Advertisement

Regional Environmental Change

, Volume 14, Issue 3, pp 1123–1138 | Cite as

Reference conditions for rivers of the German Baltic Sea catchment: reconstructing nutrient regimes using the model MONERIS

  • Ulrike Hirt
  • Judith Mahnkopf
  • Mathias Gadegast
  • Lukas Czudowski
  • Ute Mischke
  • Claudia Heidecke
  • Gerald Schernewski
  • Markus Venohr
Original Article

Abstract

We introduce an approach for establishing reference conditions (RC) for rivers of the German Baltic Sea catchment, based on predictive modelling. An extensive data set of statistics from the year 1880 was coupled with literature data, providing a comprehensive basis for the calculation of regional historical nutrient emissions into rivers, river nutrient concentrations, and nutrient loading into the sea. Four different scenarios were calculated: scenario 1 assumed RC following previously established criteria for lakes (Poikane et al. in Environ Manag 45(6):1286–1298, 2010), scenario 4 applied the nutrient emission conditions of 1880 (considering non-intensive land usage, the presence of tile drainage systems, sewer systems, and the human population from 1880), and scenarios 2 and 3 considered intermediate conditions. Our results showed that nutrient emissions from scenario 1 accounted for approximately one-tenth of the currently observed total nitrogen (TN) and total phosphorus (TP) emissions. The nutrient emissions calculated for 1880 (scenario 4) were found to be 47 % (TN) and 55 % (TP) higher than those calculated considering reference lake conditions (scenario 1). Our results suggest that RC nutrient concentrations in rivers in the German Baltic Sea catchment were clearly below 0.05 mg/l for TP and 1 mg/l for TN. This range is in accordance with historical and calculated pristine nutrient concentrations from other rivers in similar catchments.

Keywords

Reference condition Baltic Sea catchments MONERIS Nutrient emission Nitrogen Phosphorus Water framework directive 

Notes

Acknowledgments

We gratefully acknowledge the help of Isabel Kulb for creating the maps. We thank Soren Brothers for linguistic help and two anonymous reviewers for helpful comments. The German Federal States (Landesamt für Landwirtschaft, Umwelt und ländliche Räume des Landes Schleswig–Holstein; Landesamtes für Umwelt, Naturschutz und Geologie Mecklenburg-Vorpommern) provided the recent soil maps (BÜK 200 unpublished; 2010). The work was conducted with support by the German Ministry of Education and Research (BMBF) in the Baltic Sea project “RADOST” (Regionale Anpassungsstrategien für die deutsche Ostseeküste; Project ID Number 01 LR 0807).

References

  1. Auerswald K, Kainz M (1998) Erosionsgefährdung (C-Faktor) durch Sonderkulturen. Bodenschutz 3:98–102Google Scholar
  2. Baattrup-Pedersen A, Kristensen EA, Jorgensen J, Skriver J, Kronvang B, Andersen HE, Hoffman CC, Larsen LMk (2009) Can a priori defined reference criteria be used to select reference sites in Danish streams? Implications for implementing the Water Framework Directive. J Environ Monit 11:344–352CrossRefGoogle Scholar
  3. Balls PW (1994) Nutrient inputs to estuaries from nine Scottish east coast rivers; influence of estuarine processes on inputs to the North Sea. Estuar Coast Shelf Sci 39(4):329–352CrossRefGoogle Scholar
  4. Behrendt H, Dannowski R (2005) Nutrients and heavy metals in the Oder river system. Weißensee Verlag, Berlin 353 pGoogle Scholar
  5. Behrendt H, Huber P, Kornmilch M, Opitz D, Schmoll O, Scholz G, Uebe R (2000) Nutrient emissions into river basins of Germany. UBA-Texte 23/00:266Google Scholar
  6. Behrendt H, Kornmilch M, Opitz D, Schmoll O, Scholz G (2002) Estimation of the nutrient inputs into river systems–experiences from German rivers. Reg Environ Change 3:107–117CrossRefGoogle Scholar
  7. Behrendt H, Bach M, Kunkel R, Opitz D, Pagenkopf WG, Scholz G, Wendland F (2003a) Nutrient emissions into river basins of Germany on the basis of a harmonized procedure. UBA-Texte 82/03:191Google Scholar
  8. Behrendt H, Dannowski R, Deumlich D, Dolezai F, Kajewski I, Kornmilch M, Korol R, Mioduszewski W, Opitz D, Steidl J, Stronska M (2003b) Point and diffuse emissions of pollutants, their retention in the river system of the Oder and scenario calculations on possible changes. Weißensee Verlag, Berlin 300 pGoogle Scholar
  9. Belohoubek A (1877) Untersuchungen des Moldauwassers. In: Koristka K. (1877) Sitzungsberichte der königlichen böhmischen Gesellschaft der Wissenschaften in Prag. Jahrgang 1876. Verlag der königlichen böhmischen Gesellschaft der WissenschaftenGoogle Scholar
  10. BGR (Bundesanstalt für Geowissenschaften und Rohstoffe, Federal Institute for Geosciences and Natural Resources)) (1998) Bodenübersichtskarte der Bundesrepublik Deutschland (geological map of Germany) 1:1.000.000 (BÜK 1000). www.bgr.bund.de/cln_011/nn_325378/DE/Themen/Boden/Produkte/Karten/BUEK_1000.html
  11. Bork HR, Bork H, Dalchow C (1998) Landschaftsentwicklung in Mitteleuropa: Wirkung des Menschen auf Landschaften, 1.Auflage. Klett-Perthes, Gotha. Stuttgart, 328Google Scholar
  12. Brandt K (1927) Stickstoffverbindungen im Meere. Wiss. Meeresuntersuchungen 20:203–292Google Scholar
  13. Brix J, Imhoff K, Weldert R (1934a) Die Stadtentwässerung in Deutschland, vol 1. Gustav Fischer Verlag, Jena 972pGoogle Scholar
  14. Brix J, Imhoff K, Weldert R (1934b) Die Stadtentwässerung in Deutschland, vol 2. Gustav Fischer Verlag, Jena 600pGoogle Scholar
  15. Carvalho L, McDonald C, de Hoyos C, Mischke U, Phillips G, Borics G, Poikane S, Skjelbred B, Lyche Solheim A, Van Wichelen J, Cardoso A C(2013) Sustaining recreational quality of European lakes: minimising the health risks from algal blooms through phosphorus control. J. Applied Ecol. 50:315–323Google Scholar
  16. CIS WG 2.3 (2003) Guidance on establishing reference conditions and ecological status class boundaries for inland surface waters(produced by Working Group 2.3, Reference conditions for inland surface waters (REFCOND), 86Google Scholar
  17. Clair TA, Pollock TL, Ehrman JM (1994) Exports of carbon and nitrogen from river basins in Canada’s Atlantic provinces. Glob Biogeochem Cycles 8(4):441–450CrossRefGoogle Scholar
  18. Clarke FW (1916) The Data of Geochemistry, Third Edition. Department of the Interior. United States Geological Survey. Bulletin 616. Washington Government Printing Office 821Google Scholar
  19. Claussen U, Müller P, Arle J (2012) WFD CIS ECOSTAT WG A Report “Comparison of environmental quality Objectives, threshold values or water quality targets Set for the demands of the European Water Framework Directive”. Version 1. Internal reportGoogle Scholar
  20. Cyberski J, Wróblewski A (2000) Riverine water inflows and the Baltic Sea water volume 1901-1990. Hydrol Earth Syst Sci 4(1):1–11CrossRefGoogle Scholar
  21. de Jonge VN, Elliot M (2001) Eutrophication. 1st edition of encyclopedia of ocean sciences 2: 852–870, Elsevier LtdGoogle Scholar
  22. Deumlich D, Frielinghaus M (1994) Eintragspfade Bodenerosion und Oberflächenabfluss im Lockergesteinsbereich. Werner W, Wodsak HP (eds) Stickstoff- und Phosphateintrag in die Fließgewässer Deutschlands unter besonderer Berücksichtigung des Eintragsgeschehens im Lockergesteinsbereich der ehemaligen DDR. Verlagsunion Agrar, Frankfurt am Main. Agrarspectr 22: 48–84Google Scholar
  23. Devlin M, Painting S (2006) Nitrogen thresholds for the UK waters—offshore, coastal and transitional waters. Paper prepared for UKTAG Marine Task Team. www.sniffer.org.uk
  24. Dodds WK, Smith VH, Lohman K (2002) Nitrogen and phosphorus relationships to benthic algal biomass in temperate streams. Can J Fish Aquat Sci 59:865–874CrossRefGoogle Scholar
  25. Dodds WK, Bouska WW, Eitzmann JL, Pilger TJ, Pitts KL, Riley AJ, Schloesser JT, Thornbrugh DJ (2009) Eutrophication of U.S. freshwaters; analysis of potential economic damage. Environ Sci Technol 43:12–19CrossRefGoogle Scholar
  26. Dolman AM, Rücker J, Pick FR, Fastner J, Rohrlack T, Mischke U, Wiedner C (2012) Cyanobacteria and cyanotoxins: the influence of nitrogen versus phosphorus. PLoS ONE 7(6):e38757. doi: 10.1371/journal.pone.0038757 CrossRefGoogle Scholar
  27. Driescher E, Gelbrecht J (1993) Assessing the diffuse phosphorus input from subsurface to surface waters in the catchment area of the lower river Spree (Germany)—Olem H (ed.): Diffuse Pollution—Proceedings of the IAWQ 1st International Conference on Diffuse (Nonpoint) Pollution, Chicago, USAGoogle Scholar
  28. EC (2000). Directive 2000/60/EC of the European Parliament and of the council of 23 October 2000 establishing a framework for community action in the field of water policy. Official Journal of the European Communities L327: 1–72Google Scholar
  29. EEA-ETC, 2012. Ecological and chemical status and pressures in European waters. Thematic Assessment for EEA Water 2012 Report, 146 pp. http://icm.eionet.europa.eu/ETC_Reports/EcoChemStatusPressInEurWaters_201211
  30. Fuchs S, Scherer U, Wander R, Behrendt H, Venohr M, Opitz D, Hillenbrand T, Marscheider-Weidemann F, Götz T (2010) Calculation of emissions into rivers in Germany using the MONERIS model nutrients, heavy metals and polycyclic aromatic hydrocarbons. Federal Environment Agency (Umweltbundesamt), ISSN 1862-4804, 236Google Scholar
  31. Gadegast M, Hirt U, Opitz D, Venohr M (2011) Modelling changes in nitrogen emissions into the Oder river system 1875–1944. Reg Environ Change 12(3):571–580CrossRefGoogle Scholar
  32. Gelbrecht J, Zak D (2008a) Stoffumsetzungsprozesse in naturnahen, entwässerten und wiedervernässten Niedermoorböden (published report), www.dwa.de, DWA-Themen, special issue’Dränung’, 70–79
  33. Gelbrecht J, Zak D, Augustin J (2008b) Phosphor-und Kohlenstoff-Dynamik und Vegetationsentwicklung in wiedervernässten Mooren des Peenetals in Mecklenburg-Vorpommern. Status, Steuergrößen und Handlungsmöglichkeiten. Berichte des IGB, Heft 26/2008Google Scholar
  34. GPCC (The Global Precipitation Climatology Centre) (2006): GPCC Full Data Reanalysis Version 5, ftp://anon.dwd.de/pub/data/gpcc/html/fulldata_download.html, Assessed 20 Aug 2011
  35. Hedin LO, Armesto JJ, Johnson AH (1995) Patterns of nutrient loss from unpolluted, old-growth temperate forests: evaluation of biogeochemical theory. Ecology 76:493–509CrossRefGoogle Scholar
  36. Heiden E (1882) Die menschlichen Excremente in national-öconomischer, hygienischer, finanzieller und landwirthschaftlicher Beziehung. Hannover, Cohen 96 pGoogle Scholar
  37. Hofmann J, Behrendt H, Gilbert A, Janssen R, Kannen A, Kappenberg J (2005) Catchment-coastal zone interaction based upon scenario and model analyses: Elbe and the German Bight case study. Reg Environ Change 5:54–81CrossRefGoogle Scholar
  38. Hofmann J, Venohr M, Behrendt H, Opitz D (2010) Integrated water resources management in Central Asia: nutrient and heavy metal emissions and their relevance for the Kharaa River Basin, Mongolia. Water Sci Technol 62:353–363CrossRefGoogle Scholar
  39. Hofmann J, Hürdler J, Ibisch R, Schaeffer M, Borchardt D (2011) Analysis of recent nutrient emission pathways, resulting surface water quality and ecological impacts under extreme continental climate: the Kharaa River Basin (Mongolia). Internat Rev Hydrobiol 96:484–520CrossRefGoogle Scholar
  40. Howarth RW, Billen G, Swaney D, Townsend A, Jaworski N, Lajtha K, Downing JA, Elmgren R, Caraco N, Jordan T, Berendse F, Freney J, Kudeyarov V, Murdoch P, Zhu Z (1996) Regional nitrogen budgets and riverine N & P fluxes for the drainages to the North Atlantic Ocean: natural and human influences. Biogeochemistry 35(1):75–139CrossRefGoogle Scholar
  41. Humborg C, Danielsson Å, Sjöberg B, Green M (2003) Nutrient land-sea fluxes in oligotrophic and pristine estuaries of the Gulf of Bothnia, Baltic Sea. Estuar Coast Shelf Sci 56(3–4):783–795Google Scholar
  42. Humborg C, Smedberg E, Blomqvist S, Mörth CM, Brink J, Rahm L, Danielsson Å, Sahlberg J (2004) Nutrient variations in boreal and subarctic Swedish Rivers: landscape control of land-sea fluxes. Limnol Oceanogr 49(5):1871–1883CrossRefGoogle Scholar
  43. Jickells T, Andrews J, Samways G, Sanders R, Malcolm S, Sivyer D, Parker R, Nedwell D, Trimmer M, Ridgway J (2000) Nutrient fluxes through the Humber estuary-past present and future. Ambio 29(3):130–135Google Scholar
  44. Jordan S, Velty, S, Zeitz, J.(2007) The influence of degree of peat decomposition on phosphorus binding forms in fens. Mires and peat 2: Art. 7. (Online: http://www.mires-and-peat.net/map02/map_02_07.htm)
  45. JRC (Joint Research Centre, Institute for Environment and Sustainability) (2007): The European soil databases: ESBN (European soil map of the Soil Bureau), http://eusoils.jrc.ec.europa.eu/ESDB_Archive/ESDB_Data_Distribution/ESDB_data.html Accessed 23 Aug 2010
  46. Kaiserliches Statistisches Amt (Imperial statistics agency) (1879) Monatshefte zur Statistik des Deutschen Reichs, Band XXXVII, Feb-Heft. Verlag von Puttkammer & Mühlbrecht, Berlin, 18–47Google Scholar
  47. Amt Kaiserliches Statistisches (Imperial statistics agency) (1880) Statistisches Jahrbuch für das Deutsche Reich. Verlag von Puttkammer & Mühlbrecht, BerlinGoogle Scholar
  48. Klavins M, Briede A, Rodinov V (2009) Long term changes in ice and discharge regime of rivers in the Baltic region in relation to climatic variability. Climatic Change 95:485–498CrossRefGoogle Scholar
  49. Koch F, Küchler A, Mehl D, Hoffmann TG (2010) Ermittlung von Art und Intensität künstlicher Entwässerung von landwirtschaftlichen Nutzflächen in Mecklenburg-Vorpommern. In: Kaiser K, Libra J, Merz B, Bens O, Hüttl RF (Hrsg.) Aktuelle Probleme im Wasserhaushalt von Nordostdeutschland: Trends, Ursachen, Lösungen. Scientific Technical Report 10/10. Deutsches GeoForschungsZentrum, PotsdamGoogle Scholar
  50. König J (1887) Die Verunreinigung der Gewässer, deren schädliche Folgen: nebst Mitteln zur Reinigung der Schmutzwässer. Springer, BerlinCrossRefGoogle Scholar
  51. Kronvang B, Jeppesen E, Conley DJ, Sondergaard M, Larsen SE, Ovesen NB, Carstensen J (2005) Nutrient pressures and ecological responses to nutrient loading reductions in Danish streams, lakes and coastal waters. J Hydrol 304:274–288CrossRefGoogle Scholar
  52. Laane RWPM (1992) Background concentrations of natural compounds. National Institute for Coastal and Marine Management/RIKZ, The Hagne, The Netherlands, Report DGW-92.033, 84Google Scholar
  53. Laane RWPM, Brockmann U, van Liere L, Bovelander R (2005) Immission targets for nutrients (N and P) in catchments and coastal zones: a North Sea assessment. Estuar Coast Shelf Sci 62(3):495–505CrossRefGoogle Scholar
  54. Lewis WM (2002) Yield of nitrogen from minimally disturbed watersheds of the United States. Biogeochem 57(58):375–385CrossRefGoogle Scholar
  55. Lewis WM, Melack JM, McDowell WH, McClain M, Richey JE (1999) Nitrogen yields from undisturbed watersheds in the Americas. Biogeochemistry 46:149–162Google Scholar
  56. Meybeck M (1982) Carbon, nitrogen, and phosphorus transport by world rivers. Am Jour Sci 282:402–450CrossRefGoogle Scholar
  57. Meybeck M, Helmer R (1989) The quality of rivers: from pristine stage to global pollution. Palaeogeogr Palaeoclimatol Palaeoecol 75(4):283–309CrossRefGoogle Scholar
  58. Mischke U, Venohr M, Behrendt H (2011) Using phytoplankton to assess the trophic status of German Rivers. Int Revue Hydrobiol 96(5):578–598CrossRefGoogle Scholar
  59. NASA-SRTM (2005): SRTM C-Band Data Products. http://www2.jpl.nasa.gov/srtm/cbanddataproducts.html, Accessed 04.2.2012
  60. Nijboer RC, Johnson RK, Verdonschot PFM, Sommerhäuser M, Buffagni A (2004) Establishing reference conditions for European streams. Hydrobiologia 516:91–105CrossRefGoogle Scholar
  61. NPCA (1997) Classification of environmental quality in fjords and coastal waters: a guide. Veiledning 97-3, SFT, Oslo, NoorwegenGoogle Scholar
  62. OECD (Organisation for Economic Co-operation and Development) (2001) National Soil Surface Nitrogen Balances - Explanatory Notes. http://www.oecd.org/greengrowth/sustainableagriculture/1916652.pdf
  63. OECD and EUROSTAT (Statistical Office of the European Communities) (2007) Gross Nitrogen Balances Handbook. http://www.oecd.org/greengrowth/sustainableagriculture/40820234.pdf
  64. OGewV (Verordnung zum Schutz der Oberflächengewässer) i.d.F. vom 20.07.2011. BGBl. I Nr. 37. http://www.gesetze-im-internet.de/bundesrecht/ogewv/gesamt.pdf
  65. Pardo I, Gómez-Rodríguez C, Wasson J-G, Owen R, van de Bund W, Kelly M, Bennett C, Birk S, Buffagni A, Erba S, Mengin N, Murray-Bligh J, Ofenböeck G (2012) The European reference condition concept: a scientific and technical approach to identify minimally-impacted river ecosystems. Sci Total Environ 420:33–42CrossRefGoogle Scholar
  66. Phillips G, Pietilainen OP, Carvalho L, Solimini LA, Lyche-Solheim A, Cardoso A (2008) Chlorophyll–nutrient relationships of different lake types using a large European dataset. Aquat Ecol 42:213–226CrossRefGoogle Scholar
  67. Piirsoo K, Pall P, Tuvikene A, Viik M, Vilbaste S (2010) Assessment of water quality in a large lowland river (Narva, Estonia/Russia) using a new Hungarian potamoplanktic method. Estonian J Ecol 59(4):243–258CrossRefGoogle Scholar
  68. Poikāne S, Alves MH, Argillier C, van den Berg M, Buzzi F, Hoehn E, de Hoyos C, Karottki I, Laplace-Treyture C, Solheim AL, Ortiz-Casas J, Ott I, Phillips G, Pilke A, Pádua J, Remec-Rekar S, Riedmüller U, Schaumburg J, Serrano ML, Soszka H, Tierney D, Urbanič G, Wolfram G (2010) Defining chlorophyll-a reference conditions in European lakes. Environ Manag 45(6):1286–1298CrossRefGoogle Scholar
  69. Salomon H (1907) Die städtische Abwasserbeseitigung in Deutschland. Wörterbuchartig angeordnete Nachrichten und Beschreibungen städtischer Kanalisations- und Kläranlagen in deutschen Wohnplätzen. Abwässer-Lexikon, Vol 1, Gustav Fischer, JenaGoogle Scholar
  70. Sapek B (2012) Phosphorus sorption properties of deposits from peat-muck soil profile in the Kuwasy object. J Water Land Dev 16 (I–VI):61–66Google Scholar
  71. Savchuk OP, Wulff F, Hille S, Humborg C, Pollehne F (2008) The Baltic Sea a century ago—a reconstruction from model simulations, verified by observations. J Mar Syst 74(1–2):485–494CrossRefGoogle Scholar
  72. Schernewski G, Neumann T (2005) The trophic state of the Baltic Sea a century ago: a model simulation study. J Mar Syst 53:109–124CrossRefGoogle Scholar
  73. Schernewski G, Behrendt H, Neumann T (2008) An integrated river basin-coast-sea modelling scenario for nitrogen management in coastal waters. J Coast Conserv 12:53–66CrossRefGoogle Scholar
  74. Schöpp W, Posch M, Mylona S, Johansson M (2003) Long-term development of acid deposition (1880–2030) in sensitive freshwater regions in Europe. Hydrol Earth Syst Sci 7:436–446CrossRefGoogle Scholar
  75. Schreiber H, Behrendt H, Constantinescu LT, Cvitanic I, Drumea D, Jabucar D, Juran S, Pataki B, Snishko S, Zessner M (2005) Point and diffuse nutrient emissions and loads in the transboundary Danube River Basin. I. A modelling approach. Arch Hydrobiol Suppl 158:197–220Google Scholar
  76. Schwertmann U, Vogl W, Kainz M (1987) Bodenerosion durch Wasser. Vorhersage des Abtrags und Bewertung von Gegenmaßnahmen, Verlag Eugen Ulmer, Stuttgart:64Google Scholar
  77. Smith VH (2003) Eutrophication of freshwater and coastal marine ecosystems. a global problem. Environ Sci Pollut Res 10:126–139CrossRefGoogle Scholar
  78. Smith RA, Alexander RB, Schwarz GE (2003) Natural background concentrations of nutrients in streams and rivers of the conterminous United States. Environ Sci Technol 37(14):3039–3047CrossRefGoogle Scholar
  79. Stoddard J, Larsen DP, Hawkins CP, Johnson RK, Norris RH (2006) Setting expectations for the ecological condition of streams: the concept of reference condition. Ecolol Appl 16(4):1267–1276CrossRefGoogle Scholar
  80. Tetzlaff B, Kuhr P (2011) Kartographische Erfassung potenziell gedränter Flächen in Schleswig-Holstein. Unpublished report. 36Google Scholar
  81. Topcu D, Behrendt H, Brockmann U, Claussen U (2011) Natural background concentrations of nutrients in the German Bight area (North Sea). Environ Monit Assess 174:361–388CrossRefGoogle Scholar
  82. USGS (U.S. Geological Survey) (1996) Maps, Imagery and Publications http://www.usgs.gov/pubprod/, Accessed 27 Jan 2012
  83. van Raaphorst W, de Jonge VN, Dijkhuizen D, Frederiks B (2000) Natural background concentrations of phosphorus and nitrogen in the Dutch Wadden Sea. Ministerie van Verkeer en Waterstaat. Directoraat-Generaal Rijkswaterstaat. Rijksinstituut voor Kust en Zee/RIKZGoogle Scholar
  84. Venohr M, Hirt U, Hofmann J, Opitz D, Gericke A, Wetzig A, Ortelbach K, Natho S, Neumann F, Hürdler J (2009) The model system MONERIS: Version 2.14.1vba – Manual. – Leibniz-Institute for Freshwater Ecology and Inland Fisheries Berlin, 116Google Scholar
  85. Venohr M, Nürnberg GK, Chambers PA, Guy M (2010) Nutrient loads in a Canadian boreal river: Applicability of a European nutrient emission model to a remote river system. 14th International Conference, IWA Diffuse Pollution Specialist Group, Chateau Mont Sainte-Ann, Beaupre, 12–17 September 2010, Quebec CanadaGoogle Scholar
  86. Venohr M, Hirt U, Hofmann J, Opitz D, Gericke A, Wetzig A, Natho S, Neumann F, Hürdler J, Matranga M, Mahnkopf J, Gadegast M, Behrendt H (2011) Modelling of nutrient emissions in river systems–MONERIS–methods and background. Int Rev Hydrobiol 96(5):435–483CrossRefGoogle Scholar
  87. Weyl T (1897) Handbuch der Hygiene. Gustav Fischer Verlag, JenaGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Ulrike Hirt
    • 1
    • 4
  • Judith Mahnkopf
    • 1
  • Mathias Gadegast
    • 1
  • Lukas Czudowski
    • 1
  • Ute Mischke
    • 1
  • Claudia Heidecke
    • 2
  • Gerald Schernewski
    • 3
    • 5
  • Markus Venohr
    • 1
  1. 1.Department of Ecosystem ResearchLeibniz-Institute of Freshwater Ecology and Inland FisheriesBerlinGermany
  2. 2.Institute of Rural Studies, Johann Heinrich von Thünen Institute (TI)Federal Research Institute for Rural Areas, Forestry and FisheriesBraunschweigGermany
  3. 3.Leibniz-Institute for Baltic Sea Research (IOW)RostockGermany
  4. 4.Projektträger JülichBerlinGermany
  5. 5.Coastal Research and Planning InstituteKlaipeda UniversityKlaipedaLithuania

Personalised recommendations