Regional Environmental Change

, Volume 15, Issue 4, pp 619–630 | Cite as

Spatial and temporal variability of CO2 fluxes in tropical estuarine systems near areas of high population density in Brazil

  • Carlos NoriegaEmail author
  • Moacyr Araujo
  • Nathalie Lefèvre
  • Manuel Flores Montes
  • Felipe Gaspar
  • Dóris Veleda
Original Article


Quantifications of CO2 fluxes across the air–water interface of estuarine ecosystems are needed to understand regional carbon balances. In this study, we estimate the amount of carbon emitted from tropical estuaries of the State of Pernambuco, Brazil, using measurements of temperature, alkalinity, salinity and pH at stations located in the estuaries. The results showed that the average CO2 fluxes (+51 ± 32 mmol m−2 day−1) were mainly a product of the input of aloctone organic matter from urban centers with high population densities (~1,000−2) adjacent to the estuarine systems. This organic material increased the amount of aqueous CO2, which increased the pCO2 to 8,900 μatm. October, November and December had the highest monthly averages of the parameters associated with the carbonate system (HCO3 , dissolved inorganic carbon, aqueous carbon dioxide, CO3 2−, total alkalinity, temperature and pH), whereas the averages in July correlated with the CO2 fluxes. Multivariate analysis revealed that estuarine areas near the most densely populated areas (Beberibe—9,000−2 and Paratibe—3,000−2) were positively correlated with high CO2 fluxes and high pCO2.


CO2 fluxes Population density Tropical estuaries Brazilian coast 



We thank the Brazilian National Institute of Meteorology (INMET) for the database used in this study. This work was supported by the National Institute on Science and Technology in Tropical Marine Environments INCT-AmbTropic (CNPq/FAPESB Grants: 565054/2010-4 and 8936/2011). C. N. is grateful to the FACEPE (Foundation for Science and Technology of Pernambuco) for financial support through the Process No. BFP-0007-1.08/2012, which contributed to the development of the work.

Supplementary material

10113_2014_671_MOESM1_ESM.docx (898 kb)
Supplementary material 1 (DOCX 897 kb)


  1. Abril G, Frankignoulle M (2001) Nitrogen–alkalinity interactions in the highly polluted Scheldt basin (Belgium). Water Res 35:844–850. doi: 10.1016/S0043-1354(00)00310-9 CrossRefGoogle Scholar
  2. Abril G, Etcheber H, Borges AV, Frankignoulle M (2000) Excess atmospheric carbon dioxide transported by rivers into the Scheldt estuary. C R Acad Sci Ser II Sciences de la Terre et des planètes 330:762–768. doi: 10.1016/S1251-8050(00)00231-7 Google Scholar
  3. APAC (2013) Precipitação do Estado de Pernmabuco (2012–2013). Accessed 20 Aug 2013
  4. Araujo M, Noriega C, Veleda D, Lefèvre N (2013) Nutrient input and co2 flux of a tropical coastal fluvial system with high population density in the Northeast region of Brazil. J Water Resour Prot 5:362–375. doi: 10.4236/jwarp.2013.53A037 CrossRefGoogle Scholar
  5. Borges AV (2005) Do we have enough pieces of the jigsaw to integrate CO2 fluxes in the coastal ocean? Estuaries 28:3–27. doi: 10.1007/BF02732750 CrossRefGoogle Scholar
  6. Borges AV, Delille B, Frankignoulle M (2005) Budgeting sinks and sources of CO2 in the coastal ocean: diversity of ecosystems counts. J Geophys Res 32:L14601. doi: 10.1029/2005GL023053 Google Scholar
  7. Chen CT, Borges AV (2009) Reconciling opposing views on carbon cycling in the coastal ocean: continental shelves as sinks and near-shore ecosystems as sources of atmospheric CO2. Deep Sea Res Part II 56:578–590. doi: 10.1016/j.dsr2.2009.01.001 CrossRefGoogle Scholar
  8. Chen CT, Huang TH, Fu YH, Bai Y, He X (2012) Strong sources of CO2 in upper estuaries become sinks of CO2 in large river plumes. Curr Opin Environ Sustain 4:179–185. doi: 10.1016/j.cosust.2012.02.003 CrossRefGoogle Scholar
  9. Chen CT, Huang TH, Chen YC, Bai Y, He X, Kang Y (2013) Air–sea exchanges of CO2 in the world’s coastal seas. Biogeosciences 10:6509–6544. doi: 10.5194/bg-10-6509-2013 CrossRefGoogle Scholar
  10. Cloern J, Jassby AD (2012) Drivers of change in estuarine-coastal ecosystems: discoveries from four decades of study in San Francisco Bay. Rev Geophys 50(4):1–33. doi: 10.1029/2012RG000397 CrossRefGoogle Scholar
  11. Cole JJ, Prairie YT, Caraco NF, McDowell WH, Tranvik LJ, Striegl RG, Duarte CM, Kortelainen P, Downing J, Middelburg JJ, Melack J (2007) Plumbing the global carbon cycle: integrating the terrestrial carbon budget. Ecosystems 10(1):172–185. doi: 10.1007/s10021-006-9013-8 CrossRefGoogle Scholar
  12. CONAMA (National Council of the Environment) (2005) Determination CONAMA N°357, 17 March of 2005. Accessed 15 Dec 2012
  13. CPRH (2012) Monitoramento das bacias hidrográficas do Estado de Pernambuco (2012). Accessed 30 Jan 2013
  14. Dickson AG (1990) Standard potential of the reaction: AgCl(s) + 1/2 H2(g) = Ag(s) + HCl(aq), and the standard acidity constant of the ion HSO4 in synthetic seawater from 273.15 to 318.15 K. J Chem Thermodyn 22:113–127. doi: 10.1016/0021-9614(90)90074-Z CrossRefGoogle Scholar
  15. Diego-McGlone MLS, Smith SV, Nicolas VF (2000) Stoichiometric Interpretations of C: N: P ratios in organic waste materials. Mar Pollut Bull 40:325–330. doi: 10.1016/S0025-326X(99)00222-2 CrossRefGoogle Scholar
  16. Frankignoulle M, Abril G, Borges A, Bourge I, Canon C, Delille B, Libert E, Théate JM (1998) Carbon dioxide emission from European estuaries. Science 282(5388):434–436. doi: 10.1126/science.282.5388.434 CrossRefGoogle Scholar
  17. Grasshoff K, Ehrardt M, Kremling K (1983) Methods of seawater analysis. Verlag Chemie, MiamiGoogle Scholar
  18. IBGE (2011) Population Census 2000. Accessed 15 Sept 2013
  19. INMET (2013) Precipitação nos municípios do Estado de Pernambuco (1982–2013). Accessed 20 Aug 2013
  20. Laruelle GG, Dürr HH, Slomp CP, Borges AV (2010) Evaluation of sinks and sources of CO2 in the global coastal ocean using a spatially-explicit typology of estuaries and continental shelves. Geophys Res Lett 37:L15607. doi: 10.1029/2010GL043691 CrossRefGoogle Scholar
  21. Millero FJ, Graham TB, Huang F, Bustos-Serrano H, Pierrot D (2006) Dissociation constants of carbonic acid in seawater as a function of salinity and temperature. Mar Chem 100:80–94. doi: 10.1016/j.marchem.2005.12.001 CrossRefGoogle Scholar
  22. Mortatti J, Probst JL, Oliveira H, Bibian JP, Fernandes A (2006a) Fluxo de Carbono inorgânico dissolvido no Rio Piracicaba (São Paulo): partição e reações de equilíbrio do sistema carbonato. Geociências 25(4):429–436Google Scholar
  23. Mortatti J, Probst JL, Oliveira H, Bibian JP, Lopes RA, Bonasi JA (2006b) Origem do Carbono Inorgânico Dissolvido no Rio Tietê (São Paulo): Reações de equilíbrio e variabilidade temporal. Geochim Bras 20(3):267–277Google Scholar
  24. Neal C, House W, Jarvie H, Eatherall A (1998) The significance of dissolved carbon dioxide in major lowland rivers entering the North Sea. Sci Total Environ 210–211:187–203. doi: 10.1016/S0048-9697(98)00012-6 CrossRefGoogle Scholar
  25. NOAA (National Oceanic and Atmospheric Administration). Earth System Research Laboratory. Global Monitoring Division. Accessed 01 Aug 2013
  26. Noriega C, Araujo M (2009) Nitrogen and phosphorus loading in coastal watersheds in 652 northeastern Brazil. J Coast Res 56:871–875Google Scholar
  27. Noriega C, Araujo M, Lefèvre N (2013) Spatial and temporal variability of the CO2 fluxes in a tropical, highly urbanized estuary. Estuaries 36:1054–1072. doi: 10.1007/s12237-013-9608-1 CrossRefGoogle Scholar
  28. Peel MC, Finlayson BL, Mcmahon TA (2007) Updated world map of the Köppen–Geiger climate classification. Hydrol Earth Syst Sci 11:1633–1644. doi: 10.5194/hess-11-1633-2007 CrossRefGoogle Scholar
  29. Raymond PA, Cole JJ (2001) Gas exchange in rivers and estuaries: choosing a gas transfer velocity. Estuaries 24(2):312–317. doi: 10.2307/1352954 CrossRefGoogle Scholar
  30. Robbins LL, Hansen ME, Kleypas JA, Meylan SC (2010) CO2calc: a user-friendly seawater carbon calculator for Windows, Max OS X, and iOS (iPhone): US Geological Survey Open-File Report 2010–1280.
  31. Rounds SA (2006) Alkalinity and acid neutralizing capacity (ver. 3.0): US Geological Survey techniques of water-resources investigations, book 9, chap. A6. sec. 6.6. Accessed 13 June 2012
  32. Sarma VVSS, Vishnuvardham K, Rao GD, Prasad VR, Kumar BSK, Naidu SA, Kumar NA, Rao DB, Sridevi T, Krishna MS, Reddy NP, Sadhuram Y, Murty R (2012) Carbon dioxide emissions from Indian monsoonal estuaries. J Geophys Res 39:L03602. doi: 10.1029/2011GL050709 Google Scholar
  33. Souza MFL, Gomes VR, Freitas SS, Andrade RCB, Knoppers BA (2009) Net ecosystem metabolism and nonconservative fluxes of organic matter in a tropical mangrove estuary, Piauí River (NE of Brazil). Estuaries 32:111–122. doi: 10.1007/s12237-008-9104-1 CrossRefGoogle Scholar
  34. Weiss RF (1974) Carbon dioxide in water and seawater: the solubility of a non-ideal gas. Mar Chem 2:203–215. doi: 10.1016/0304-4203(74)90015-2 CrossRefGoogle Scholar
  35. Weiss RF, Price BA (1980) Nitrous oxide solubility in water and seawater. Mar Chem 8:347–359. doi: 10.1016/0304-4203(80)90024-9 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Carlos Noriega
    • 1
    • 2
    Email author
  • Moacyr Araujo
    • 1
    • 2
  • Nathalie Lefèvre
    • 3
  • Manuel Flores Montes
    • 1
  • Felipe Gaspar
    • 1
  • Dóris Veleda
    • 1
    • 2
  1. 1.Department of Oceanography (DOCEAN)Federal University of Pernambuco (UFPE)RecifeBrazil
  2. 2.Center for Risk Analysis and Environmental Modeling (CEERMA)Federal University of Pernambuco (UFPE)RecifeBrazil
  3. 3.LOCEAN Laboratory, IRD, CNRS, MNHNSorbonne Universités (UPMC, Univ Paris 06)ParisFrance

Personalised recommendations