Regional Environmental Change

, Volume 15, Issue 8, pp 1679–1687 | Cite as

Critical elevation levels for flooding due to sea-level rise in Hawai‘i

  • Haunani H. Kane
  • Charles H. Fletcher
  • L. Neil Frazer
  • Matthew M. Barbee
Original Article

Abstract

Coastal strand and wetland habitats in the Hawaiian Islands are often intensively managed to restore and maintain biodiversity. Due to the low gradient of most coastal plain environments, the rate and aerial extent of sea-level rise (SLR) impact will rapidly accelerate once the height of the sea surface exceeds a critical elevation. Here, we develop this concept by calculating a SLR critical elevation and joint uncertainty that distinguishes between slow and rapid phases of flooding. We apply the methodology to three coastal wetlands on the Hawaiian Islands of Maui and O‘ahu to exemplify the applicability of this methodology for wetlands in the Pacific island region. Using high-resolution LiDAR digital elevation models, flooded areas are mapped and ranked from high (80 %) to low (2.5 %) risk based upon the percent probability of flooding under the B1, A2, and A1Fl emissions scenarios. As the rate of flooding transitioned from the slow to rapid phase, the area (expressed as a percentage of the total) at a high risk of flooding under the A1Fl scenario increased from 21.0 to 53.3 % (south Maui), 0.3 to 18.2 % (north Maui), and 1.7 to 15.9 % (north O‘ahu). At the same time, low risk areas increased from 34.1 to 80.2, 17.7 to 46.9, and 15.4 to 46.3 %. The critical elevation of SLR may have already passed (2003) on south Maui, and decision makers on North Maui and O‘ahu may have approximately 37 years (2050) to develop, and implement adaptation strategies that meet the challenges of SLR in advance of the largest impacts.

Keywords

Sea-level rise Wetland Critical elevation LiDAR Digital elevation model Hawaii 

Notes

Acknowledgments

This project was supported by the U.S. Department of Interior Pacific Islands Climate Change Cooperative Grant No. 6661281. Mahalo Martin Vermeer for providing SLR data.

Supplementary material

10113_2014_725_MOESM1_ESM.tif (7.3 mb)
Supplementary Fig. 1. A2 SLR risk comparison for slow (left column images) and fast phases of flooding at a–b, Kanaha, c–d, James Campbell, and e–f, Keālia. (TIFF 7425 kb)
10113_2014_725_MOESM2_ESM.tif (7.2 mb)
Supplementary Fig. 2. B1 SLR risk comparison for slow (left column images) and fast phases of flooding at a–b, Kanaha, c–d, James Campbell, and e–f, Keālia. (TIFF 7416 kb)

References

  1. Baker JD, Littnan CL, Johnston DW (2006) Potential effects of sea level rise on the terrestrial habitats of endangered and endemic megafauna in the Northwestern Hawaiian Islands. Endanger Species Res 2:21–30. doi: 10.3354/esr002021 CrossRefGoogle Scholar
  2. Bamber JL, Aspinall WP (2013) An expert judgement assessment of future sea level rise from the ice sheets. Nat Clim Change. doi: 10.1038/NCLIMATE1778 Google Scholar
  3. Bantilan-Smith M, Bruland GL, MacKenzie RA, Henry AR, Ryder CR (2009) A comparison of the vegetation and soils of natural, restored, and created coastal lowland wetlands in Hawai‘i. Wetlands 29:1023–1035. doi: 10.1672/08-127.1 CrossRefGoogle Scholar
  4. Bjerklie DM, Mullaney JR, Stone JR, Skinner BJ, Ramlow MA (2012) Preliminary investigation of the effects of sea-level rise on groundwater levels in New Haven, Connecticut. U.S. Geological Survey Open-File Report 2012–1025, 46 p. http://pubs.usgs.gov/of/2012/1025/
  5. Cooper HM, Chen Q, Fletcher CH, Barbee M (2013a) Assessing vulnerability due to sea-level rise in Maui, Hawai‘i using LiDAR remote sensing and GIS. Clim Change 116:547–563. doi: 10.1007/s10584-012-0510-9 CrossRefGoogle Scholar
  6. Cooper HM, Chen Q, Fletcher CH, Barbee M (2013b) Sea-level rise vulnerability mapping for adaptation decisions using LiDAR DEMs. Prog Phys Geogr 37:745–766. doi: 10.1177/0309133313496835 CrossRefGoogle Scholar
  7. Department of Land and Natural Resources (DLNR) (2002) Kanaha pond wildlife sanctuary management planGoogle Scholar
  8. Dewberry (2008) LiDAR QAQC report Hawaii TO12: Molokai, Maui, Lanai Islands March 2008. Dewberry, Fairfax, VirginiaGoogle Scholar
  9. Ellison JC (2009) Wetlands of the Pacific Island region. Wetl Ecol Manag 17:169–206. doi: 10.1007/s11273-008-9097-3 CrossRefGoogle Scholar
  10. FGDC (1998) Geospatial positioning accuracy standards, Part 3. National standard for spatial data accuracy. https://www.fgdc.gov/standards/projects/FGDC-standards-projects/accuracy/part3/chapter3. Accessed 19 Aug 2014
  11. Fish MR, Cote IM, Horrocks JA, Mulligan B, Watkinson AR, Jones AR (2008) Construction setback regulations and sea-level rise: mitigating sea turtle nesting beach loss. Ocean Coast Manag 51:330–341. doi: 10.1016/j.ocecoaman.2007.09.002 CrossRefGoogle Scholar
  12. Fletcher C, Rooney J, Barbee M, Lim S-C, Richmond BM (2003) Mapping shoreline change using digital orthophotogeometry on Maui, Hawaii. J Coast Res 38:106–124Google Scholar
  13. Fuentes MMPB, Cinner JE (2010) Using expert opinion to prioritize impacts of climate change on sea turtles’ nesting grounds. J Environ Manag 91:2511–2518. doi: 10.1016/j.jenvman.2010.07.013 CrossRefGoogle Scholar
  14. Gesch DB (2009) Analysis of lidar elevation data for improved identification and delineation of lands vulnerable to sea-level rise. J Coast Res SI53:49–58. doi: 10.2112/SI53-006.1 CrossRefGoogle Scholar
  15. Hunt C, De Carlo E (2000) Hydrology and water and sediment quality at James Campbell National Wildlife Refuge near Kahuku, Island of Oahu, Hawaii. http://pubs.usgs.gov/wri/wri99-4171/pdf/wri99-4171.pdf. Accessed 20 July 2014
  16. Intergovernmental Panel on Climate Change (IPCC) (2000) IPCC special report emission scenarios. Core writing team Nebojša Nakićenović, Ogunlade Davidson, Gerald Davis, Arnulf Grübler, Tom Kram, Emilio Lebre La Rovere, Bert Metz, Tsuneyuki Morita, William Pepper, Hugh Pitcher, Alexei Sankovski, Priyadarshi Shukla, Robert Swart, Robert Watson, Zhou Dadi, 27 pp. Available online at: https://www.ipcc.ch/pdf/special-reports/spm/sres-en.pdf. Accessed 20 July 2014
  17. Intergovernmental Panel on Climate Change (IPCC) (2007) Climate Change 2007- the physical science basis. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, United Kingdom. Available online at: http://www.ipcc.ch/publications_and_data/publications_ipcc_fourth_assessment_report_wg1_report_the_physical_science_basis.htm. Accessed 20 July 2014
  18. Intergovernmental Panel on Climate Change (IPCC) (2013) Climate change 2013 the physical science basis. In: Stocker TF, Qin D, Plattner G-K, Tignor MMB, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Working group 1 contribution to the fifth assessment report of the intergovernmental panel on climate change. Available online at: http://www.climatechange2013.org/images/report/WG1AR5_Frontmatter_FINAL.pdf. Accessed 18 Aug 2014
  19. Iwamura T, Possingham HP, Chades I, Minton C, Murray NJ, Rogers DI, Treml EA, Fuller RA (2013) Migratory connectivity magnifies consequences of habitat loss from sea-level rise for shorebird populations. Proc R Soc Biol Sci 280:1471–2954. doi: 10.1098/rspb.2013.0325 CrossRefGoogle Scholar
  20. Koshiba S, Besebes M, Soaladaob K, Isechal AI, Victor S, Golbuu Y (2013) Palau’s taro fields and mangroves protect the coral reefs by trapping eroded fine sediment. Wetl Ecol Manag 21:157–164. doi: 10.1007/s11273-013-9288-4 CrossRefGoogle Scholar
  21. Krauss KW, Allen JA, Cahoon DR (2003) Differential rates of vertical accretion and elevation change among aerial root types in Micronesian mangrove forests. Estuar Coast Shelf Sci 56:251–259. doi: 10.1016/S0272-7714(02)00184-1 CrossRefGoogle Scholar
  22. Krauss KW, Cahoon DR, Allen JA, Ewel KC, Lynch JC, Cormier N (2010) Surface elevation change and susceptibility of different mangrove zones to sea-level rise on pacific high islands of Micronesia. Ecosystems 13:129–143. doi: 10.1007/s10021-009-9307-8 CrossRefGoogle Scholar
  23. Mitsova D, Esnard AM, Li Y (2012) Using enhanced dasymetric mapping techniques to improve the spatial accuracy of sea level rise vulnerability assessments. J Coast Conserv 16:355–372. doi: 10.1007/s11852-012-0206-3 CrossRefGoogle Scholar
  24. Moore JG (1987) Subsidence of the Hawaiian Ridge. In: Decker RW, Wright TL, Stauffer PH (ed) Volcanism in Hawai‘i, United States Geological Survey Professional Paper, pp 85–100Google Scholar
  25. National Oceanic Atmospheric Administration (NOAA) (2010) Mapping inundation uncertainty. http://csc.noaa.gov/digitalcoast/_/pdf/ElevationMappingConfidence.pdf. Accessed 20 July 2014
  26. Poulter B, Haplin PN (2008) Raster modeling of coastal flooding from sea-level rise. Int J Geogr Inf Sci 22:167–182. doi: 10.1080/13658810701371858 CrossRefGoogle Scholar
  27. Rahmstorf S, Perrette M, Vermeer M (2011) Testing the robustness of semi-empirical sea level projections. Clim Dyn 39:861–875. doi: 10.1007/s00382-011-1226-7 CrossRefGoogle Scholar
  28. Reynolds MH, Berkowits P, Coutrot KN, Krause CM (eds) (2012) Predicting sea-level rise vulnerability of terrestrial habit and wildlife of the Northwestern Hawaiian Islands. U.S. Geological Survey Open-File Report 2012-1182, 139p. http://pubs.usgs.gov/of/2012/1182/. Accessed 20 July 2014
  29. Romine BM, Fletcher CH, Barbee MM, Anderson TR, Frazer LN (2013) Are beach erosion rates and sea-level rise related in Hawaii? Glob Planet Change 108:149–157. doi: 10.1016/j.gloplacha.2013.06.009 CrossRefGoogle Scholar
  30. Rotzoll K, Fletcher C (2012) Assessment of groundwater inundation as consequences of sea level rise. Nat Clim Change 3:477–481. doi: 10.1038/nclimate1725 CrossRefGoogle Scholar
  31. Rotzoll K, El-Kaldi AI, Gingerich SB (2008) Analysis of an unconfined aquifer subject to asynchronous dual-tide propagation. Groundwater 46:239–250. doi: 10.1111/j.1745-6584.2007.00412.x CrossRefGoogle Scholar
  32. Schaeffer M, Hare W, Rahmstorf S, Vermeer M (2012) Long-term sea-level rise implied by 1.5 C and 2 C warming levels. Nat Clim Change 2:867–870. doi: 10.1038/nclimate1584 CrossRefGoogle Scholar
  33. Slangen ABA, Katsman CA, van de Wal RSW, Vermeersen LLA, Riva REM (2012) Towards regional projections of the twenty-first century sea-level change based on IPCC SRES scenarios. Clim Dyn 38:1191–1201. doi: 10.1007/s00382-011-1057-6 CrossRefGoogle Scholar
  34. Spada G, Bamber JL, Hurkmans RTWL (2013) The gravitationally consistent sea-level fingerprint of future terrestrial ice lost. Geophys Res Lett 40:482–486. doi: 10.1029/2012GL053000 CrossRefGoogle Scholar
  35. Tebaldi C, Strauss BH, Zervas CE (2012) Modelling sea level rise impacts on storm surges along US coasts. Environ Res Lett 7:014032. doi: 10.1088/1748-9326/7/1/014032 CrossRefGoogle Scholar
  36. U.S. Fish and Wildlife Service (2011a) James Campbell National Wildlife Refuge Comprehensive Conservation Plan and Environmental Assessment. http://www.fws.gov/pacific/planning/main/docs/HI-PI/James%20Campbell%20Pearl%20Harbor%20CCP/James%20Campbell%20NWR%20DCCPEA.pdf. Accessed 14 Nov 2014
  37. U.S. Fish and Wildlife Service (2011b) Kealia Pond National Wildlife Refuge Comprehensive Conservation Plan and Environmental Assessment. http://digitalmedia.fws.gov/cdm/singleitem/collection/document/id/453/rec/1. Accessed 14 Nov 2014
  38. U.S. Fish and Wildlife Service (2011c) Recovery plan for Hawaiian waterbird second revision. http://www.fws.gov/pacificislands/CH_Rules/Hawaiian%20Waterbirds%20RP%202nd%20Revision.pdf. Accessed 20 July 2014
  39. Vermeer M, Rahmstorf S (2009) Global sea level linked to global temperature. Proc Natl Acad Sci USA 106:21527–21532. doi: 10.1073/pnas.0907765106 CrossRefGoogle Scholar
  40. Vermeer M, Rahmstorf S, Kemp A, Horton B (2012) On the differences between two semi-empirical sea-level models for the last two millennia. Clim Past Discuss 8:3551–3581. doi: 10.5194/cpd-8-3551-2012 CrossRefGoogle Scholar
  41. Webb EL, Friess DA, Krauss KW, Cahoon DR, Guntenspergen GR, Phelps J (2013) A global Standard for monitoring coastal wetland vulnerability to accelerated sea-level rise. Nat Clim Change 3:458–465. doi: 10.1038/nclimate1756 CrossRefGoogle Scholar
  42. Zhang K (2011) Analysis of nonlinear inundation from sea-level rise using LIDAR data: a case study for South Florida. Clim Change 106:537–565. doi: 10.1007/s10584-010-9987-2 CrossRefGoogle Scholar
  43. Zhang K, Douglas BC, Leatherman SP (2004) Global warming and coastal erosion. Clim Change 64:41–58. doi: 10.1023/B:CLIM.0000024690.32682.48 CrossRefGoogle Scholar
  44. Zhang K, Dittmar J, Ross M, Bergh C (2011) Assessment of sea level rise impacts on human population and real property in the Florida Keys. Clim Change 107:129–146. doi: 10.1007/s10584-011-0080-2 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Haunani H. Kane
    • 1
  • Charles H. Fletcher
    • 1
  • L. Neil Frazer
    • 1
  • Matthew M. Barbee
    • 1
  1. 1.SOEST/Geology and GeophysicsUniversity of Hawai‘iHonoluluUSA

Personalised recommendations