Regional Environmental Change

, Volume 15, Issue 2, pp 251–263 | Cite as

A comparative analysis of the impacts of climate change and irrigation on land surface and subsurface hydrology in the North China Plain

  • Guoyong LengEmail author
  • Qiuhong Tang
  • Maoyi Huang
  • Lai-yung Ruby Leung
Original Article


Few studies have investigated the similar/different characteristics of regional environmental changes induced by climate change and human activities (e.g., irrigation, groundwater pumping). In this study, three climate change scenarios and one irrigation scenario were simulated using the Community Land Model 4.0 to investigate and compare the water-related environmental changes induced by climate change and irrigation in the North China Plain (NCP). Compared to future change climate scenarios, extensive groundwater-fed irrigation in the NCP could have similar magnitude of effects on land surface fluxes and states, but with much larger effects on subsurface water fluxes/states. For example, it was found that groundwater-fed irrigation has led to the decrease of annual mean water table depth by 1 m in major agricultural areas of the NCP while climate change has negligible impacts on water table depth. That is, human water use tends to dominate the subsurface water balance in the NCP. Moreover, climate change and irrigation exhibited different effects on the vertical profile of soil column. That is, irrigation appears to have much larger effects on the top layer soil moisture (SM) whereas increase in precipitation associated with climate change exerts more influence on lower layer SM. Through indentifying the similar/different characteristics between climate change and irrigation, our results highlight the importance of exactly accounting for the effects of human water use and could provide guidance for determining effective measures for adapting to environmental changes induced by climate change and human water use for this region.


Climate change Irrigation Land surface/subsurface hydrology North China Plain 



This work was supported by the National Natural Science Foundation of China (Grant No. 41171031), National Basic Research Program of China (Grant No. 2012CB955403), and Hundred Talents Program of the Chinese Academy of Sciences. M. Huang and L. R. Leung are supported by the U.S. Department of Energy Regional and Global Climate Modeling Program through the bilateral agreement between U.S. Department of Energy and China Ministry of Science and Technology on regional climate research. PNNL is operated for the US DOE by Battelle Memorial Institute under Contract DE-AC05-76RL01830. The authors thank two anonymous reviewers for their valuable comments that were helpful in improving this manuscript.

Supplementary material

10113_2014_640_MOESM1_ESM.docx (14 kb)
Supplementary material 1 (DOCX 13 kb)
10113_2014_640_MOESM2_ESM.docx (14 kb)
Supplementary material 2 (DOCX 14 kb)


  1. Causapé J, Quílez D, Aragüés R (2004) Assessment of irrigation and environmental quality at the hydrological basin level: II. Salt and nitrate loads in irrigation return flows. Agr Water Manage 70(3):211–228. doi: 10.1016/j.agwat.2004.06.006 Google Scholar
  2. Chen Y, Yang K, He J, Qin J, Shi J, Du J, He Q (2011) Improving land surface temperature modeling for dry land of China. J Geophys Res 116:D20104. doi: 10.1029/2011JD015921 CrossRefGoogle Scholar
  3. Dan L, Ji J, Xie Z, Chen F, Wen G, Richey JE (2012) Hydrological projections of climate change scenarios over the 3H region of China: a VIC model assessment. J Geophys Res 117:D11102. doi: 10.1029/2011JD017131 CrossRefGoogle Scholar
  4. Döll P (2002) Impact of climate change and variability on irrigation requirements: a global perspective. Clim Chang 54(3):269–293. doi: 10.1023/A:1016124032231 CrossRefGoogle Scholar
  5. Famiglietti JS, Lo M, Ho SL, Bethune J, Anderson KJ, Syed TH, Swenson SC, de Linage CR, Rodell M (2011) Satellites measure recent rates of groundwater depletion in California’s Central Valley. Geophys Res Lett 38:L03403. doi: 10.1029/2010GL046442 CrossRefGoogle Scholar
  6. Ferguson I, Maxwell RM (2012) Human impacts on terrestrial hydrology: climate change versus pumping and irrigation. Environ Res Lett 7:044022. doi: 10.1088/1748-9326/7/4/044022 CrossRefGoogle Scholar
  7. Foster S, Garduño H, Evans R, Olson D, Tian Y, Zhang W, Han Z (2004) Quaternary aquifer of the North China Plain—assessing and achieving groundwater resource sustainability. Hydrogeol J 12:81–93CrossRefGoogle Scholar
  8. Fu G, Charles SP, Yu J, Liu C (2009) Decadal climatic variability, trends, and future scenarios for the North China Plain. J Clim 22:2111–2123. doi: 10.1175/2008JCLI2605.1 CrossRefGoogle Scholar
  9. Gent P, Yeager S, Neale R, Levis S, Bailey D (2010) Improvements in a half degree atmosphere/land version of the CCSM. Clim Dyn 34:819–833. doi: 10.1007/s00382-009-0614-8 CrossRefGoogle Scholar
  10. Haddeland I, Lettenmaier DP, Skaugen T (2006) Effects of irrigation on the water and energy balances of the Colorado and Mekong river basins. J Hydrol 324:210–223. doi: 10.1016/j.jhydrol.2005.09.028 CrossRefGoogle Scholar
  11. Isidoro D, Quílez D, Aragüés R (2006) Environmental impact of irrigation in La Violada district (Spain). J Environ Qual 35(3):766–775CrossRefGoogle Scholar
  12. Isidoro D, Quílez D, Aragüés R (2010) Drainage water quality and end-member identification in La Violada irrigation district (Spain). J Hydrol 382:154–162. doi: 10.1016/j.jhydrol.2009.12.026 CrossRefGoogle Scholar
  13. Ke Y, Leung RL, Huang M, Coleman AM, Li H, Wigmosta MS (2012) Developing high resolution land surface parameters for community land model. Geosci Model Dev 5:1435–1481. doi: 10.5194/gmdd-5-1435-2012 CrossRefGoogle Scholar
  14. Kendy E, Zhang Y, Liu C, Wang J, Steenhuis TS (2004) Groundwater recharge from irrigated cropland in the North China Plain: case study of Luancheng County, Hebei Province, 1949–2000. Hydrol Process 18:2289–2302CrossRefGoogle Scholar
  15. Kueppers LM, Snyder MA, Sloan LC (2007) Irrigation cooling effect: regional climate forcing by land-use change. Geophys Res Lett 34:L03703. doi: 10.1029/2006GL028679 CrossRefGoogle Scholar
  16. Kustu MD, Fan Y, Robock A (2010) Large-scale water cycle perturbation due to irrigation pumping in the US High Plains: a synthesis of observed streamflow changes. J Hydrol 390(3–4):222–244. doi: 10.1016/j.jhydrol.2010.06.045 CrossRefGoogle Scholar
  17. Lawrence D, Oleson KW, Flanner MG, Thorton PE, Swenson SC, Lawrence PJ, Zeng X, Yang Z, Levis S, Skaguchi K, Bonan GB, Slater AG (2011) Parameterization improvements and functional and structural advances in version 4 of the community land model. J Adv Model Earth Syst 3:M03001. doi: 10.1029/2011MS000045 CrossRefGoogle Scholar
  18. Leng G, Huang M, Tang Q, Sacks WJ, Lei H, Leung LR (2013a) Modeling the effects of irrigation on land surface fluxes and states over the conterminous United States: sensitivity to input data and model parameters. J Geophys Res 118:9789–9803. doi: 10.1002/jgrd.50792 Google Scholar
  19. Leng G, Huang M, Tang Q, Leung LR (2013b) Modeling the effects of groundwater-fed irrigation on terrestrial hydrology over the conterminous United States. J Hydrometeorol. doi:  10.1175/JHM-D-13-049.1
  20. Leng G, Tang Q, Huang M, Hong Y, Leung LR (2014) Projected changes in mean and interannual variability of surface water over continental China. Sci China Earth Sci (Accepted) Google Scholar
  21. Li H, Robock A, Liu S, Mo X, Viterbo P (2005) Evaluation of reanalysis soil moisture simulations using updated Chinese soil moisture observations. J Hydrometeorol 6:180–193CrossRefGoogle Scholar
  22. Liu C, Yu J, Kendy E (2001) Groundwater exploitation and its impact on the environment in the North China Plain. Water Int 26:265–272CrossRefGoogle Scholar
  23. Liu J, Zheng C, Zheng L, Lei Y (2008) Ground water sustainability: methodology and application to the North China Plain. Ground Water 46:897–909Google Scholar
  24. Lo M, Famiglietti JS (2013) Irrigation in California’s Central Valley strengthens the southwestern US. Water cycle. Geophys Res Lett 40:301–306. doi: 10.1002/grl.50108 CrossRefGoogle Scholar
  25. Lobell D, Bala G, Mirin A, Phillips T, Maxwell R, Rotman D (2009) Regional differences in the influence of irrigation on climate. J Clim 22:2248–2255. doi: 10.1175/2008JCLI2703.1 CrossRefGoogle Scholar
  26. Mo X, Liu S, Lin Z, Guo R (2009) Regional crop yield, water consumption and water use efficiency and their responses to climate change in the North China Plain. Agric Ecosyst Environ 134:67–78CrossRefGoogle Scholar
  27. Mo X, Guo R, Liu S, Lin Z, Hu S (2013) Impacts of climate change on crop evapotranspiration with ensemble GCM projections in the North China Plain. Clim Chang 120:299–312. doi: 10.1007/s10584-013-0823-3 CrossRefGoogle Scholar
  28. Moiwo JP, Yang Y, Li H, Han S, Yang Y (2010) Impact of water resource exploitation on the hydrology and water storage in Baiyangdian Lake. Hydrol Process 24:3026–3039. doi: 10.1002/hyp.7716
  29. Niu G, Yang Z, Dickinson RE, Gulden LE (2005) A simple TOPMODEL-based runoff parameterization (SIMTOP) for use in global climate models. J Geophys Res 110:D21106. doi: 10.1029/2005JD006111 CrossRefGoogle Scholar
  30. Ozdogan M, Rodell M, Beaudoing HK, Toll DL (2010) Simulating the effects of irrigation over the United States in a land surface model based on satellite-derived agricultural data. J Hydrometeor 11:171–184. doi: 10.1175/2009JHM1116.1 CrossRefGoogle Scholar
  31. Playán E, Pérez-Coveta O, Martínez-Cob A, Herrero J, García-Navarro P, Latorre B, Brufau P, Garcés J (2008) Overland water and salt flows in a set of rice paddies. Agr Water Manage 95(6):645–658. doi: 10.1016/j.agwat.2008.01.012 Google Scholar
  32. Qin DH, Chen Y, Li X (2005) Climate and environment changes in china (i): climate and environment changes in china and their projections. Science, Beijing, p 562Google Scholar
  33. Rodell M, Velicogna I, Famiglietti JS (2009) Satellite-based estimates of groundwater depletion in India. Nature 460:999–1002. doi: 10.1038/nature08238 CrossRefGoogle Scholar
  34. Sacks WJ, Cook BI, Buenning N, Levis S, Helkowski JH (2009) Effects of global irrigation on the near-surface climate. Clim Dyn 33:159–175. doi: 10.1007/s00382-008-0445-z CrossRefGoogle Scholar
  35. Scanlon BR, Fauntb CC, Longuevergne L, Reedy RC, Alley WM, McGuire VL, McMahon PB (2012) Groundwater depletion and sustainability of irrigation in the US High Plains and Central Valley. Proc Natl Acad Sci USA 109:9320–9325. doi: 10.1073/pnas.1200311109 CrossRefGoogle Scholar
  36. Siebert S, Döll P, Hoogeveen J, Faures JM, Frenken K, Feick S (2005) Development and validation of the global map of irrigation areas. Hydrol Earth Syst Sci 9:535–547. doi: 10.5194/hess-9-535-2005 CrossRefGoogle Scholar
  37. Sorooshian S, Li J, Hsu KL, Gao X (2012) Influence of irrigation schemes used in regional climate models on evapotranspiration estimation: results and comparative studies from California’s Central Valley agricultural regions. J Geophys Res 117:D06107. doi: 10.1029/2011JD016978 Google Scholar
  38. Sun H, Liu C, Zhang X, Shen Y, Zhang Y (2006) Effects of irrigation on water balance, yield and WUE of winter wheat in the North China Plain. Agric Water Mange 85:211–218. doi: 10.1016/j.agwat.2006.04.008 CrossRefGoogle Scholar
  39. Tang Q, Oki T, Kanae S, Hu H (2007) The influence of precipitation variability and partial irrigation within grid cells on a hydrological simulation. J Hydrometeorol 8:499–512. doi: 10.1175/JHM589.1 CrossRefGoogle Scholar
  40. Taylor RG, Scanlon B, Döll P, Rodell M, van Beek R, Wada Y, Longuevergne L, Leblanc M, Famiglietti JS, Edmunds M (2012) Ground water and climate change. Nat Clim Change. doi: 10.1038/nclimate1744
  41. Trenberth KE, Dai A, Rasmussen RM, Parsons DB (2003) The changing character of precipitation. Bull Am Meteorol Soc 84:1205–1217CrossRefGoogle Scholar
  42. Vörösmarty CJ, Green P, Salisbury J, Lammers RB (2000) Global water resources: vulnerability from climate change and population growth. Science 289(5477):284–288CrossRefGoogle Scholar
  43. Wang J, Huang J, Rozelle S, Huang Q, Blanke A (2007) Agriculture and groundwater development in northern China: trends, institutional responses, and policy options. Water Policy 9:61–74CrossRefGoogle Scholar
  44. Wang J, Mendelsohn R, Dinar A, Huang J, Rozelle S, Zhang L (2008a) The impact of climate change on china’s agriculture. Agric Econ 40:323–337CrossRefGoogle Scholar
  45. Wang S, Shao J, Song X, Zhang Y, Huo Z, Zhou X (2008b) Application of MODFLOW and geographic information system to groundwater flow simulation in North China Plain, China. Environ Geol 55:1449–1462CrossRefGoogle Scholar
  46. Wang S, Song X, Wang Q, Xiao G, Liu C, Liu J (2009) Shallow groundwater dynamics in North China Plain. J Geogr Sci 19(2):175–188CrossRefGoogle Scholar
  47. Xiong W, Matthews R, Holman I, Lin E, Xu Y (2007) Modelling China’s potential maize production at regional scale under climate change. Clim Change 85:433–451CrossRefGoogle Scholar
  48. Yang K, He J, Tang W, Qin J, Cheng C (2010) On downward shortwave and longwave radiations over high altitude regions: observation and modeling in the Tibetan Plateau. Agric For Meteorol 150:38–46CrossRefGoogle Scholar
  49. Zou J, Xie Z, Yu Y, Zhan C, Sun Q (2014) Climatic responses to anthropogenic groundwater exploitation: a case study of the Haihe River Basin, Northern China. Clim Dyn 42:2125–2145. doi: 10.1007/s00382-013-1995-2 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Guoyong Leng
    • 1
    • 3
    Email author
  • Qiuhong Tang
    • 1
  • Maoyi Huang
    • 2
  • Lai-yung Ruby Leung
    • 2
  1. 1.Institute of Geographic Sciences and Natural Resources ResearchChinese Academy of SciencesBeijingChina
  2. 2.Atmospheric Sciences and Global Change DivisionPacific Northwest National LaboratoryRichlandUSA
  3. 3.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations