Regional Environmental Change

, Volume 15, Issue 4, pp 569–579 | Cite as

Intensification of future severe heat waves in India and their effect on heat stress and mortality

  • Kamal Kumar Murari
  • Subimal Ghosh
  • Anand Patwardhan
  • Edoardo Daly
  • Kaustubh Salvi
Original Article

Abstract

Heat waves are expected to intensify around the globe in the future, with potential increase in heat stress and heat-induced mortality in the absence of adaptation measures. India has a high current exposure to heat waves, and with limited adaptive capacity, impacts of increased heat waves might be quite severe. This paper presents the first projections of future heat waves in India based on multiple climate models and scenarios for CMIP5 data. We find that heat waves are projected to be more intense, have longer durations and occur at a higher frequency and earlier in the year. Southern India, currently not influenced by heat waves, is expected to be severely affected by the end of the twenty-first century. Projections indicate that a sizable part of India will experience heat stress conditions in the future. In northern India, the average number of days with extreme heat stress condition during pre-monsoon hot season will reach 30. The intensification of heat waves might lead to severe heat stress and increased mortality.

Keywords

Heat wave Mortality CMIP5 Heat stress Adaptation Climate extremes 

Supplementary material

10113_2014_660_MOESM1_ESM.docx (168 kb)
Supplementary material 1 (DOCX 167 kb)

References

  1. Chaudhury SK, Gore JM, Ray KCS (2000) Impact of heat waves over India. Curr Sci 79:153–155Google Scholar
  2. Christensen JH, Boberg F (2012) Temperature dependent climate projection deficiencies in CMIP5 models. Geophys Res Lett. doi:10.1029/2012gl053650
  3. Das S, Smith SC (2012) Awareness as an adaptation strategy for reducing mortality from heat waves: evidence from a disaster risk management program in India. Clim Change Econ 3:1250010–1250011. doi:10.1142/S2010007812500108 CrossRefGoogle Scholar
  4. Dash SK, Kjellstrom T (2011) Workplace heat stress in the context of rising temperature in India. Curr Sci 101:497–503Google Scholar
  5. Dash SK, Mamgain A (2011) Changes in the frequency of different categories of temperature extremes in India. J Appl Meteorol Climatol 50:1842–1858. doi:10.1175/2011jamc2687.1 CrossRefGoogle Scholar
  6. De US, Dube RK, Rao GSP (2005) Extreme weather events over India in the last 100 years. J Ind Geophys Union 9:173–187Google Scholar
  7. Diffenbaugh NS, Ashfaq M (2010) Intensification of hot extremes in the United States. Geophys Res Lett 37. doi:10.1029/2010GL043888
  8. Diffenbaugh NS, Pal JS, Giorgi F, Gao X (2007) Heat stress intensification in the Mediterranean climate change hotspot. Geophys Res Lett 34. doi:10.1029/2007gl030000
  9. Dosio A, Paruolo P (2011) Bias correction of the ENSEMBLES high-resolution climate change projections for use by impact models: evaluation on the present climate. J Geophys Res 116. doi:10.1029/2011jd015934
  10. Dunne JP, Stouffer RJ, John JG (2013) Reductions in labour capacity from heat stress under climate warming. Nat Clim Change. doi:10.1038/nclimate1827
  11. Epstein Y, Moran DS (2006) Thermal comfort and the heat stress indices. Ind Health 44:388–398CrossRefGoogle Scholar
  12. Fischer EM, Knutti R (2012) Robust projections of combined humidity and temperature extremes. Nat Clim Change 3:126–130. doi:10.1038/nclimate1682 CrossRefGoogle Scholar
  13. Fischer EM, Schär C (2010) Consistent geographical patterns of changes in high-impact European heatwaves. Nat Geosci 3:398–403. doi:10.1038/ngeo866 CrossRefGoogle Scholar
  14. Ganguly AR et al (2009) Higher trends but larger uncertainty and geographic variability in 21st century temperature and heat waves. Proc Natl Acad Sci USA 106:15555–15559. doi:10.1073/pnas.0904495106 CrossRefGoogle Scholar
  15. Gosling SN, Lowe JA, McGregor GR, Pelling M, Malamud BD (2008) Associations between elevated atmospheric temperature and human mortality: a critical review of the literature. Clim Change 92:299–341. doi:10.1007/s10584-008-9441-x CrossRefGoogle Scholar
  16. Hajat S, Armstrong BG, Gouveia N, Wilkinson P (2005) Mortality displacement of heat-related deaths. Epidemiology 16:613–620. doi:10.1097/01.ede.0000164559.41092.2a CrossRefGoogle Scholar
  17. Hyatt OM, Lemke B, Kjellstrom T (2010) Regional maps of occupational heat exposure: past, present, and potential future. Glob Health Action 3. doi:10.3402/gha.v3i0.5715
  18. IPCC (2007) The physical science basis. Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Cambridge University Press, CambridgeGoogle Scholar
  19. Koppe C, Kovats S, Jendritzky G, Menne B (2004) Heat-waves: risks and responses. World Health Organization, Copenhagen. http://www.euro.who.int/__data/assets/pdf_file/0008/96965/E82629.pdf. Accessed 20 Dec 2012
  20. Kothawale DR, Revadekar JV, Kumar KR (2010) Recent trends in pre-monsoon daily temperature extremes over India. J Earth Syst Sci 119:51–65CrossRefGoogle Scholar
  21. Kothawale DR, Kumar KK, Srinivasan G (2012) Spatial asymmetry of temperature trends over India and possible role of aerosols. Theoret Appl Climatol 110:263–280. doi:10.1007/s00704-012-0628-8 CrossRefGoogle Scholar
  22. Li H, Sheffield J, Wood EF (2010) Bias correction of monthly precipitation and temperature fields from Intergovernmental Panel on Climate Change AR4 models using equidistant quantile matching. J Geophys Res 115. doi:10.1029/2009jd012882
  23. Meehl GA, Tebaldi C (2004) More intense, more frequent, and longer lasting heat waves in the 21st century. Science 305:994–997CrossRefGoogle Scholar
  24. Meehl GA et al (2007) The WCRP CMIP3 multimodel dataset: a new era in climate change research. Bull Am Meteorol Soc 88:1383–1394. doi:10.1175/bams-88-9-1383 CrossRefGoogle Scholar
  25. National Disaster Management Authority GoI (2007) National disaster management guidelines: preparation of state disaster management plans. http://www.adrc.asia/documents/dm_information/india_plan02.pdf. Accessed 20 March 2012
  26. Oleson KW, Bonan GB, Feddema J, Vertenstein M, Kluzek E (2010) Technical description of an urban parameterization for the Community Land Model (CLMU). Technical Note NCAR/TN-480+STR, doi:10.5065/D6K35RM9
  27. Pai DS, Thapliyal V, Kokate PD (2004) Decadal variation in the heat and cold waves over India during 1971–2000. Mausam 55:281–292Google Scholar
  28. Peng RD, Bobb JF, Tebaldi C, McDaniel L, Bell ML, Dominici F (2011) Toward a quantitative estimate of future heat wave mortality under global climate change. Environ Health Perspect 119:701–706. doi:10.1289/ehp.1002430 CrossRefGoogle Scholar
  29. Piani C, Haerter JO, Coppola E (2010) Statistical bias correction for daily precipitation in regional climate models over Europe. Theor Appl Climatol 99:187–192. doi:10.1007/s00704-009-0134-9 CrossRefGoogle Scholar
  30. Revadekar JV, Kothawale DR, Patwardhan SK, Pant GB, Rupa Kumar K (2011) About the observed and future changes in temperature extremes over India. Nat Hazards 60:1133–1155. doi:10.1007/s11069-011-9895-4 CrossRefGoogle Scholar
  31. Robine JM, Cheung SL, Le Roy S, Van Oyen H, Griffiths C, Michel JP, Herrmann FR (2008) Death toll exceeded 70,000 in Europe during the summer of 2003. C R Biol 331:171–178. doi:10.1016/j.crvi.2007.12.001 CrossRefGoogle Scholar
  32. Sherwood SC, Huber M (2010) An adaptability limit to climate change due to heat stress. Proc Natl Acad Sci USA 107:9552–9555. doi:10.1073/pnas.0913352107 CrossRefGoogle Scholar
  33. Srivastava AK, Rajeevan M, Kshirsagar SR (2009) Development of a high resolution daily gridded temperature data set (1969–2005) for the Indian region. Atmos Sci Lett. doi:10.1002/asl.232
  34. Tank AMGK, Zwiers FW, Zhang X (2009) Guidelines on analysis of extremes in a changing climate in support of informed decisions for adaptation. http://eca.knmi.nl/documents/WCDMP_72_TD_1500_en_1.pdf. Accessed 20 Feb 2012
  35. Tebaldi C, Knutti R (2007) The use of the multi-model ensemble in probabilistic climate projections. Philos Trans A Math Phys Eng Sci 365:2053–2075. doi:10.1098/rsta.2007.2076 CrossRefGoogle Scholar
  36. Tebaldi C, Mearns LO, Nychka D, Smith RL (2004) Regional probabilities of precipitation change: A Bayesian analysis of multimodel simulations. Geophys Res Lett 31. doi:10.1029/2004gl021276
  37. Unkašević M, Tošić I (2011) The maximum temperatures and heat waves in Serbia during the summer of 2007. Clim Change 108:207–223. doi:10.1007/s10584-010-0006-4 CrossRefGoogle Scholar
  38. Vuuren DP et al (2011) The representative concentration pathways: an overview. Clim Change 109:5–31. doi:10.1007/s10584-011-0148-z CrossRefGoogle Scholar
  39. Wilby RL, Charles SP, Zortia E, Timbal B, Whetton P, Mearns LO (2004) Guidelines for use of climate scenarios developed from statistical downscaling methods. http://www.ipcc-data.org/guidelines/dgm_no2_v1_09_2004.pdf. Accessed 26 Dec 2011

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Kamal Kumar Murari
    • 1
    • 2
  • Subimal Ghosh
    • 3
    • 4
  • Anand Patwardhan
    • 4
    • 5
  • Edoardo Daly
    • 6
  • Kaustubh Salvi
    • 3
  1. 1.IITB-Monash Research AcademyIndian Institute of Technology BombayMumbaiIndia
  2. 2.School of Habitat StudiesTata Institute of Social SciencesMumbaiIndia
  3. 3.Department of Civil EngineeringIndian Institute of Technology BombayPowai, MumbaiIndia
  4. 4.Interdisciplinary Program in Climate StudiesIndian Institute of Technology BombayMumbaiIndia
  5. 5.Shailesh J Mehta School of ManagementIndian Institute of Technology BombayMumbaiIndia
  6. 6.Department of Civil EngineeringMonash UniversityMelbourneAustralia

Personalised recommendations