x CrossRefGoogle Scholar
  82. Root TL, Price JT, Hall KR, Schneider SH, Rosenzweig C, Pounds JA (2003) Fingerprints of global warming on wild animals and plants. Nature 421:57–60. doi: 10.1038/nature01333 CrossRefGoogle Scholar
  83. Seo C, Thorne JH, Hannah L, Thuiller W (2009) Scale effects in species distribution models: implications for conservation planning under climate change. Biol Lett 5:39–43. doi: 10.1098/rsbl.2008.0476 CrossRefGoogle Scholar
  84. Sillero N, Campos J, Corti C, Creemers R, Crochet P-A, Crnobrnja Isailović J, Denoël M, Ficetola GF, Kuzmin S, Lymberakis P, de Pous P, Rodríguez A, Sindaco R, Speybroeck J, Toxopeus B, Vieites DR, Vences M (2014) Updated distribution and biogeography of amphibians and reptiles of Europe. Amphib Reptilia 35:1–31. doi: 10.1163/15685381-00002935 CrossRefGoogle Scholar
  85. Sinervo B, Mendez-De-La-Cruz F, Miles DB et al (2010) Erosion of lizard diversity by climate change and altered thermal niches. Science 328:894–899. doi: 10.1126/science.1184695 CrossRefGoogle Scholar
  86. Staudinger MD, Grimm NB, Staudt A, Carter SL, Chapin III FS, Kareiva P, Ruckelshaus M, Stein BA (2012) Impacts of climate change on biodiversity, ecosystems, and ecosystem services: technical Input to the 2013 national climate assessment. cooperative report to the 2013 national climate assessment. p 296. http://assessment.globalchange.gov
  87. Taubmann J, Theissinger K, Feldheim KA, Laube I, Graf W, Haase P, Johannesen J, Pauls SU (2011) Modelling range shifts and assessing genetic diversity distribution of the montane aquatic mayfly Ameletus inopinatus in Europe under climate change scenarios. Conserv Genet 12:503–515. doi: 10.1007/s10592-010-0157-x CrossRefGoogle Scholar
  88. Temple HJ, Cox NA (2009) European red list of amphibians. Office for Official Publications of the European Communities, LuxembourgGoogle Scholar
  89. Thomas CD, Cameron A, Green RE, Bakkenes M, Beaumont LJ, Collingham YC, Erasmus BFN, de Siqueira MF, Grainger A, Hannah L, Hughes L, Huntley B, van Jaarsveld AS, Midgley GF, Miles L, Ortega-Huerta MA, Townsend Peterson A, Phillips OL, Williams SE (2004) Extinction risk from climate change. Nature 427:145–148. doi: 10.1038/nature02121 CrossRefGoogle Scholar
  90. Thuiller W, Albert C, Araújo MB, Berry PM, Cabeza M, Guisan A, Hickler T, Midgley GF, Paterson J, Schurr FM, Sykes MT, Zimmermann NE (2008) Predicting global change impacts on plant species’ distributions: future challenges. Perspect Plant Ecol Evol Syst 9:137–152. doi: 10.1016/j.ppees.2007.09.004 CrossRefGoogle Scholar
  91. Thuiller W, Lavergne S, Roquet C, Boulangeat I, Lafourcade B, Araújo MB (2011) Consequences of climate change on the tree of life in Europe. Nature 470:531–534. doi: 10.1038/nature09705 CrossRefGoogle Scholar
  92. Valbuena-Ureña E, Amat F, Carranza S (2012) Integrative phylogeography of Calotriton newts (Amphibia, Salamandridae), with special remarks on the conservation of the endangered Montseny brook newt (Calotriton arnoldi). PLoS One 8:e62542. doi: 10.1371/journal.pone.0062542 CrossRefGoogle Scholar
  93. Valbuena-Ureña E, Steinfartz S, Carranza S (2014) Characterization of microsatellite loci markers for the critically endangered Montseny brook newt (Calotriton arnoldi). Conserv Genet Res 6:263–265. doi: 10.1007/s12686-013-0082-7 CrossRefGoogle Scholar
  94. VanDerWal J, Shoo LP, Graham C, Williams SE (2009) Selecting pseudo-absence data for presence only distribution modelling, how far should we stray from what we know? Ecol Model 220:589–594. doi: 10.1111/j.2041-210X.2011.00172.x CrossRefGoogle Scholar
  95. Velo-Antón G, Parra JL, Parra-Olea G, Zamudio KR (2013) Tracking climate change in a dispersal-limited species: reduced spatial and genetic connectivity in a montane salamander. Mol Ecol 22:3261–3278. doi: 10.1111/mec.12310 CrossRefGoogle Scholar
  96. Verbruggen H, Tyberghein L, Belton GS, Mineur F, Jueterbock A, Hoarau G, Gurgel CFD, De Clerck O (2013) Improving transferability of introduced species’ distribution models: new tools to forecast the spread of a highly invasive seaweed. PLoS One 8:e68337. doi: 10.1371/journal.pone.0068337 CrossRefGoogle Scholar
  97. Vögeli M, Lemus JA, Serrano D, Blanco G, Tella JL (2011) An island paradigm on the mainland: host population fragmentation impairs the community of avian pathogens. Proc R Soc B 278:2668–2676. doi: 10.1098/rspb.2012.1898 CrossRefGoogle Scholar
  98. Walther G-R, Post E, Convey P, Menzel A, Parmesan C, Beebee TJC, Fromentin J-M, Hoegh-Guldberg O, Bairlein F (2002) Ecological responses to recent climate change. Nature 416:389–395. doi: 10.1038/416389a CrossRefGoogle Scholar
  99. Warren DL, Glor RE, Turelli M (2010) ENMTools: a toolbox for comparative studies of environmental niche models. Ecography 33:607–611. doi: 10.1111/j.1600-0587.2009.06142.x CrossRefGoogle Scholar
  100. Wells KD (2007) The ecology and behaviour of amphibians. The University of Chicago Press, LondonCrossRefGoogle Scholar
  101. Wielstra B, Beukema W, Arntzen JW, Skidmore AK, Toxopeus AG, Raes N (2012) Corresponding mitochondrial DNA and niche divergence for crested newt candidate species. PLoS One 7:e46671CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Philip de Pous
    • 1
    • 2
  • Albert Montori
    • 3
  • Fèlix Amat
    • 4
  • Delfí Sanuy
    • 1
  1. 1.Departament Producció Animal (Fauna Silvestre), Faculty of Life Sciences and EngineeringUniversitat de LleidaLleidaSpain
  2. 2.Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra)BarcelonaSpain
  3. 3.Departament de Biologia Animal (Vertebrats), Facultat de BiologiaUniversitat de BarcelonaBarcelonaSpain
  4. 4.Àrea d‘HerpetologiaMuseu de Granollers-Ciències NaturalsGranollers, CataloniaSpain

Personalised recommendations