Regional Environmental Change

, Volume 16, Issue 3, pp 643–658 | Cite as

Four decades of glacier mass balance observations in the Indian Himalaya

  • Bhanu Pratap
  • Dwarika Prasad Dobhal
  • Rakesh Bhambri
  • Manish Mehta
  • Vinod Chandra Tewari
Review Article


Understanding the glacier mass balance is necessary to explain the rate of shrinkage and to infer the impact of climate change. The present study provides an overview of the glacier mass balance records by glaciological, geodetic, hydrological and accumulation-area ratio (AAR) and specific mass balance relationship methods in the Indian Himalaya since 1970s. It suggests that the mass balance measurements by glaciological methods have been conducted for ten glaciers in the western Himalaya, four glaciers in the central Himalaya and one in the eastern Himalaya. Hydrological mass balance has been conducted only on Siachen Glacier from 1987 to 1991. Geodetic method has been attempted for the Lahaul–Spiti region for a short time span during 1999–2011 and Hindu Kush–Karakoram–Himalaya region from 2003 to 2008. We compared in situ specific balance data series with specific mass balance derived from AAR and specific mass balance relationship. The results derived from existing and newly presented regression model based on AAR and specific mass balance relationship induced unrealistic specific mass balance for several glaciers. We also revised AAR0 and ELA0 based on available in situ AAR and specific mass balance data series of Indian Himalayan glaciers. In general, in situ specific and cumulative specific mass balance observed over different regions of the Indian Himalayan glaciers shows mostly negative mass balance years with a few positive ones during 1974–2012. On a regional level, the geodetic studies suggest that on the whole western, the central and the eastern Himalaya experienced vast thinning during the last decade (2000s). Conversely, Karakoram region showed slight mass gain during almost similar period. However, the glaciological, hydrological and geodetic mass balance data appear to exhibit short time series bias. We therefore recommend creation of benchmark glaciers network for future research to determine the impact of climate change on the Himalayan cryosphere.


Himalayan glaciers Mass balance Glacier shrinkage Indian Himalaya 


  1. Anonymous (1969) Mass-balance terms. J Glaciol 8(52):3–7Google Scholar
  2. Azam MF, Wagnon P, Ramanathan A, Vincent C, Sharma P, Arnaud Y, Linda A, Pottakkal JG, Chevallier P, Singh VB, Berthier E (2012) From balance to imbalance: a shift in the dynamic behavior of Chhota Shigri Glacier (Western Himalaya, India). J Glaciol 58(208):315–324. doi:10.3189/2012JoG11J123 CrossRefGoogle Scholar
  3. Bamber JL, Rivera A (2007) A review of remote sensing methods for glacier mass balance determination. Global Planet Change 59:138–148. doi:10.1016/j.gloplacha.2006.11.031 CrossRefGoogle Scholar
  4. Berthier E, Arnaud Y, Kumar R, Ahmad S, Wagnon P, Chevallier P (2007) Remote sensing estimates of glacier mass balances in the Himachal Pradesh (Western Himalaya, India). Remote Sens Environ 108(3):327–338. doi:10.1016/j.rse.2006.11.017 CrossRefGoogle Scholar
  5. Bhambri R, Bolch T (2009) Glacier mapping: a review with special reference to the Indian Himalayas. Prog Phys Geogr 33(5):672–704. doi:10.1177/0309133309348112 CrossRefGoogle Scholar
  6. Bhambri R, Bolch T, Chaujar RK, Kulshreshta SC (2011) Glacier changes in the Garhwal Himalaya, India, 1968–2006 based on remote sensing. J Glaciol 57:543–556CrossRefGoogle Scholar
  7. Bhambri R, Bolch T, Chaujar RK (2012) Frontal recession of Gangotri Glacier, Garhwal Himalayas, from 1965 to 2006, measured through high resolution remote sensing data. Curr Sci 102:489–494Google Scholar
  8. Bhambri R, Bolch T, Kawishwar P, Dobhal DP, Srivastava D, Pratap B (2013) Heterogeneity in glacier response in the upper Shyok valley, northeast Karakoram. Cryosphere 7:1385–1398. doi:10.5194/tc-7-1385-2013 CrossRefGoogle Scholar
  9. Bhardwaj A, Joshi PK, Snehmani Singh MK, Sam L, Gupta RD (2014) Mapping debris-covered glaciers and identifying factors affecting the accuracy. Cold Reg Sci Technol 106–107:161–174. doi:10.1016/j.coldregions.2014.07.006 CrossRefGoogle Scholar
  10. Bhutiyani MR (1999) Mass-balance studies on Siachen Glacier in the Nubra Valley, Karakoram Himalaya, India. J Glaciol 45(149):112–118Google Scholar
  11. Böhner J (2006) General climatic controls and topoclimatic variations in Central and High Asia. Boreas 35:279–295, Oslo, ISSN 0300-9483. doi:10.1080/03009480500456073
  12. Bolch T, Buchroithner M, Pieczonka T, Kunert A (2008) Planimetric and volumetric glacier changes in the Khumbu Himal, Nepal, since 1962 using Corona, Landsat TM and ASTER data. J Glaciol 54(187):592–600. doi:10.3189/002214308786570782 CrossRefGoogle Scholar
  13. Bolch T, Kulkarni A, Kaab A, Huggel C, Paul F, Cogley JG, Frey H, Kargel JS, Fujita K, Scheel M, Bajracharya S, Stoffel M (2012) The state and fate of Himalayan Glaciers. Science 336(6079):310–314. doi:10.1126/science.1215828 CrossRefGoogle Scholar
  14. Brahmbhatt RM, Bahuguna I, Rathore BP, Kulkarni AV, Shah RD, Nainwal HC, Ajai (2012) Variation of snowline and mass balance of glaciers of Warwan and Bhut Basins of Western Himalaya using remote sensing technique. J Indian Soc Remote Sens 40(4):629–637. doi:10.1007/s12524-011-0186-z CrossRefGoogle Scholar
  15. Braithwaite RJ (1984) Can the mass balance of a glacier be estimated from its equilibrium-line altitude? J Glaciol 30(106):364–368Google Scholar
  16. Braithwaite RJ (2002) Glacier mass balance: the first 50 years of international monitoring. Prog Phys Geogr 26(1):76–95. doi:10.1191/0309133302pp326ra CrossRefGoogle Scholar
  17. Braithwaite RJ (2009) After six decades of monitoring glacier mass balance we still need data but it should be richer data. J Glaciol 50(50):191–197CrossRefGoogle Scholar
  18. Braithwaite RJ, Müller F (1980) On the parameterization of glacier equilibrium line altitude. IAHS Publ 126:263–271Google Scholar
  19. Cogley JG (2009) Geodetic and direct mass-balance measurements: comparison and joint analysis. Ann Glaciol 50(50):96–100CrossRefGoogle Scholar
  20. Cogley JG (2010) Mass-balance terms revisited. J Glaciol 56(200):997–1001CrossRefGoogle Scholar
  21. Cogley JG (2011) Present and future states of Himalaya and Karakoram glaciers. Ann Glaciol 52(59):68–73CrossRefGoogle Scholar
  22. Cogley JG, Hock R, Rasmussen LA, Arendt AA, Bauder A, Braithwaite RJ, Jansson P, Kaser G, Möller, M, Nicholson L, Zemp M (2011) Glossary of Glacier mass balance and related terms, IHP-VII Technical Documents in Hydrology No. 86, IACS Contribution No. 2, UNESCO-IHP, Paris 114Google Scholar
  23. Dobhal DP, Kumar S, Mundepi AK (1995) Morphology and glacier dynamics studies in monsoon–arid transition zone: an example from Chhota Shigri Glacier Himachal Himalaya. Curr Sci 68:936–944Google Scholar
  24. Dobhal DP, Gergan JT, Thayyen RJ (2004) Recession and morphogeometrical changes of Dokriani Glacier (1962–1995), Garhwal Himalaya, India. Curr Sci 86(5):692–696Google Scholar
  25. Dobhal DP, Gergan JT, Thayyen RJ (2008) Mass balance studies of the Dokriani Glacier from 1992 to 2000, Garhwal Himalaya, India. Bull Glaciol Res Jpn Soc Snow Ice 25:9–17Google Scholar
  26. Dobhal DP, Mehta M, Srivastava D (2013) Influence of debris cover on terminus retreat and mass changes of Chorabari Glacier, Garhwal region, central Himalaya, India. J Glaciol 59(217):961–971. doi:10.3189/2013JoG12J180 CrossRefGoogle Scholar
  27. DST (2012) Dynamics of Glaciers in the Indian Himalaya: Science Plan. Prepared by RK Midha. Published by the Science and Engineering Board, Department of Science and Technology, New Delhi, Himalayan Glaciol Tech Rep 2, p 125Google Scholar
  28. Dyurgerov MB (2002) Glacier mass balance and Regime: data of measurements and analysis. Boulder: University of Colorado, Institute Arct Alpine Res, Occasional paper p 55Google Scholar
  29. Dyurgerov MB, Meier MF (1997) Mass balance of mountain and sub-polar glaciers: a new global assessment for 1961–1990. Arct Alp Res 29(4):379–391CrossRefGoogle Scholar
  30. Dyurgerov MB, Meier MF (2005) Glaciers and the changing earth system: a 2004 snapshot. Colorado, Institute of Arctic and Alpine Research, University of Colorado, Occasional Paper, Boulder, 58:117Google Scholar
  31. Dyurgerov M, Meier MF, Bahr DB (2009) A new index of glacier area change: a tool for glacier monitoring. J Glaciol 55(192):710–716CrossRefGoogle Scholar
  32. Fujita K, Nuimura T (2011) Spatially heterogeneous wastage of Himalayan glaciers. Proc Natl Acad Sci 108(34):14011–14014. doi:10.1073/pnas.1106242108 CrossRefGoogle Scholar
  33. Gardelle J, Berthier E, Arnaud Y (2012) Slight mass gain of Karakoram glaciers in the early 21st century. Nat Geosci 5:322–325. doi:10.1038/ngeo1450 CrossRefGoogle Scholar
  34. Gardelle J, Berthier E, Arnaud Y, Kääb A (2013) Region-wide glacier mass balances over the Pamir–Karakoram–Himalaya during 1999–2011. Cryosphere 7:1263–1286. doi:10.5194/tc-7-1263-2013 CrossRefGoogle Scholar
  35. Gautam CK, Mukherjee BP (1989) Mass balance vis-à-vis snout position of Tipra Bank Glacier, District Chamoli, Uttar Pradesh. In: Procedings National Meet on Himalayan Glaciology, Department of Science and Technology, New Delhi, pp 141–148Google Scholar
  36. Hewitt K (2005) The Karakoram anomaly? Glacier expansion and the ‘elevation effect’, Karakoram Himalaya. Mt Res Dev 25(4):332–340CrossRefGoogle Scholar
  37. Hoelzle M, Haeberli W, Dischl M, Peschke W (2003) Secular glacier mass balances derived from cumulative glacier length changes. Global Planet Change 36:295–306. doi:10.1016/S0921-8181(02)00223-0 CrossRefGoogle Scholar
  38. Immerzeel WW, van Beek LPH, Bierkens MFP (2010) Climate change will affect the Asian water towers. Science 328(5984):1382–1385. doi:10.1126/science.1183188 CrossRefGoogle Scholar
  39. Kääb A, Berthier E, Nuth C, Gardelle J, Arnaud Y (2012) Contrasting patterns of early twenty-first-century glacier mass change in the Himalayas. Nature 488:495–498. doi:10.1038/nature11324 CrossRefGoogle Scholar
  40. Kamp U, Byrne M, Bolch T (2011) Glacier fluctuations between 1975 and 2008 in the Greater Himalaya Range of Zanskar, southern Ladakh. J Mt Sci 8(3):374–389. doi:10.1007/s11629-011-2007-9 CrossRefGoogle Scholar
  41. Kargel JS, Cogley JG, Leonard GJ, Haritashya UK, Byers A (2011) Himalayan glaciers: the big picture is a montage. Proc Natl Acad Sci USA (PNAS) 108(36):14709–14710. doi:10.1073/pnas.1111663108 CrossRefGoogle Scholar
  42. Kaser G, Fountain A, Jansson P (2003) A manual for monitoring the mass balance of mountain glaciers. IHP-VI Technical Documents in Hydrology, UNESCO, Paris 59:107Google Scholar
  43. Kaul MN (1990) Glacial and Fluvial Geomorphology of Western Himalaya, Liddar Valley. ISBN 81-7022-244-3 322Google Scholar
  44. Koul MN, Ganjoo RK (2010) Impact of inter and intra-annual variation in weather parameters on mass balance and equilibrium-line altitude of Naradu Glacier (Himachal Pradesh), NW Himalaya, India. Clim Change 99:119–139. doi:10.1007/s10584-009-9660-9 CrossRefGoogle Scholar
  45. Kulkarni AV (1992) Mass balance of Himalayan glaciers using AAR and ELA methods. J Glaciol 38:101–104Google Scholar
  46. Kulkarni AV, Rathore BP, Suja A (2004) Monitoring of glacial mass balance in the Baspa basin using accumulation-area ratio method. Curr Sci 86:101–106Google Scholar
  47. Kulkarni AV, Bahuguna IM, Rathore BP, Singh SK, Randhawa SS, Sood RK, Dhar S (2007) Glacial retreat in Himalaya using Indian remote sensing satellite data. Curr Sci 92(1):69–74Google Scholar
  48. Mayewski PA, Jeschke PA (1979) Himalayan and trans Himalayan glacier fluctuations since AD 1812. Arct Alp Res 11(3):267–287CrossRefGoogle Scholar
  49. Mehta M, Dobhal DP, Bisht MPS (2011) Change of Tipra Glacier in the Garhwal Himalaya, India, between 1962 and 2008. Prog Phys Geogr 35(6):721–738. doi:10.1177/0309133311411760 CrossRefGoogle Scholar
  50. Meier MF (1962) Proposed definitions for glacier mass budget terms. J Glaciol 4(33):252–263Google Scholar
  51. Meier MF, Dyurgerov MB, McCabe GJ (2003) The health of glaciers: recent changes in glacier regime. Clim Change 59(1–2):123–135CrossRefGoogle Scholar
  52. Meier MF, Dyurgerov MB, Rick UK, O’Neel S, Pfeffer WT, Anderson RS, Anderson SP, Glazovsky AF (2007) Glaciers dominate eustatic sea-level rise in the 21st Century. Science 317(5841):1064–1067. doi:10.1126/science.1143906 CrossRefGoogle Scholar
  53. Mir RA, Jain SK, Saraf AK, Goswami A (2014) Detection of changes in glacier mass balance using satellite and meteorological data in Tirungkhad basin located in Western Himalaya. J Indian Soc Remote Sens 42(1):91–105. doi:10.1007/s12524-013-0303-2 CrossRefGoogle Scholar
  54. Mishra R, Kumar A, Singh D (2014) Long term monitoring of mass balance of Hamtah Glacier, Lahaul and Spiti district, Himachal Pradesh. Geolo Surv India 147(pt 8):230–231Google Scholar
  55. Mukherjee BP, Sangewar CV (1996) Correlation of accumulation-area ratio and equilibrium-line altitude with the mass balance of Gara, Gor Garang and Shaune Garang Glaciers of Himachal Pradesh. In: Proceeding of the Symposium NW Himalaya and Foredeep, Feb 1995, GSI Spec Publ 21(2) pp 303–305Google Scholar
  56. Nijampurkar VN, Bhandari N, Borole DV, Bhattacharya U (1985) Radiometric chronology of Changme-Khangpu Glacier, Sikkim. J Glaciol 31(107):28–33Google Scholar
  57. Oerlemans J (2001) Glaciers and climate change. AA Balkema, LisseGoogle Scholar
  58. Oerlemans J (2007) Estimating response times of Vadret da Morteratsch, Vadret da Palu, Briksdalsbreen and Nigardsbreen from their length records. J Glaciol 53(182):357–362CrossRefGoogle Scholar
  59. Østrem G (1975) ERTS data in glaciology-an effort to monitor glacier mass balance from satellite imagery. J Glaciol 15(73):403–415Google Scholar
  60. Østrem G, Brugman M (1991) Glacier mass-balance measurements: a manual for field and office work. Saskatoon, Sask., Environment Canada. National Hydrology Research Institute. (NHRI Science Report 4)Google Scholar
  61. Østrem G, Stanley A (1969) Glacier mass balance measurements: a manual for field and office work. Ottawa, Ont., Department of Energy, Mines and Resources; Oslo, Norwegian Water Resources and Electricity BoardGoogle Scholar
  62. Pandey AC, Ghosh S, Nathawat MS, Tiwari RK (2012) Area change and thickness variation over Pensilungpa Glacier (J&K) using remote sensing. J Indian Soc Remote Sens 40(2):245–255. doi:10.1007/s12524-011-0134-y CrossRefGoogle Scholar
  63. Paterson WSB (1994) The physics of glaciers, 3rd edn. Pergamon Press, Oxford, p 480Google Scholar
  64. Paul F, Haeberli W (2008) Spatial variability of glacier elevation changes in the Swiss Alps obtained from two digital elevation models. Geophys Res Lett 35:L21502. doi:10.1029/2008GL034718 CrossRefGoogle Scholar
  65. Pelto MS (2010) Forecasting temperate alpine glacier survival from accumulation zone observations. Cryosphere 4:67–75. doi:10.5194/tc-4-67-2010 CrossRefGoogle Scholar
  66. Pelto M, Brown C (2012) Mass balance loss of Mount Baker, Washington glaciers 1990–2010. Hydrol Process 26(17):2601–2607. doi:10.1002/hyp.9453 CrossRefGoogle Scholar
  67. Pratap B, Dobhal DP, Mehta M, Bhambri R (2014) Influence of debris cover and altitude on glacier surface melting: a case study on Dokriani Glacier, central Himalaya, India. Ann Glaciol 56(70):9–16. doi:10.3189/2015AoG70A971 CrossRefGoogle Scholar
  68. Rabatel A, Dedieu J-P, Vincent C (2005) Using remote-sensing data to determine equilibrium-line altitude and mass-balance time series: validation on three French glaciers, 1994–2002. J Glaciol 51(175):539–546. doi:10.3189/172756505781829106 CrossRefGoogle Scholar
  69. Raina VK (2005) Status of glacier studies in India. Himalayan Geol 26(1):287–293Google Scholar
  70. Raina VK (2009) Himalayan glaciers. A state-of-art review of glacial studies, glacial retreat and climate change. Ministry of Environment and Forests, India,
  71. Raina VK, Srivastava D (2008) Glacier atlas of India. Geological Society of India, Bangalore 316Google Scholar
  72. Raina VK, Kaul MK, Singh S (1977) Mass-balance studies of Gara glacier. J Glaciol 18(80):415–423Google Scholar
  73. Ramanathan AL (2011) Status report on Chhota Shigri Glacier (Himachal Pradesh), Department of Science and Technology, Ministry of Science and Technology, New Delhi. Himal Glaciol Tech Rep 1:88Google Scholar
  74. Sangewar CV, Shukla SP (2009) Inventory of the Himalayan Glaciers. Geol Surv India. Spec Publ, 34, ISSN:0254-0436Google Scholar
  75. Sangewar CV, Siddqui MA (2006) Thematic compilation of mass balance data on glaciers of satluj catchment in Himachal Himalaya. Rec Geol Surv India 141(pt 8):159–161Google Scholar
  76. Scherler D, Bookhagen B, Strecker MR (2011) Spatially variable response of Himalayan glaciers to climate change affected by debris cover. Nat Geosci 4:156–159. doi:10.1038/ngeo1068 CrossRefGoogle Scholar
  77. Singh P, Bengtsson L (2004) Hydrological sensitivity of a large Himalayan basin to climate change. Hydrol Process 18(13):2363–2385. doi:10.1002/hyp.1468 CrossRefGoogle Scholar
  78. Singh RK, Sangewar CV (1989) Mass balance variation and its impact on glacier flow movement at Shaune Garang Glacier, Kinnaur, Himachal Pradesh. Proc National Meet on Himalayan Glaciology, Department of Science and Technology, New Delhi, pp 149–152Google Scholar
  79. Srivastava D (2001) Glaciology of Indian Himalayas: a bilingual contribution in 150 years of Geological Survey of India. Geolo Surv India, Spec Publ 63:213Google Scholar
  80. Srivastava D, Singh RK, Bajpai IP, Roy Attre JK (1999a) Mass balance of Neh Nar Glacier, District Anantang, J&K. Abstracts, In: Proceedings of the symposium on snow, ice and glaciers—a Himalayan perspectiveGoogle Scholar
  81. Srivastava D, Sangewar CV, Kaul MK, Jamwal KS (1999b) Mass balance of Rulung Glacier-A Trans-Himalayan glacier, Indus basin, Ladakh. In: Proceedings of the symposium on snow, ice and glaciers—a Himalayan perspective. Geological Survey of India, Spec Publ 53:41–46Google Scholar
  82. Swaroop S, Gautam CK (1990) Glaciological studies on Dunagiri glacier, Chamoli District, Uttar Pradesh. Geolo Surv India 124(pt 8):186–190Google Scholar
  83. Swaroop S, Srivastava D (1999) Predictive Significance and interdependence of glacier discharge, ablation and microclimatic elements in Dunagiri, Chamoli District. Uttar Pradesh. In: Proceedings of the symposium on snow, ice and glaciers—a Himalayan perspective. Geological Survey of India, Spec Publ 53:47–52Google Scholar
  84. Swaroop S, Srivastava D, Roy D, Gautam CK (1999) Variation pattern of vertical and emergent flow components of velocity and change in glacier thickness along the altitudinal profile of Dunagiri Glacier, Chamoli district, Uttar Pradesh. In: Proceedings of the symposium on snow, ice and glaciers—a Himalayan perspective. Geological Survey of India, Spec Publ 53: 53–58Google Scholar
  85. Vincent C, Ramanathan AL, Wagnon P, Dobhal DP, Linda A, Berthier E, Sharma P, Arnaud Y, Azam MF, Jose PG, Gardelle J (2013) Balanced conditions or slight mass gain of glaciers in the Lahaul and Spiti region (northern India, Himalaya) during the nineties preceded recent mass loss. Cryosphere 7:569–582. doi:10.5194/tc-7-569-2013 CrossRefGoogle Scholar
  86. Vohra CP (1981) Himalayan glaciers. In: Lall JS, Maddie AD (eds) Himalayan Aspects of Change. Oxford University Press, Delhi, pp 138–151Google Scholar
  87. Wagnon P, Linda A, Arnaud Y, Kumar R, Sharma P, Vincent C, Pottakal JG, Berthier E, Ramanathan A, Hasnain SI, Chevallier P (2007) Four years of mass balance on Chhota Shigri Glacier, Himachal Pradesh, India, a new benchmark glacier in the western Himalaya. J Glaciol 53(183):603–611CrossRefGoogle Scholar
  88. WGMS (2007) Glacier mass balance bulletin No. 9 (2004–2005). Haeberli W, Hoelzle M, Zemp M (eds.), ICSU (FAGS)/IUGG (IACS)/UNEP/UNESCO/WMO, World glacier monitoring service, Zurich, Switzerland: 100Google Scholar
  89. WGMS (2012) Fluctuations of Glaciers 2005–2010 (Vol. X), edited by: Zemp M, Frey H, Gärtner-Roer I, Nussbaumer SU, Hoelzle M, Paul F, Haeberli W, ICSU (WDS)/IUGG (IACS)/UNEP/UNESCO/WMO, world glacier monitoring service, Zurich, Switzerland, 336Google Scholar
  90. Yao T, Thompson L, Yang W, Yu W, Gao Y, Guo X, Yang X, Duan K, Zhao H, Xu B, Pu J, Lu A, Xiang Y, Kattel DB, Joswiak D (2012) Different glacier status with atmospheric circulation in Tibetan Plateau and surroundings. Nat Clim Change 2:663–667. doi:10.1038/nclimate1580 CrossRefGoogle Scholar
  91. Zemp M, Hoelzle M, Haeberli W (2009) Six decades of glacier mass-balance observations: a review of the worldwide monitoring network. Ann Glaciol 50:101–111CrossRefGoogle Scholar
  92. Zemp M, Thibert E, Huss M, Stumm D, Rolstad Denby C, Nuth C, Nussbaumer SU, Moholdt G, Mercer A, Mayer C, Joerg PC, Jansson P, Hynek B, Fischer A, Escher-Vetter H, Elvehøy H, Andreassen LM (2013) Reanalysing glacier mass balance measurement series. Cryosphere 7:1227–1245. doi:10.5194/tc-7-1227-2013 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Bhanu Pratap
    • 1
  • Dwarika Prasad Dobhal
    • 1
  • Rakesh Bhambri
    • 1
  • Manish Mehta
    • 1
  • Vinod Chandra Tewari
    • 2
  1. 1.Centre for GlaciologyWadia Institute of Himalayan GeologyDehra DunIndia
  2. 2.Wadia Institute of Himalayan GeologyDehra DunIndia

Personalised recommendations