Advertisement

Regional Environmental Change

, Volume 16, Issue 3, pp 709–716 | Cite as

Environmental influence on commercial fishery landings of small pelagic fish in Portugal

  • Célia M. Teixeira
  • Rita Gamito
  • Francisco Leitão
  • Alberto G. Murta
  • Henrique N. Cabral
  • Karim Erzini
  • Maria José Costa
Original Article

Abstract

Small pelagic fishes are particularly abundant in areas with high environmental variability (zones of coastal upwelling and areas of tidal mixing and river discharge), and because of this, their abundance suffers large inter-annual and inter-decadal fluctuations. In Portugal, the most important species in terms of landings are European sardine, Atlantic horse mackerel and Atlantic chub mackerel. Small pelagic fish landings account for 62.8 % of the total fish biomass and represent 32.7 % of the economical value of all catches. We have investigated trends in landings of these small pelagic fishes and detected the effects of environmental factors in this fishery. In order to explain the variability of landings of small pelagic fishes, we have used official landings (1965–2012) for trawling and purse seine fisheries and applied generalized linear models, using the North Atlantic Oscillation index (NAO) (annual and winter NAO index), sea surface temperature (SST), wind data (strength and North–South and East–West wind components) and rainfall, as explanatory variables. Regression analysis was used to describe the relationship between landings and SST. The models explained between 50.16 and 51.07 % of the variability of the LPUE, with the most important factors being winter NAO index, SST and wind strength. The LPUE of European sardine and Atlantic horse mackerel was negatively correlated with SST, and LPUE of Atlantic chub mackerel was positively correlated with SST. The use of landings of three important species of small pelagic fishes allowed the detection of variations in landings associated with changes in sea water temperature and NAO index.

Keywords

Small pelagic fishes Fisheries Climate change Commercial landings Portugal 

Notes

Acknowledgments

This study had the support of the Fundação para a Ciência e a Tecnologia (FCT) (UID/MAR/04292/2013). Célia M. Teixeira was funded with a Post-doc Grant (SFRH/BPD/62986/2009), Rita Gamito was funded with a PhD Grant (SFRH/BD/78363/2011) and Francisco Leitão was funded with a Post-doc Grant (SFRH/BPD/63935/2009) by the FCT. We thank Dr. Alexandra Silva (Instituto Português do Mar e da Atmosfera) for the European sardine and Atlantic chub mackerel data.

References

  1. Abaunza P, Gordo L, Karlou-Riga C, Murta A, Eltink ATGW, Garcia Santamaria MT, Zimmermann C, Hammer C, Lucio P, Iversen SA, Molloy J, Gallo E (2003) Growth and reproduction of horse mackerel, Trachurus trachurus (carangidae). Rev Fish Biol Fish 13:27–61. doi: 10.1023/A:1026334532390 CrossRefGoogle Scholar
  2. Allison EH, Perry AL, Badjeck M-C, Neil Adger W, Brown K, Conway D, Halls AS, Pilling GM, Reynolds JD, Andrew NL, Dulvy NK (2009) Vulnerability of national economies to the impacts of climate change on fisheries. Fish Fish 10:173–196. doi: 10.1111/j.1467-2979.2008.00310.x CrossRefGoogle Scholar
  3. Bailey KM (1981) Larval transport and recruitment of Pacific hake Merluccius productus. Mar Ecol Prog Ser 6:1–9CrossRefGoogle Scholar
  4. Bakun A (1990) Global climate change and intensification of coastal ocean upwelling. Science 247:198–201. doi: 10.1126/science.247.4939.198 CrossRefGoogle Scholar
  5. Bakun A (2010) Linking climate to population variability in marine ecosystems characterized by non-simple dynamics: conceptual templates and schematic constructs. J Mar Syst 79:361–374. doi: 10.1016/j.jmarsys.2008.12.008 CrossRefGoogle Scholar
  6. Belvèze H, Erzini K (1983) The influence of hydroclimatic factors on the availability of the sardine (Sardina pilchardus Walbaum) in the Moroccan Atlantic fishery. FAO Fish Rep 2:265–309Google Scholar
  7. Blanchard JL, Jennings S, Holmes R, Harle J, Merino G, Allen JI, Holt J, Dulvy NK, Barange M (2012) Potential consequences of climate change for primary production and fish production in large marine ecosystems. Phil Trans R Soc B 367:2979–2989. doi: 10.1098/rstb.2012.0231 CrossRefGoogle Scholar
  8. Borges MF, Gordo LS (1991) Spatial distribution by season and some biological parameters of horse mackerel (Trachurus trachurus L.) in the Portuguese continental waters (Division Ixa). ICES C.M. 1991/H:54, Pelagic Fish Cttee, 15 pGoogle Scholar
  9. Borges MF, Santos AMP, Crato N, Mendes H, Mota B (2003) Sardine regime shifts off Portugal: a time series analysis of catches and wind conditions. Sci Mar 67:235–244Google Scholar
  10. Borja A, Uriarte A, Valencia V, Motos L, Uriarte A (1996) Relationships between anchovy (Engraulis encrasicolus L.) recruitment and the environment in the Bay of Biscay. Sci Mar 60:179–192Google Scholar
  11. Brander K (2010) Impacts of climate change on fisheries. J Mar Syst 79:389–402. doi: 10.1016/j.jmarsys.2008.12.015 CrossRefGoogle Scholar
  12. Briggs JC (1974) Marine zoogeography. McGraw-Hill, New YorkGoogle Scholar
  13. Castillo J, Barbieri MA, Gonzalez A (1996) Relationship between sea surface temperature, salinity, and pelagic fish distribution off northern Chile. ICES J Mar Sci 53:139–146. doi: 10.1006/jmsc.1996.0014 CrossRefGoogle Scholar
  14. Checkley D, Alheit J, Oozeki Y, Roy C (2009) Climate change and small pelagic fish. Cambridge University Press Cambridge, UKCrossRefGoogle Scholar
  15. Cheung WWL, Close C, Lam VWY, Watson R, Pauly D (2008) Application of macroecological theory to predict effects of climate change on global fisheries potential. Mar Ecol Prog Ser 365:187–197. doi: 10.3354/meps07414 CrossRefGoogle Scholar
  16. Cheung WWL, Lam VWY, Sarmiento KL, Kearney K, Watson R, Zeller D, Pauly D (2010) Large-scale redistribution of maximum fisheries catch potential in the global ocean under climate change. Glob Change Biol 16:24–35. doi: 10.1111/j.1365-2486.2009.01995.x CrossRefGoogle Scholar
  17. Cheung WWL, Watson R, Pauly P (2013) Signature of ocean warming in global fisheries catch. Nature 497:365–369. doi: 10.1038/nature12156 CrossRefGoogle Scholar
  18. Collete BB, Nauen CE (1983) FAO species catalogue, vol. 2. Scombrids of the world. Annotated and illustrated catalogue of tunas, mackerels, bonitos and related species known to date. FAO Fish Synop No. 125, 2:137 ppGoogle Scholar
  19. Coombs SH, Smyth TJ, Conway DVP, Halliday NC, Bernal M, Stratoudakis Y, Alvarez P (2006) Spawning season and temperature relationships for sardine (Sardina pilchardus) in the eastern North Atlantic. J Mar Biol Assoc UK 86:1245–1252. doi: 10.1017/S0025315406014251 CrossRefGoogle Scholar
  20. Cury P, Roy C (1989) Optimal environmental window and pelagic fish recruitment success in upwelling areas. Can J Fish Aquat Sci 46:670–680. doi: 10.1139/f89-086 CrossRefGoogle Scholar
  21. Da Rocha J-M, Gutiérrez M-J, Villasante S (2014) Economic effects of global warming under stock growth uncertainty: the European sardine fishery. Reg Environ Change 14:195–205. doi: 10.1007/s10113-013-0466-y CrossRefGoogle Scholar
  22. Diaz RJ, Rosenberg R (2008) Spreading dead zones and consequences for marine ecosystems. Science 321:926–929. doi: 10.1126/science.1156401 CrossRefGoogle Scholar
  23. Dickson RR, Kelly PM, Colebrook JM, Wooster WS, Cushing DH (1988) North winds and production in the eastern North Atlantic. J Plankton Res 10:151–169. doi: 10.1093/plankt/10.1.151 CrossRefGoogle Scholar
  24. Directorate General for Fisheries and Aquaculture (2000–2012) Fishery Resources—Statistics Series (in Portuguese)Google Scholar
  25. Directorate of Fisheries (1965–1969) Fisheries Statistics of the Mainland and Adjacent Islands—Navy Department (in Portuguese)Google Scholar
  26. Doney SC, Fabry VJ, Feely RA, Kleypas JA (2009) Ocean acidification: the other CO2 problem. Ann Rev Mar Sci 1:169–192. doi: 10.1146/annurev.marine.010908.163834 CrossRefGoogle Scholar
  27. Ehrich S, Stelzenmüller V, Adlerstein S (2009) Linking spatial pattern of bottom fish assemblages with water masses in the North Sea. Fish Oceanogr 18(1):36–50. doi: 10.1111/j.1365-2419.2008.00495.x CrossRefGoogle Scholar
  28. Firth D (1988) Multiplicative errors: log-normal or gamma? JR Stat Soc B 50:266–268Google Scholar
  29. Fréon P, Cury P, Shannon L, Roy C (2005) Sustainable exploitation of small pelagic fish stocks challenged by environmental and ecosystem changes: a review. Bull Mar Sci 76:385–462Google Scholar
  30. Gamito R, Teixeira CM, Costa MJ, Cabral HN (2013) Climate-induced changes in fish landings of different fleet components of Portuguese fisheries. Reg Environ Change 13:413–421. doi: 10.1007/s10113-012-0358-6 CrossRefGoogle Scholar
  31. Gamito R, Teixeira CM, Costa MJ, Cabral HN (2015) Are regional fisheries’ catches changing with climate? Fish Res 161:207–216. doi: 10.1016/j.fishres.2014.07.014 CrossRefGoogle Scholar
  32. Garza-Gil MD, Torralba-Canom J, Varela-Lafuente MM (2011) Evaluating the economic effects of climate change on the European sardine fishery. Reg Environ Change 11:87–95. doi: 10.1007/s10113-010-0121-9 CrossRefGoogle Scholar
  33. Grbec B, Dulčić J, Morović M (2002) Long-term changes in landings of small pelagic fish in the eastern Adriatic—possible influence of climate oscillations over the Northern Hemisphere. Clim Res 20:241–252. doi: 10.3354/cr020241 CrossRefGoogle Scholar
  34. Hallett TB, Coulson T, Pilkingston JG, Clutton-Brock TH, Pemberton JM, Grenfell BT (2004) Why large-scale climate indices seem to predict ecological processes better than local weather. Nature 430:71–75. doi: 10.1038/nature02708 CrossRefGoogle Scholar
  35. Hare JA, Able KW (2007) Mechanistic links between climate and fisheries along the east coast of the United States: explaining population outbursts of Atlantic croacker (Micropogonis undulatus). Fish Oceanogr 16:31–45. doi: 10.1111/j.1365-2419.2006.00407.x CrossRefGoogle Scholar
  36. Harris V, Edwards M, Olhede SC (2014) Multidecadal Atlantic climate variability and its impact on marine pelagic communities. J Mar Syst 133:55–69. doi: 10.1016/j.jmarsys.2013.07.001 CrossRefGoogle Scholar
  37. Higgason KD, Brown M (2009) Local solutions to manage the effects of global climate change on a marine ecosystem: a process guide for marine resource managers. ICES J Mar Sci 66:1640–1646. doi: 10.1093/icesjms/fsp133 CrossRefGoogle Scholar
  38. Hoegh-Guldberg O, Bruno JF (2010) The impact of climate change on the World’s marine ecosystems. Science 328:1523–1528. doi: 10.1126/science.1189930 CrossRefGoogle Scholar
  39. Hurrell JW (1995) Decadal trends in the North Atlantic oscillation: regional temperatures and precipitation. Science 269:676–679. doi: 10.1126/science.269.5224.676 CrossRefGoogle Scholar
  40. Hurrell JW, Kushnir Y, Ottersen G, Visbeck M (2003) An overview of the North Atlantic Oscillation. In: Hurrell JW, Kushnir Y, Ottersen G, Visbeck M (Eds), The North Atlantic Oscillation: Climatic Significance and Environmental Impact, vol. 134. Geophys Monogr Ser. pp. 1–35. doi:  10.1029/134GM01
  41. IPCC (Intergovernmental Panel on Climate Change) (2007a) Summary for policymakers. In: Solomon S, Qin D, Mannin M et al (eds) Climate Change 2007: The Physical Science Basis. Cambridge University Press, Cambridge, Working Group I Contribution to the Fourth Assessment Report of the IPCC, pp 1–18CrossRefGoogle Scholar
  42. IPCC (Intergovernmental Panel on Climate Change) (2007b) Climate change 2007: impacts, adaptation and vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom, 976 pGoogle Scholar
  43. Jennings S, Melin F, Blanchard J, Foster R, Dulvy N, Wilson R (2008) Global-scale predictions of community and ecosystem properties from simple ecological theory. Proc R Soc B Biol Sci 275:1375–1383. doi: 10.1098/rspb.2008.0192 CrossRefGoogle Scholar
  44. Kitahara EM, Matsuura Y (1995) Growth mortality estimate of the southwest Atlantic anchovy Engraulis anchoita larvae from Cape Santa Marta Grande in southern Brazil. Arch Fish Mar Res 42:251–262Google Scholar
  45. Lasker R (1981) Marine fish larvae. Morphology, ecology, and relation to fisheries. University of Washington Press, SeattleGoogle Scholar
  46. Levi D, Andreoli MG, Bonanno A, Fiorentino F, Garofalo G, Mazzola S, Norrito G, Patti B, Pernice G, Ragonese S, Giusto GB, Rizzo P (2003) Embedding sea surface temperature anomalies into the stock recruitment relationship of red mullet (Mullus barbatus L. 1758) in the Strait of Sicily. Sci Mar 67:259–268CrossRefGoogle Scholar
  47. Lloret J, Lleonart J, Solé I, Fromentinc J-M (2001) Fluctuations of landings and environmental conditions in the northwestern Mediterranean Sea. Fish Oceanogr 10:33–50. doi: 10.1046/j.1365-2419.2001.00151.x CrossRefGoogle Scholar
  48. Lloret J, Palomera I, Salat J, Sole I (2004) Impact of freshwater input and wind on landings of anchovy (Engraulis encrasicolus) and sardine (Sardina pilchardus) in shelf waters surrounding the Ebre (Ebro) River delta (north-western Mediterranean). Fish Oceanogr 13:102–110. doi: 10.1046/j.1365-2419.2003.00279.x CrossRefGoogle Scholar
  49. Lluch-Belda D, Crawford RJM, Kawasaki T, MacCall AD, Parrish RH, Schwartzlose RA, Smith PE (1989) World-wide fluctuations of sardine and anchovy stocks: the regime problem. S Afr J Mar Sci 8:195–205. doi: 10.2989/02577618909504561 CrossRefGoogle Scholar
  50. Lotze HK, Lenihan HS, Bourque BJ, Bradbury RH, Cooke RG, Kay MC, Kidwell SM, Kirby MX, Peterson CH, Jackson JBC (2006) Depletion, degradation, and recovery potential of estuaries and coastal seas. Science 312:1806–1809. doi: 10.1126/science.1128035 CrossRefGoogle Scholar
  51. Macías D, Castilla-Espino D, García-del-Hoyo JJ, Navarro G, Catalán IA, Renault L, Ruiz J (2014) Consequences of a future climatic scenario for the anchovy fishery in the Alboran Sea (SW Mediterranean): a modeling study. J Mar Syst 135:150–159. doi: 10.1016/j.jmarsys.2013.04.014 CrossRefGoogle Scholar
  52. Madin EMP, Ban NC, Doubleday ZA, Holmes TH, Pecl GT, Smith F (2012) Socio-economic and management implications of range shifting species in marine systems. Glob Environ Change 22:137–146. doi: 10.1016/j.gloenvcha.2011.10.008 CrossRefGoogle Scholar
  53. Martín P, Sabatés A, Lloret J, Martin-Vide J (2012) Climate modulation of fish populations: the role of the Western Mediterranean Oscillation (WeMO) in sardine (Sardina pilchardus) and anchovy (Engraulis encrasicolus) production in the north-western Mediterranean. Clim Change 110:925–939. doi: 10.1007/s10584-011-0091-z CrossRefGoogle Scholar
  54. Martins MM (1996) New biological data on growth and maturity of Spanish mackerel (Scomber japonicus) off the Portuguese coast (ICES Division IX a). ICES CM1996/H:23Google Scholar
  55. Martins MMB, Jorge IM, Gordo LS (1983) On the maturity, morphological characteristics and growth of Scomber japonicus Houttuyn, 1780 of west continental coast of Portugal. ICES CM1983/H:39:9 ppGoogle Scholar
  56. Martins MM, Skagen D, Marques V, Zwolinski J, Silva A (2013) Changes in the abundance and spatial distribution of the Atlantic chub mackerel (Scomber colias) in the pelagic ecosystem and fisheries off Portugal. Sci Mar 77:551–563. doi: 10.3989/scimar.03861.07B CrossRefGoogle Scholar
  57. McCullagh P, Nelder JA (1989) Generalized Linear Models. Chapman and Hall, LondonCrossRefGoogle Scholar
  58. Ménard F, Marsac F, Bellier E, Cazelles B (2007) Climatic oscillations and tuna catch rates in the Indian Ocean: a wavelet approach to time series analysis. Fish Oceanogr 16:95–104. doi: 10.1111/j.1365-2419.2006.00415.x CrossRefGoogle Scholar
  59. Myers RA, Pepin P (1990) The robustness of lognormal based estimators of abundance. Biometrics 46:1185–1192. doi: 10.2307/2532460 CrossRefGoogle Scholar
  60. National Institute of Statistics (1970–1999) Fisheries Statistics of the Mainland and Adjacent Islands (in Portuguese)Google Scholar
  61. Ottersen G, Planque B, Belgrano A, Post E, Reid PC, Stenseth NC (2001) Ecological effects of the North Atlantic Oscillation. Oecologia 128:1–14. doi: 10.1007/s004420100655 CrossRefGoogle Scholar
  62. Parrish RC, Nelson CS, Bakun A (1981) Transport mechanisms and reproductive success of fishes in the California Current. Biol Oceanogr 1:175–203. doi: 10.1080/01965581.1981.10749438 Google Scholar
  63. Pauly D, Christensen V, Guĕınette S, Pitcher TJ, Sumaila UR, Walters CJ (2002) Towards sustainability in world fisheries. Nature 418:689–695. doi: 10.1038/nature01017 CrossRefGoogle Scholar
  64. Pennington M, Myers RA, Pepin P (1991) On testing the robustness of lognormal based estimators. Biometrics 47:1623–1624CrossRefGoogle Scholar
  65. Perry AL, Low PJ, Ellis JR, Reynolds JD (2005) Climate change and distribution shifts in marine fishes. Science 308:1912–1915. doi: 10.1126/science.1111322 CrossRefGoogle Scholar
  66. Pörtner HO, Farrell AP (2008) Physiology and climate change. Science 322:690–692. doi: 10.1126/science.1163156 CrossRefGoogle Scholar
  67. Poulard J-C, Léauté J-P (2002) Interaction between marine populations and fishing activities: temporal patterns of landings of La Rochelle trawlers in the Bay of Biscay. Aquat Living Resour 15:197–210. doi: 10.1016/S0990-7440(02)01182-8 CrossRefGoogle Scholar
  68. Priede IG, Godbold JA, Niedzielski T, Collins MA, Bailey DM, Gordon JDM, Zuur AF (2011) A review of the spatial extent of fishery effects and species vulnerability of the deep-sea demersal fish assemblage of the Porcupine Seabight, Northeast Atlantic Ocean (ICES Subarea VII). ICES J Mar Sci 68:281–289. doi: 10.1093/icesjms/fsq045 CrossRefGoogle Scholar
  69. R Core Team (2012) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, http://www.R-project.org/
  70. Roy CP, Cury P, Fontana A, Belvèze H (1989) Stratégies spatio-temporelles de la reproduction des clupéidés des zones d’upwelling d’Afrique de l’Ouest. Aquat Living Resour 2:21–29. doi: 10.1051/alr:1989003 CrossRefGoogle Scholar
  71. Sabatés A, Martín P, Lloret J, Raya V (2006) Sea warming and fish distribution: the case of the small pelagic fish, Sardinella aurita, in the western Mediterranean. Glob Change Biol 12:2209–2219. doi: 10.1111/j.1365-2486.2006.01246.x CrossRefGoogle Scholar
  72. Santos FD, Miranda P (2006) In: Santos FD, Miranda P (Eds.) Climate change in Portugal: Scenarios, impacts and adaptation measures. Projeto SIAM II. Gradiva, Lisboa, Portugal, 506 p (in Portuguese)Google Scholar
  73. Santos AMP, Borges MF, Groom S (2001) Sardine and horse mackerel recruitment and upwelling off Portugal. ICES J Mar Sci 58:589–596. doi: 10.1006/jmsc.2001.1060 CrossRefGoogle Scholar
  74. Santos MB, González-Quirós R, Riveiro I, Cabanas JM, Porteiro C, Pierce GJ (2012) Cycles, trends, and residual variation in the Iberian sardine (Sardina pilchardus) recruitment series and their relationship with the environment. ICES J Mar Sci 69:739–750. doi: 10.1093/icesjms/fsr186 CrossRefGoogle Scholar
  75. Schwartzlose RA, Alheit J, Bakun A, Baumgartner TR, Cloete R, Crawford RJM, Fletcher WJ, Green-Ruiz Y, Hagen E, Kawasaki T, Lluch-Belda D, Lluch-Cota SE, MacCall AD, Matsuura Y, Nevárez-Martínez MO, Parrish RH, Roy C, Serra R, Shust KV, Ward MN, Zuzunaga JZ (1999) Worldwide large-scale fluctuations of sardines and anchovy populations. S Afr J Mar Sci 21:289–347. doi: 10.2989/025776199784125962 CrossRefGoogle Scholar
  76. Silva A, Santos MB, Caneco B, Pestana G, Porteiro C, Carrera P, Stratoudakis Y (2006) Temporal and geographic variability of sardine maturity at length in the northeastern Atlantic and the western Mediterranean. ICES J Mar Sci 63:663–676. doi: 10.1016/j.icesjms.2006.01.005 CrossRefGoogle Scholar
  77. Stefánsson G (1996) Analysis of groundfish survey abundance data: combining the GLM and delta approaches. ICES J Mar Sci 53:577–588. doi: 10.1006/jmsc.1996.0079 CrossRefGoogle Scholar
  78. Stenseth NC, Ottersen G, Hurrell JW, Mysterud A, Lima M, Chan K-S, Yoccoz NG, Adlandsvik B (2003) Studying climate effects on ecology through the use of climate indices: the North Oscillation, El Niño Southern Oscillation and beyond. Proc R Soc Lond B Biol Sci 270:2087–2096. doi: 10.1098/rspb.2003.2415 CrossRefGoogle Scholar
  79. Stenseth NC, Ottersen G, Hurrell JW, Belgrano A (2004) Marine ecosystems and climate variation. Oxford University Press, New York, p 264Google Scholar
  80. Stratoudakis Y, Coombs S, Lanzós AL, Halliday N, Costas G, Caneco B, Franco C, Conway D, Santos MB, Silva A, Bernal M (2007) Sardine (Sardina pilchardus) spawning seasonality in European waters of the northeast Atlantic. Mar Biol 152:201–212. doi: 10.1007/s00227-007-0674-4 CrossRefGoogle Scholar
  81. Sumaila UR, Cheung WWL, Lam VWY, Pauly D, Herrick S (2011) Climate change impacts on the biophysics and economics of world fisheries. Nat Clim Chang 1:449–456. doi: 10.1038/nclimate1301 CrossRefGoogle Scholar
  82. Sunday JM, Bates AE, Dulvy NK (2011) Global analysis of thermal tolerance and latitude in ectotherms. Proc R Soc Lond B 278:1823–1830. doi: 10.1098/rspb.2010.1295 CrossRefGoogle Scholar
  83. Tacon A, Metian M (2009) Fishing for aquaculture: non-food use of small pelagic forage fish—a global perspective. Rev Fish Sci 17:305–317. doi: 10.1080/10641260802677074 CrossRefGoogle Scholar
  84. Teixeira CM, Gamito R, Leitão F, Cabral HN, Erzini K, Costa MJ (2014) Trends in landings of fish species potentially affected by climate change in Portuguese fisheries. Reg Environ Change 14:657–669. doi: 10.1007/s10113-013-0524-5 CrossRefGoogle Scholar
  85. Theilacker GH (1986) Starvation-induced mortality of young sea-caught jack mackerel, Trachurus symmetricus, determined with histological and morphological methods. Fish Bull 84:1–17Google Scholar
  86. Vasconcelos J, Afonso-Dias M, Faria G (2012) Atlantic chub mackerel (Scomber colias) spawning season, size and age at first maturity in Madeira waters. Arquipel Life Mar Sci 29:43–51Google Scholar
  87. Worm B, Barbier EB, Beaumont N, Duffy JE, Folke C, Halpern BS, Jackson JBC, Lotze HK, Micheli F, Palumbi SR, Sala E, Selkoe KA, Stachowicz JJ, Watson R (2006) Impacts of biodiversity loss on ocean ecosystem services. Science 314:787–790. doi: 10.1126/science.1132294 CrossRefGoogle Scholar
  88. Wyatt T, Pérez-Gándaras G (1988) Ekman transport and sardine yields in western Iberia. In: International symposium on long-term changes in marine fish populations, Vigo, pp. 125–138Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Célia M. Teixeira
    • 1
  • Rita Gamito
    • 1
  • Francisco Leitão
    • 2
  • Alberto G. Murta
    • 3
  • Henrique N. Cabral
    • 1
  • Karim Erzini
    • 2
  • Maria José Costa
    • 1
  1. 1.MARE – Marine and Environmental Sciences CentreFaculdade de Ciências da Universidade de LisboaLisbonPortugal
  2. 2.Centro de Ciências do Mar (CCMAR)Universidade do AlgarveFaroPortugal
  3. 3.Instituto Português do Mar e na Atmosfera (IPMA)LisbonPortugal

Personalised recommendations