Regional Environmental Change

, Volume 16, Issue 1, pp 151–162 | Cite as

From farm to gun and no way back: Habsburg gunpowder production in the eighteenth century and its impact on agriculture and soil fertility

  • Dino Güldner
  • Fridolin Krausmann
  • Verena Winiwarter
Original Article

Abstract

Understanding the dynamics of society’s physical exchange processes with the environment (society’s metabolism) is a major theme of long-term socioecological research. In this paper, we adapt the concept of socioecological metabolism to analyze the competition between gunpowder production and agriculture for nitrogen (N) in the pre-industrial agro-ecosystem of Pamhagen in the late eighteenth century. Saltpeter (KNO3)—the main ingredient of gunpowder—was chemically refined from agricultural waste products, in particular manure and wood ash, which were vital for the maintenance of soil fertility. In this paper, we reconstruct nitrogen flows in the agro-ecosystem of Pamhagen and establish a nutrient balance, which allows assessing the impact of saltpeter production on agricultural soil fertility management. We find that nitrate extracted by saltpeter production in our case study was equivalent to 23 % of the total available nitrogen in manure in 1778 and 12 % in 1780. The growing demand for gunpowder and thus the artisanal production of saltpeter became influential drivers in the management of societal nitrogen flows on the local level, competing over key resources for sustaining soil fertility and leaving a substantial imprint on the nutrient budget of agricultural soils as less nitrogen was available for plant uptake.

Keywords

Saltpeter Military Soil fertility Nutrient cycling Environmental history Long-term socioecological research (LTSER) 

References

  1. Ágoston G (2008) Behind the Turkish war machine: gunpowder technology and war industry in the Ottoman Empire, 1450–1700. In: Steele BD, Dorland T (eds) The heirs of archimedes: science and the art of war through the age of enlightenment. MIT Press, Cambridge, pp 101–133Google Scholar
  2. Allen RC (2008) The nitrogen hypothesis and the english agricultural revolution: a biological analysis. J Econ Hist 68:182–210. doi:10.1017/S0022050708000065 CrossRefGoogle Scholar
  3. Barnum DW (2003) Some history of nitrates. J Chem Educ 80:1393–1396. doi:10.1021/ed080p1393 CrossRefGoogle Scholar
  4. Bartosiewicz L (1997) The Hungarian grey cattle: a traditional European breed. Anim Genet Resour Inf 21:49–60. doi:10.1017/S1014233900000924 CrossRefGoogle Scholar
  5. Beck R (1993) Unterfinning: ländliche Welt vor Anbruch der Moderne. C H Beck, MünchenGoogle Scholar
  6. Benecke N (1994) Der Mensch und seine Haustiere. Die Geschichte einer jahrtausendealten Beziehung, StuttgartGoogle Scholar
  7. Berzeviczy G (1816) Ueber den Zustand der Bauern in Ungarn. Europäische Annalen 11:159–207Google Scholar
  8. Buchanan BJ (2006) Gunpowder, explosives and the state: a technological history. Ashgate, AldershotGoogle Scholar
  9. Bundesministerium für Land- und Forstwirtschaft (1991) Wirtschaftsdünger. Richtige Gewinnung und Anwendung, tiergerecht, wirksam, wirtschaftlich, qualitätsbewusst, bodenschonend, umweltfreundlich. Bundesministerium für Land- und Forstwirtschaft, WienGoogle Scholar
  10. Cepuder P (2004) Landwirtschaft und Lysimeter. LFZ Raumberg-Gumpenstein Publishing. http://www.raumberg-gumpenstein.at/cm4/de/forschung/publikationen/downloadsveranstaltungen/viewdownload/122-grundwasserseminar/12169-lysimeter-und-landwirtschaft.html. Accessed November 15 2014
  11. Chorley GPH (1981) The agricultural revolution in northern Europe, 1750–1880: nitrogen, legumes, and crop productivity. Econ Hist Rev 34:71–93. doi:10.1111/j.1468-0289.1981.tb02007.x Google Scholar
  12. Cottrill BR, Smith KA (2007) Nitrates consultation supporting paper F2: nitrogen output of livestock excreta. Final report, Defra Project WT0715NVZ, ADASGoogle Scholar
  13. Cressy D (2013) Saltpeter: mother of Gunpowder. Oxford University Press, OxfordGoogle Scholar
  14. Cunfer G (2004) Manure matters on the Great Plains frontier. J Interdiscip Hist 34:539–567. doi:10.1162/002219504773512534 CrossRefGoogle Scholar
  15. Cussó X, Garrabou R, Tello E (2006) Social metabolism in an agrarian region of Catalonia (Spain) in 1860–1870: flows, energy balance and land use. Ecol Econ 58(1):49–65. doi:10.1016/j.ecolecon.2005.05.026 CrossRefGoogle Scholar
  16. Dezseoe D, Zoltan D (1960) Az elsö Magyarorszagi népszámlálás (1784–1787). Müvelödesügyi Minisztérium Leveltari Osztalya, BudapestGoogle Scholar
  17. Donahue B (2004) The great meadow: farmers and the land in colonial Concord. Yale University Press, New HavenGoogle Scholar
  18. Dong H, Mangino J, McAllister TA et al (2006) Emissions from livestock and manure management. In: Intergovernmental Panel on Climate Change (ed) 2006 IPCC guidelines for national greenhouse gas inventories, vol 4. Institute for Global Environmental Strategies (IGES), Hayama, pp 10.1–10.87Google Scholar
  19. Elliott LF, McCalla TM, Mielke LN, Travis TA (1972) Ammonium, nitrate, and total nitrogen in the soil water of feedlot and field soil profiles. Appl Microbiol 23(4):810–813Google Scholar
  20. Fally J (2010) Naturjuwele im Burgenland: Steppen, Salz und Streuobstwiesen. Amt der Burgenländischen Landesregierung, EisenstadtGoogle Scholar
  21. Fischer-Kowalski M, Haberl H (2007) Socioecological transitions and global change: trajectories of social metabolism and land use. Edward Elgar, CheltenhamCrossRefGoogle Scholar
  22. Franck J (2000) Der Neusiedler Saliterhof. In: Neusiedler Jahrbuch: Beiträge zur Stadtgeschichte von Neusiedl am See 2:19–34Google Scholar
  23. Frey JW (2009) The Indian saltpeter trade, the military revolution, and the rise of Britain as a global superpower. Historian 71:507–554. doi:10.1111/j.1540-6563.2009.00244.x CrossRefGoogle Scholar
  24. Galler J (2009) Wirtschaftsdünger. Kreislauf - Düngung - Umwelt. Landwirtschaftskammer Salzburg, SalzburgGoogle Scholar
  25. García-Ruiz R, González de Molina M, Guzmán G et al (2012) Guidelines for constructing nitrogen, phosphorus, and potassium balances in historical agricultural systems. J Sustain Agric 36(6):650–682. doi:10.1080/10440046.2011.648309 CrossRefGoogle Scholar
  26. Good D (1984) The economic rise of the Habsburg empire, 1750–1914. University of California Press, LondonGoogle Scholar
  27. Götz B, Zethner G (1996) Regionale Stoffbilanzen in der Landwirtschaft. Der Nährstoffhaushalt im Hinblick auf seine Umweltwirkung am Beispiel des Einzugsgebietes Strem. Bundesministerium für Umwelt, Jugend und Familie, WienGoogle Scholar
  28. Grailich A (1821) Wieselburger Gespanschaft. In: Csaplovics J (ed) Topographisch-statistisches Archiv des Königreichs Ungern 2. Anton Doll, Wien, pp 187–236Google Scholar
  29. Grosina H (1984) Aspekte des Beziehungsgefüge Mensch - Raum am Neusiedler See. In: Landesarchiv Burgenländisches (ed) Burgenland in seiner pannonischen Umwelt, Sonderband Burgenländische Forschungen 7. Landesarchiv Burgenland, Eisenstadt, pp 117–125Google Scholar
  30. Guzmán Casado GI, González de Molina M (2009) Preindustrial agriculture versus organic agriculture. Land Use Policy 26:502–510. doi:10.1016/j.landusepol.2008.07.004 CrossRefGoogle Scholar
  31. Guzmán GI, González de Molina M, Alonso AM (2011) The land cost of agrarian sustainability. An assessment. Land Use Policy 28:825–835. doi:10.1016/j.landusepol.2011.01.010 CrossRefGoogle Scholar
  32. Haberl H, Erb K-H, Gaube V et al (2013) Socioeconomic metabolism and the human appropriation of net primary production: what promises do they hold for LTSER? In: Singh SJ, Haberl H, Chertow M et al (eds) Long term socio-ecological research across spatial and temporal scales. Springer, Dodrecht, pp 29–52CrossRefGoogle Scholar
  33. Häusler H, Heischmann J (2009) Quartäre Landschaftsentwicklung und Morphotektonik des nördlichen Burgenlandes. In: Hitz H, Wohlschlägl H (eds) Das östliche Österreich und benachbarte Regionen. Ein geographischer Exkursionsführer. Böhlau, Wien, Köln, Weimar, pp 117–132Google Scholar
  34. Hitschmann HH (1891) Vademecum für den Landwirth. M. Perles, WienGoogle Scholar
  35. Hoffman PC (2007) Innovations in dairy replacement heifer management. In: Proceedings of the 8th Western Dairy Management Conference, Reno, pp 237–248Google Scholar
  36. Holland EA, Dentener FJ, Braswell BH, Sulzman JM (1999) Contemporary and pre-industrial global reactive nitrogen budgets. In: Townsed AR (ed) New perspectives on nitrogen cycling in the temperate and tropical Americas: report of the international SCOPE nitrogen project. Springer, Dodrecht, pp 7–43CrossRefGoogle Scholar
  37. Janovick NA, Russell JR, Strohbehn DR, Morrical DG (2004) Productivity and hay requirements of beef cattle in a Midwestern year-round grazing system. J Anim Sci 82:2503–2515Google Scholar
  38. Konrad A (2005) Wetter und Klima im Burgenland. Wetterchronik, Klimatabellen, Wettervorhersagen, offizielle Wetterdienste, burgenländische Wetterstation im Portrait. Eigenverl. A. Konrad, SalmannsdorfGoogle Scholar
  39. Kornhuber A (1885) Botanische Ausflüge in die Sumpfniederungen des „Wasen“(magyr. “Hanság”). Verh Zoo-Bot Ges Wien 35:619–656Google Scholar
  40. Krausmann F (2004) Milk, manure, and muscle power. Livestock and the transformation of preindustrial agriculture in Central Europe. Hum Ecol 32:735–772. doi:10.1007/s10745-004-6834-y CrossRefGoogle Scholar
  41. Krausmann F (2008) Land use and socio-economic metabolism in pre-industrial agricultural systems: four nineteenth-century Austrian villages in comparison. Soc Ecol Work Paper 72:1–45Google Scholar
  42. Kriedtke P (1980) Spätfeudalismus und Handelskapital. Grundlinie der europäischen Wirtschaftsgeschichte vom 16. bis zum Ausgang des 18. Jahrhunderts. Vandenhoeck & Ruprecht, GöttingenGoogle Scholar
  43. Kunnas J (2007) Potash saltpeter and tar: production, exports and use of wood in Finland in the 19th century. Scand J Econ 32:281–311. doi:10.1080/03468750701395419 Google Scholar
  44. Leigh GJ (2004) The world’s greatest fix: a history of nitrogen and agriculture. Oxford University Press, OxfordGoogle Scholar
  45. Loomis RS, Connor DJ (2003) Crop ecology: productivity and management in agricultural systems. Cambridge University Press, CambridgeGoogle Scholar
  46. Mazoyer M, Roudart L (2006) A history of world agriculture: from the Neolithic age to the current crisis. Earthscan, LondonGoogle Scholar
  47. Nelhiebel P (1980) Die Bodenverhältnisse des Seewinkels. BFB Bericht 37:41–48Google Scholar
  48. Netting RM (1993) Smallholders, householders: farm families and the ecology of intensive, sustainable agriculture. Stanford University Press, StanfordGoogle Scholar
  49. NRC (2001) Nutrient requirements of dairy cattle, 7th rev edn. National Academy Press, WashingtonGoogle Scholar
  50. Oenema O, Kros H, de Vries W (2003) Approaches and uncertainties in nutrient budgets: implications for nutrient management and environmental policies. Eur J Agron 20:3–16. doi:10.1016/S1161-0301(03)00067-4 CrossRefGoogle Scholar
  51. Prickler H (1966) Alte Getreidemaße im österreichisch-ungarischen Grenzraum. In: Landesmuseum Burgenländischen (ed) Wissenschaftliche Arbeiten aus dem Burgenland 35. Landesmuseum Burgenland, Eisenstadt, pp 418–445Google Scholar
  52. Prickler H (1969) Zur Geschichte der Salpeterproduktion im burgenländisch-westungarischen Raum. Burgenländische Heimatblätter 31(1):19–42Google Scholar
  53. Raupp J, Oltmanns M (2006) Reduzierung von Nährstoffverlusten während der Stallmistrotte duch Beeinflussung der Rottebedingungen: Literaturstudie und Auswertung eigener Rotteversuche. Lebendige Erde, DarmstadtGoogle Scholar
  54. Sandgruber R (1978) Österreichische Agrarstatistik 1750–1918. Verlag für Geschichte und Politik, WienGoogle Scholar
  55. Shiel RS (1991) Improving soil productivity in the pre-fertiliser era. In: Campbell BMS, Overton M (eds) Land, labour and livestock: historical studies in European agricultural productivity. Manchester University Press, Manchester, pp 51–77Google Scholar
  56. Sieferle RP, Krausmann F, Schandl H, Winiwarter V (2006) Das Ende der Fläche. Zum gesellschaftliche Stoffwechsel der Industrialisierung. Böhlau, Köln, Weimar, Wien Google Scholar
  57. Singh SJ, Haberl H, Chertow M, Mirtl M, Schmid M (2013) Long term socio-ecological research. Studies in society—nature interactions across spatial and temporal scales. Springer, DordrechtGoogle Scholar
  58. Smil V (2001) Enriching the Earth: Fritz Haber, Carl Bosch and the transformation of world food production. MIT Press, CambridgeGoogle Scholar
  59. Szabó J (1850) Vorkommen und Gewinnung des Salpeters in Ungarn. In: Geologische Reichsanstalt KK (ed) Jahrbuch der kaiserlich-königlichen geologischen Reichsanstalt 1. K. K. Hof- und Staats-Druckerei, Wien, pp 324–342Google Scholar
  60. Tello E, Garrabou R, Cussó X et al (2012) Fertilizing methods and nutrient balance at the end of traditional organic agriculture in the mediterranean bioregion: catalonia (Spain) in the 1860s. Hum Ecol 40:369–383. doi:10.1007/s10745-012-9485-4 CrossRefGoogle Scholar
  61. Tietjen C, Bardtke D (1977) Wirkung tierischer Exkremente auf Boden, Pflanze und Gewässer. In: Strauch D, Baader W, Tietjen C (eds) Abfälle aus der Tierhaltung: Anfall, Umweltbelastung, Behandlung. Verwertung, Ulmer, pp 190–245Google Scholar
  62. Vetter H, Steffens G (1986) Wirtschaftseigene Düngung: umweltschonend, bodenpflegend, wirtschaftlich. DLG-Verlag, FrankfurtGoogle Scholar
  63. Vinther FP, Hansen S (2004) SimDen—A simple model for quantification of N2O-emission and denitrification. DIAS Rep 104:1–47Google Scholar
  64. von Schwerz JN (1825) Anleitung zum practischen Ackerbau 2. J. G. Cotta’schen Buchhandlung, StuttgartGoogle Scholar
  65. Wiegand J (1779) Anleitung zu einem österreichischen Land- und Hauswirthschaftskalender. Joh. Thom. Edler von Trattnern, WienGoogle Scholar
  66. Wisniak J (2000) The history of saltpeter production with a bit of pyrotechnics and Lavoisier. Chem Educ 5:205–209. doi:10.1007/s008970000401a CrossRefGoogle Scholar
  67. Wrigley EA (1991) Energy availiability and agricultural productivity. In: Campbell BMS, Overton M (eds) Land, labour, and livestock: historical studies in European agricultural productivity. Manchester University Press, Manchester, pp 323–339Google Scholar
  68. Wyngaard N, Videla C, Picone L et al (2012) Nitrogen dynamics in a feedlot soil. J soil Sci Plant Nutr 12:563–574. doi:10.4067/S0718-95162012005000016 Google Scholar
  69. Zechmeister-Boltenstern S (1989) Biologische Stickstofffixierung und Stickstoffmineralisation in Böden Ostösterreichs. VWGÖ, WienGoogle Scholar
  70. Zhou M, Butterbach-Bahl K (2014) Assessment of nitrate leaching loss on a yield-scaled basis from maize and wheat cropping systems. Plant Soil 374:977–991. doi:10.1007/s11104-013-1876-9 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Dino Güldner
    • 1
  • Fridolin Krausmann
    • 1
  • Verena Winiwarter
    • 1
  1. 1.Institute of Social Ecology Vienna, Faculty for Interdisciplinary StudiesAlpen-Adria University KlagenfurtViennaAustria

Personalised recommendations