Regional Environmental Change

, Volume 14, Issue 3, pp 967–980 | Cite as

A framework with an integrated computer support tool to assess regional biomass delivery chains

  • B. S. Elbersen
  • E. Annevelink
  • J. Roos Klein-Lankhorst
  • J. P. Lesschen
  • I. Staritsky
  • J. W. A. Langeveld
  • H. W. Elbersen
  • J. P. M. Sanders
Original Article

Abstract

In this paper, we first provide a brief overview of other decision support tools for bioenergy and assess to which extent the integrated tool central in this paper is different and novel. Next, a description is given of the tool, the different models used and the functionalities. The working of the tool is then illustrated with three case studies based in the northern part of The Netherlands. The computerised tool is meant to support the communication process between stakeholders to come to the implementation of regional biomass delivery chains. It helps to create a quick and common understanding of optimal biomass use in a region. Although the tool has been applied only to bioenergy chains, other biochemical and biomaterial chains are also suitable to be incorporated. The three case studies presented include a conventional sugar beet bioethanol production chain, an advanced Miscanthus bioethanol conversion chain and a straw-based electricity chain. The main conclusions are that optimal biomass use for non-food purposes from a sustainability and resource-efficient perspective depend on many different factors specific to the conversion chains. For example, the green house gas (GHG) emission and mitigation potential of a sugar beet-based bioethanol chain requires careful organisation particularly on the primary biomass production and transport, while in a straw-based electricity chain, the largest efficiency gains can be reached in the conversion part. Land use change (LUC) to sugar beet generally causes more negative environmental impacts than LUC to Miscanthus. This applies to both GHG efficiency, soil organic carbon content and emissions of nitrogen to surface waters. At the same time, it becomes clear that the different scenario assumptions can be very influential, particularly on the final economic performance of a chain. Overall, it is clear from the cases that the users understand much better under which circumstances and through which mechanisms the designed chains can become profitable and can become more environmentally sustainable.

Keywords

Biomass delivery chains Sustainability Resource efficiency 

Notes

Acknowledgments

This paper is based on the results of the ME4 project. We thank all partners for their contribution to the project results, of which the integrated framework including a computerised tool are presented in this paper. We also thank the research programme BSIK, the Ministry of Economic Affairs (KB-13-005-009) and Shell for funding the research. The presented framework in this paper will be further elaborated in an EU-project S2BIOM (http://www.s2biom.eu/) that started in September 2013 and will run for 3 years. In this project, the framework functionalities will be improved, new technologies included and it will be tested for several EU regions. A further integration with the BeWhere model (IIASA, see Table 1) is to be made.

References

  1. Biomass Futures project (2012) www.biomassfutures.eu
  2. IEA BioT42 (2012) (IEA Bioenergy Task 42—Biorefinery) (2012) In: de Jong E et al. (ed) Bio-based chemicalsvalue added products from biorefineries. Wageningen http://www.ieabioenergy.com/LibItem.aspx?id=7311
  3. Brentrup F, Pallière C (2009) GHG emissions and energy efficiency in European nitrogen fertiliser production and use. In: IFA Proceedings No 639. International Fertiliser Society, York, United KingdomGoogle Scholar
  4. Brouwer F, Huinink JTM (2002) Relative yield reduction levels for combinations of soil types and water levels. Actualised help-tables and yield depression maps (‘Opbrengstdervingspercentages voor combinaties van bodemtypen en grondwatertrappen. Geactualiseerde help-tabellen en opbrengstdepressiekaarten’. Alterra, Research instituut groene ruimte en expertise centrum LNV: Wageningen. p. 38Google Scholar
  5. CBS/LEI (2007) Agricultural yield statistics (‘Oogstramingsdata’)Google Scholar
  6. Cuppen E (2010) Putting perspectives into participation: constructive conflict methodology for problem structuring in stakeholders dialogues. PhD thesis, 89–179Google Scholar
  7. De Wolf M, Van der Klooster A (2006) Qualitative information on arable and horticultural cropping. (‘Kwantitatieve informatie akkerbouw en vollegrondsgroenteteelt 2006’). Wageningen, Praktijkonderzoek Plant & Omgeving, Wageningen, PPO report 354Google Scholar
  8. EC (2009) Directive 2009/28/EC on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC. THE European Parliament and the European Commission, Brussels. http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=Oj:L:2009:140:0016:0062:en:PDF. Accessed 28 June 2012
  9. EC (2011) Roadmap to a resource Efficient Europe. COM/2011/571. European Commission, Brussels. http://ec.europa.eu/environment/resource_efficiency/pdf/com2011_571.pdf. Accessed 28 June 2012
  10. EEA (2013) EU bioenergy potential from a resource-efficiency perspective. EEA report no. 6/2013. Copenhagen 2013. ISSN 1725 9177Google Scholar
  11. Eickhout B, van Meijl H, Tabeau A, van Rheenen T (2007) Economic and ecological consequences of four European land-use scenarios. Land Use Policy 24:562–575CrossRefGoogle Scholar
  12. Eurobserv’er (2011) Solid biomass barometer—November 2011Google Scholar
  13. Fraters B, Boumans LJM, van Leeuwen TC, Reijs JW (2007) De uitspoeling van het stikstofoverschot naar grond-en oppervlaktewater op landbouwbedrijven. RIVM Rapport 680716002/2007, RIVM, BilthovenGoogle Scholar
  14. Houtsma J (2008) Personal communication. Da Vinci Finance, FrieslandGoogle Scholar
  15. IPCC (2000). IPCC special report. Emission scenarios. A special report of IPCC Working Group III. ISBN: 92-9169-113-5Google Scholar
  16. IPCC (2006) The 2006 Guidelines for national greenhouse gas inventories. Prepared by the National Greenhouse Gas Inventories Programme. In: Eggleston HS, Buendia L, Miwa K, Ngara T, Tanabe K (eds) IGES, Hayama, Japan. www.ipcc-ggip.iges.or.jp/public/2006gl/index.html
  17. Kalf R (2011) Manual for dealing with non-technical aspects in bio-energy project development. KEMA, Note, 4 ppGoogle Scholar
  18. Langeveld JWA, Kalf R, Elbersen HW (2010a) Effectivity of bioenergy production chain development policies: an assessment for The Netherlands. 18th European biomass conference and exhibition, Lyon, pp 2358–2362Google Scholar
  19. Langeveld JWA, Kalf R, Elbersen HW (2010b) Bioenergy production chain development in The Netherlands: key factors for success. Biofuels Bioprod Biorefin 4:484–493CrossRefGoogle Scholar
  20. Lensink S, Londo M (2009) Assessment of biofuels supporting policies using the BioTrans model. Biomass Bioenergy 34(2):218–226CrossRefGoogle Scholar
  21. Lesschen JP, Kuikman PJ, van den Wyngaert I (2009) Zero emission greenhouse gases from agriculture and horticulture in Gelderland (‘Nulmeting emissie broeikasgassen Gelderse land- en tuinbouw’). Alterra-rapport 1891. Alterra, WageningenGoogle Scholar
  22. Pedroli B, Langeveld H (2012) (eds) Impacts of renewable energy on European farmers. Creating benefits for farmers and society. Final report for the European Commission Directorate-General Agriculture and Rural DevelopmentGoogle Scholar
  23. van Bakel PJT (2007) HELP-2006. Extension and up-date of HELP-2005-tables as an instrument to relieve flooding disasters. (‘Uitbreiding en actualisering van de HELP-2005-tabellen ten behoeve van het Waternood-instrumentarium’) (Stowa-rapport 2007-13) (Utrecht—STOWA)Google Scholar
  24. van der Hilst F, Dornburg V, Sanders JPM, Elbersen B, Graves A, Turkenburg WC, Elbersen HW, van Dam JMC, Faaij APC (2010) Potential, spatial distribution and economic performance of regional biomass chains: the North of The Netherlands as example. Agric Syst 103(7):403–417CrossRefGoogle Scholar
  25. Van der Hilst F, Lesschen JP, van Dam JMC, Riksen M, Verweij PA, Sanders JPM, Faaij APC (2012) Spatial variation of environmental impacts of regional biomass chains. Renew Sustain Energy Rev 16:2053–2069CrossRefGoogle Scholar
  26. van Herwijnen M, Koomen E, Beinat E (2002) Methoden en systemen voor het afwegingskader Ruimtelijke Effecten. IVM, Rapport nummer E02-14, 78 ppGoogle Scholar
  27. Verboom J, Alkemade R, Klijn J, Metzger MJ, Reijnen R (2007) Combining biodiversity modeling with political and economic development scenarios for 25 EU countries. Ecol Econom 62:267–276. doi: 10.1016/j.ecolecon.2006.04.009 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • B. S. Elbersen
    • 1
  • E. Annevelink
    • 2
  • J. Roos Klein-Lankhorst
    • 1
  • J. P. Lesschen
    • 1
  • I. Staritsky
    • 1
  • J. W. A. Langeveld
    • 3
  • H. W. Elbersen
    • 2
  • J. P. M. Sanders
    • 4
  1. 1.Alterra Wageningen URWageningenThe Netherlands
  2. 2.Wageningen UR Food and Biobased ResearchWageningenThe Netherlands
  3. 3.Biomass ResearchWageningenThe Netherlands
  4. 4.Valorisation Plant Production SystemsWageningen URWageningenThe Netherlands

Personalised recommendations