Advertisement

Regional Environmental Change

, Volume 15, Issue 2, pp 329–339 | Cite as

Long-term biogeochemical functioning of the Red River (Vietnam): past and present situations

  • Thi Phuong Quynh LeEmail author
  • Gilles Billen
  • Josette Garnier
  • Van Minh Chau
Original Article

Abstract

The Red River (North Vietnam) is a typical example of a subtropical Asian river system undergoing high human pressure. During the last 50 years, major changes have occurred in its watershed, extending over an area of 156,450 km2 in Vietnam and China. We provide a detailed account of these changes, related to intensification of agriculture, deforestation, increase in population and urbanization, impoundment of reservoirs, etc. This information is used in a modeling approach of the nutrient transfers and transformations along the river system, in order to evaluate the changes in water quality of the Red River and its potential for coastal eutrophication. We conclude that the combination of increased nitrogen release from agriculture and retention of phosphorus in the reservoirs has considerably changed the balance of nutrients delivered at the outlet of the river, bringing the system close to a turning point in its nutrient biogeochemistry and its potential for coastal eutrophication. The upcoming impoundment of four new major dams in the watershed makes this conclusion particularly relevant.

Keywords

Nutrient Modeling Long-term period Eutrophication Red River Vietnam 

Notes

Acknowledgments

This work was conducted within the framework of the AUF action 2092 RR 823-923, the NAFOSTED 105.09.89.09, the NAFOSTED 105.09-2012.10 the IFS W4210-2, and the ARCP2013_06CMY_Quynh projects. The authors would like to thank the Agence Universitaire de la Francophonie (AUF), Vietnam’s National Foundation for Science and Technology Development (NAFOSTED), the International Foundation for Science, the Asia–Pacific Network for Global Change Research (APN), and the National Science Foundation (NSF) for their financial support.

Supplementary material

10113_2014_646_MOESM1_ESM.doc (5.8 mb)
Supplementary material 1 (DOC 5982 kb)

References

  1. Behrendt H, Kornmilch M, Opitz D, Schmoll O, Scholz G (2002) Estimation of the nutrient inputs into river systems—experiences from German rivers. Reg Environ Change 3:107–117. doi: 10.1007/s10113-002-0042-3 CrossRefGoogle Scholar
  2. Billen G, Garnier J (1997) The Phison River plume: coastal eutrophication in response to change in land use and water management in the watershed. Aquat Microb Ecol 13:3–17CrossRefGoogle Scholar
  3. Billen G, Garnier J (1999) Nitrogen transfers though the Seine drainage network, a budget based on the application of the ‘Riverstrahler’ model. Hydrobiologia 410:139–150CrossRefGoogle Scholar
  4. Billen G, Garnier J (2007) River basin nutrient delivery to the coastal sea: assessing its potential to sustain new production of non siliceous algae. Mar Chem 106:148–160. doi: 10.1016/j.marchem.2006.12.017 CrossRefGoogle Scholar
  5. Billen G, Somville M, DeBecker E, Servais P (1985) A nitrogen budget of the Scheldt hydrographic basin. Neth J Sea Res 19:223–230CrossRefGoogle Scholar
  6. Billen G, Garnier J, Hanset P (1994) Modelling phytoplankton development in whole drainage networks: the RIVERSTRAHLER model applied to the Seine river system. Hydrobiologia 289:119–137CrossRefGoogle Scholar
  7. Billen G, Garnier J, Rousseau V (2005) Nutrient fluxes and water quality in the drainage network of the Scheldt basin over the last 50 years. Hydrobiologia 540:47–67. doi: 10.1007/s10750-004-7103-1 CrossRefGoogle Scholar
  8. Billen G, Garnier J, Némery J, Sebilo M, Sferratore A, Barles S et al (2007) Nutrient transfers through the Seine river continuum: mechanisms and long term trends. Sci Total Environ 375:80–97CrossRefGoogle Scholar
  9. China data (1998–2001) Statistical yearbook of Yunnan, Vol. 1998–2001; China Statistical Publishing House (Basic Information of Yunnan, China) (http://chinadatacenter.org)
  10. Cloern JE (2001) Our evolving conceptual model of the coastal eutrophication problem. Mar Ecol Prog Ser 210:223–253CrossRefGoogle Scholar
  11. Conley DJ (1999) Biogeochemical nutrient cycles and nutrient management strategies. Hydrobiologia 289:87–96CrossRefGoogle Scholar
  12. Conley DJ, Schelske CL, Stoermer EF (1993) Modification of the biogeochemical cycle of silica with eutrophication. Mar Ecol Prog Ser 101:179–192CrossRefGoogle Scholar
  13. Conley D, Stålnacke P, Pitkänen H, Wilander A (2000) The transport and retention of dissolved silicate by rivers in Sweden and Finland. Limnol Oceanogr 45:1850–1853CrossRefGoogle Scholar
  14. Cugier Ph, Billen G, Guillaud JF, Garnier J, Ménesguen A (2005) Modelling the eutrophication of the Seine Bight (France) under historical, present and future riverine nutrient loading. J Hydrol 304:381–396CrossRefGoogle Scholar
  15. Dang AT (2000) The Red River Delta—the Cradle of the Nation, National University in Hanoi, pp 53Google Scholar
  16. Dang TH, Coynel A, Orange D, Blanc G, Etcheber H, Le LA (2010) Long-term monitoring (1960–2008) of the river-sediment transport in the Red River Watershed (Vietnam): temporal variability and dam-reservoir impact. Sci Total Environ 408:4654–4664CrossRefGoogle Scholar
  17. De Koninck R (1998) Le recul de la forêt au Viet Nam. Centre de recherches pour le développement international, pp 64Google Scholar
  18. DeFries R, Hansen M, Townshend JRG, Sohlberg R (1998) Global land cover classifications at 8 km spatial resolution: the use of training data derived from landsat imagery in decision tree classifiers. Int J Remote Sens 19(16):3141–3168CrossRefGoogle Scholar
  19. Eckhardt K (2005) How to construct recursive digital filters for baseflow separation. Hydrol Process 19:507–515CrossRefGoogle Scholar
  20. Eckhardt K (2008) A comparison of baseflow indices, which were calculated with seven different baseflow separation methods. J Hydrol 352:168–173CrossRefGoogle Scholar
  21. FAO (2010) FAOstat, Popstat updated 21 Sept 2009, http://faostat.fao.org/site/452/default.aspx
  22. Galloway JN, Cowling EB (2002) Reactive nitrogen and the world: 200 years of change. Ambio 31(2):64–71Google Scholar
  23. Garnier J, Billen G, Coste M (1995) Seasonal succession of diatoms and Chlorophyceae in the drainage network of the river Seine: observations and modelling. Limnol Oceanogr 40:750–765CrossRefGoogle Scholar
  24. Garnier J, Billen G, Palfner L (1999) Understanding the oxygen budget and related ecological processes in the Mosel drainage network: the Riverstrahler approach. Hydrobiologia 410:151–166CrossRefGoogle Scholar
  25. Garnier J, Billen G, Hannon E, Fonbonne S, Videnina Y, Soulie M (2002) Modeling transfer and retention of nutrients in the drainage network of the Danube River. Estuar Coast Shelf Sci 54:285–308CrossRefGoogle Scholar
  26. Garnier J, Némery J, Billen G, Théry S (2005) Nutrient dynamics and control of eutrophication in the Marne River system: modeling the role of exchangeable phosphorus. J Hydrol 304:397–412CrossRefGoogle Scholar
  27. Hansen M, DeFries R, Townshend JRG, Sohlberg R (2000) Global land cover classification at 1 km resolution using a decision tree classifier. Int J Remote Sens 21:1331–1365CrossRefGoogle Scholar
  28. Hoang Xuyen (2000) La Transition démographique. In: Population et Développement au Vietnam. Patrick Gubry, ed. Karthala/Ceped Paris. pp 61–82Google Scholar
  29. Howarth RW, Billen G, Swaney D, Townsend A, Jaworski N, Lajtha K et al (1996) Regional nitrogen budgets and riverine N and P fluxes for the drainages to the North Atlantic Ocean: natural and human influences. Biogeochemistry 35:75–139CrossRefGoogle Scholar
  30. Humborg C, Ittekkot V, Cociasu A, VonBodungen B (1997) Effect of Danube River damon Black Sea biogeochemistry and ecosystem structure. Nature 386:385–388CrossRefGoogle Scholar
  31. IMHE (1960–2009) Annual report of the Institute of Meteorology, Hydrology and Environment, Hanoi, VietnamGoogle Scholar
  32. Kummu M, Varis O (2007) Sediment-related impacts due to upstream reservoir trapping, the lower Mekong River. Geomorphology 85:275–293CrossRefGoogle Scholar
  33. Lancelot C, Gypens N, Billen G, Garnier J, Roubeix V (2007) Linking marine eutrophication to land use: an integrated river–ocean mathematical tool: The Southern Bight of the North Sea over the past 50 years. J Marine Syst 64:216–228. doi: 10.1016/j.jmarsys.2006.03.010 CrossRefGoogle Scholar
  34. Lancelot C, Thieu V, Polard A, Garnier J, Billen G, Hecq W, Gypens N (2011) Ecological and economic effectiveness of nutrient reduction policies on coastal Phaeocystis colony blooms in the Southern North Sea: an integrated modeling approach. Sci Total Environ 409:2179–2191. doi: 10.1016/j.scitotenv.2011.02.023 CrossRefGoogle Scholar
  35. Le TPQ, Billen G, Garnier J, Théry S, Fézard C, Chau VM (2005) Nutrient (N, P) budgets for the Red River basin (Vietnam and China). Global Biogeochem Cy 19:GB2022. doi: 10.1029/2004GB002405 Google Scholar
  36. Le TPQ, Billen G, Garnier J, Théry S, Chau VM (2007) The changing of flow regime and sediment load of the Red River, Vietnam. J Hydrol 334:199–214. doi: 10.1016/j.jhydrol.2006.10.020 CrossRefGoogle Scholar
  37. Le TPQ, Billen G, Garnier J, Théry S, Ruelland D, Nghiem XA, Chau VM (2010) Modelling nutrient transfer in the sub-tropical Red River system (China and Vietnam): implementation of the Seneque/Riverstrahler model. J Asian Earth Sci 37:259–274CrossRefGoogle Scholar
  38. Luu TNM, Garnier J, Billen G, Le TPQ, Némery J, Orange D, Le LA (2012) N, P, Si budgets for the Red River Delta (Northern Vietnam): how the delta affects river nutrient deliveries to the sea. Biogeochemistry 107(1–3):241–259CrossRefGoogle Scholar
  39. Mai VT (2007) Soil erosion and nitrogen leaching in northern Vietnam: Experimentation and modelling. PhD thesis Wageningen University. ISBN: 90-8504-605-xGoogle Scholar
  40. Milliman JD (1997) Blessed dams or damned dams? Nature 386:325–327CrossRefGoogle Scholar
  41. MOSTE (1997) Vietnamese general statistics officer, Ministry of Science, Technology and Environment of Vietnam, general statistics editor, Hanoi, p 550Google Scholar
  42. Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models part I A discussion of principles. J Hydrol 10:282–290CrossRefGoogle Scholar
  43. Page ES (1954) Continuous inspection schemes. Biometrika 41:1–10CrossRefGoogle Scholar
  44. Poffenberger M (1998) Research network report. A collaborative study by the Asia Forest Network and the Forest Inventory and Planning Institute. Asia Forest Network. Stewards of Vietnam’s upland forests, pp 104Google Scholar
  45. Sebilo M, Billen G, Grably M, Mariotti A (2003) Isotopic composition of nitrate-nitrogen as a marker of riparian and benthic denitrification at the scale of the whole Seine River system. Biogeochemistry 63:35–51CrossRefGoogle Scholar
  46. Seitzinger SP, Mayorga E, Bouwman AF, Kroeze C, Beusen AHW, Billen G et al (2010) Global river nutrient export: a scenario analysis of past and future trends. Global Biogeochem Cy 24:GB0A08. doi: 10.1029/2009GB003587 Google Scholar
  47. Struyf E, Smis A, Van Damme S, Garnier J, Govers G, Van Wesemael B et al (2010) Historical land use change has lowered terrestrial silica mobilization. Nat Commun 1:129CrossRefGoogle Scholar
  48. Syvitski JPM, Vorosmarty CJ, Kettner AJ, Green P (2005) Impact of humans on the flux of terrestrial sediment to the global coastal ocean. Science 308(5720):376–380CrossRefGoogle Scholar
  49. Thieu V, Billen G, Garnier J (2009) Nutrient transfer in three contrasting NW European watersheds: the Seine, Somme, and Scheldt Rivers. A comparative application of the Seneque/Riverstrahler model. Water Res 43(6):1740–1754CrossRefGoogle Scholar
  50. Turner RE, Rabalais NN (2003) Linking landscape and water quality in the Mississippi river basin for 200 years. Bioscience 53(6):563–572CrossRefGoogle Scholar
  51. Turner RE, Rabalais NN, Justic D, Dortch Q (2003) Future aquatic nutrient limitations. Mar Pollut Bull 46:1032–1034CrossRefGoogle Scholar
  52. Van Drecht G, Bouwman AF, Harrison J, Knoop JM (2009) Global nitrogen and phosphate in urban wastewater for the period 1970 to 2050. Glob Biogeochem Cy 23:GB0A03. doi: 10.1029/2009GB003458 Google Scholar
  53. Vörösmarty CJ, Meybeck M, Fekete B, Sharma K (1997) The potential impact of neo-Castorization on sediment transport by the global network of rivers. In: Walling DE, Probst JL (eds) Human impact on erosion and sedimentation. (Proc. Rabat symposium, April 1997), IAHS Publication No. 245. IAHS Press, Wallingford, UK, pp 261–273Google Scholar
  54. Vörösmarty CJ, Meybeck M, Fekete B, Sharma K, Green P, Syvitski JPM (2003) Anthropogenic sediment retention: major global impact from registered river impoundments. Glob Planet Change 39:169–190CrossRefGoogle Scholar
  55. Walling DE, Fang D (2003) Recent trends in the suspended sediment loads of the world’s rivers. Glob Planet Change 39:111–126. doi: 10.1016/S0921-8181(03)00020-1 CrossRefGoogle Scholar
  56. Xu K, Milliman JD (2009) Seasonal variations of sediment discharge from the Yangtze River before and after impoundment of the Three Gorges Dam. Geomorphology 104:276–283CrossRefGoogle Scholar
  57. Yang SL, Zhao QY, Belkin IM (2002) Temporal variation in the sediment load of the Yangtze River and the influences of human activities. J Hydrol 263:56–71CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Thi Phuong Quynh Le
    • 1
    Email author
  • Gilles Billen
    • 2
  • Josette Garnier
    • 2
  • Van Minh Chau
    • 3
  1. 1.Institute of Natural Product ChemistryVietnam Academy of Science and TechnologyHanoiVietnam
  2. 2.CNRS and University of Paris VIParisFrance
  3. 3.Institute of Marine BiochemistryVietnam Academy of Science and TechnologyHanoiVietnam

Personalised recommendations