Regional Environmental Change

, Volume 14, Issue 3, pp 943–952 | Cite as

Population dynamics of Great Bittern (Botaurus stellaris) in the Netherlands: interaction effects of winter weather and habitat fragmentation

  • Anouk Cormont
  • Claire C. Vos
  • Jana Verboom
  • Chris A. M. van Turnhout
  • Ruud P. B. Foppen
  • Paul W. Goedhart
Original Article

Abstract

The increased variability in weather as a manifestation of climate change is expected to have negative impacts on population survival in wildlife species, because it will likely lead to increased variation in vital demographic rates (mortality and reproduction) in these populations. For the effective protection of biodiversity, adaptation measures are needed to compensate for the expected increase in weather variability and the negative interaction with habitat fragmentation. As a case study, we studied the fluctuations in Great Bittern numbers (Botaurus stellaris) from 28 monitoring plots scattered over the Netherlands to explore the interaction between the effect of weather and possible remediating effects of the landscape structure. Great Bittern habitat surrounding these plots differs with respect to area, quality, and degree of isolation of this habitat. In western Europe, Great Bitterns are found to be susceptible to continuous loss of suitable habitat due to vegetation succession and fragmentation. Moreover, year-to-year fluctuations in local Great Bittern populations can be caused by severe winter weather or other weather extremes. Our results show that severe winter weather has indeed a significant negative impact on Great Bittern population growth rates. Furthermore, we found that an increased carrying capacity and spatial cohesion (i.e. inverse of habitat fragmentation) contribute to an increase in mean growth rates over the years. As growth rates are higher in large, well-connected habitats, we argue that recovery from negative effects of, e.g. severe winters on Great Bittern population numbers is enhanced in these less-fragmented habitats. We derived generic adaptation measures for enhancing the recovery rate of populations of species in general: one should invest in more large, well-connected nature areas, not only to diminish the negative effects of habitat fragmentation on wildlife populations, but additionally to reduce the impacts of climatic variability.

Keywords

Great Bittern Population dynamics Climate change Weather Carrying capacity Spatial cohesion 

Notes

Acknowledgments

This research was funded by the Dutch national research programme ‘Climate Changes Spatial Planning’ and was part of the strategic research programme ‘Sustainable spatial development of ecosystems, landscapes, seas, and regions’ (Ecological Resilience Project) funded by the Dutch Ministry of Agriculture, Nature Conservation and Food Quality, and carried out by Wageningen University and Research centre. We thank Rogier Pouwels for his advice on calculation and interpretation of plot characteristics, Arjan de Bruijn for his statistical contribution, Victoria Radchuk and Michalis Vardakis for their help on spatial interpolations of plot characteristics and weather data, two anonymous reviewers for their comments on an earlier draft of the manuscript, and the thousands of observers who gathered breeding bird data in the past decennia, organized by SOVON coordinators Arjan Boele and Arend van Dijk—without their efforts this research would not have been possible.

Supplementary material

10113_2013_510_MOESM1_ESM.doc (256 kb)
Supplementary material 1 (DOC 256 kb)

References

  1. Akçakaya HR, Baur B (1996) Effects of population subdivision and catastrophes on the persistence of a land snail metapopulation. Oecologia 105:475–483CrossRefGoogle Scholar
  2. Anderson BJ, Akcakaya HR, Araujo MB, Fordham DA, Martinez-Meyer E, Thuiller W, Brook BW (2009) Dynamics of range margins for metapopulations under climate change. Proc R Soc B Biol Sci 276:1415–1420CrossRefGoogle Scholar
  3. Berry PM, Jones AP, Nicholls RJ, Vos CC (2007) Assessment of the vulnerability of terrestrial and coastal habitats and species in Europe to climate change, Annex 2 of Planning for biodiversity in a changing climate-BRANCH project; Final Report. Natural EnglandGoogle Scholar
  4. Bibby CJ (1981) Wintering bitterns in Britain. Br Birds 74:1–10Google Scholar
  5. Bibby CJ, Burgess ND, Hill DA (1997) Bird census techniques. Academic Press, LondonGoogle Scholar
  6. Breslow NE, Clayton DG (1993) Approximate inference in generalized linear mixed models. J Am Stat Assoc 88:9–25Google Scholar
  7. Chamberlain DE, Glue DE, Toms MP (2009) Sparrowhawk Accipiter nisus presence and winter bird abundance. J Ornithol 150:247–254CrossRefGoogle Scholar
  8. Cormont A, Vos CC, van Turnhout CAM, Foppen RPB, ter Braak CJF (2011) Using life-history traits to explain bird population responses to changing weather variability. Clim Res 49:59 U86CrossRefGoogle Scholar
  9. Day FCU, Wilson F (1978) Breeding bitterns in Britain. British Birds 71:285–300Google Scholar
  10. Easterling DR, Evans JL, Groisman PY, Karl TR, Kunkel KE, Ambenje P (2000a) Observed variability and trends in extreme climate events: a brief review. Bull Am Meteorol Soc 81:417–425CrossRefGoogle Scholar
  11. Easterling DR, Meehl GA, Parmesan C, Changnon SA, Karl TR, Mearns LO (2000b) Climate extremes: observations, modeling, and impacts. Science 289:2068–2074CrossRefGoogle Scholar
  12. ESRI (2000) ArcView 3.2a Software. Environmental Systems Research Institute, RedlandsGoogle Scholar
  13. Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Annu Rev Ecol Evol Syst 34:487–515CrossRefGoogle Scholar
  14. Fewster RM, Buckland ST, Siriwardena GM, Baillie SR, Wilson JD (2000) Analysis of population trends for farmland birds using generalized additive models. Ecology 81:1970–1984CrossRefGoogle Scholar
  15. Foppen RPB (2001) Bridging gaps in fragmented marshlands. Wageningen, AlterraGoogle Scholar
  16. Foppen R, ter Braak CJF, Verboom J, Reijnen R (1999) Dutch sedge warblers Acrocephalus schoenobaenus and West-African rainfall: empirical data and simulation modelling show low population resilience in fragmented marshlands. Ardea 87:113–127Google Scholar
  17. Fraterrigo JM, Pearson SM, Turner MG (2009) Joint effects of habitat configuration and temporal stochasticity on population dynamics. Landsc Ecol 24:863–877CrossRefGoogle Scholar
  18. Freeman SN, Newson SE (2008) On a log-linear approach to detecting ecological interactions in monitored populations. Ibis 150:250–258CrossRefGoogle Scholar
  19. Gilbert G, Tyler GA, Dunn CJ, Smith KW (2005) Nesting habitat selection by bitterns Botaurus stellaris in Britain and the implications for wetland management. Biol Conserv 124:547–553CrossRefGoogle Scholar
  20. Huntley B, Green RE, Collingham YC, Willis SG (2007) A climatic atlas of European breeding birds. The RSPB and Lynx Edicions, BarcelonaGoogle Scholar
  21. IJnsen F (1981) Onderzoek naar het optreden van winterweer in Nederland. Royal Netherlands Meteorological Institute (KNMI), De Bilt (in Dutch)Google Scholar
  22. IPCC (2001) Climate change 2001: impacts, adaptations and vulnerability. A report of Working Group II of the Intergovernmental Panel on Climate ChangeGoogle Scholar
  23. IPCC (2007) Climate change 2007: synthesis report. 73Google Scholar
  24. Oliver T, Roy DB, Hill JK, Brereton T, Thomas CD (2010) Heterogeneous landscapes promote population stability. Ecol Lett 13:473–484CrossRefGoogle Scholar
  25. Pouwels R, Reijnen MJSM, Van Adrichem MHC, Kuipers H (2007) Ruimtelijke condities voor VHR-soorten. Wettelijke Onderzoekstaken Natuur & Milieu, Wageningen (in Dutch)Google Scholar
  26. Rivière BB (1930) A history of the birds of Norfolk. Witherby, LondonGoogle Scholar
  27. Shaffer ML (1987) Minimum viable populations: coping with uncertainty. In: Soulé ME (ed) Viable populations for conservation. Cambridge University Press, Cambridge, pp 69–86CrossRefGoogle Scholar
  28. Ter Braak CJF, Van Strien AJ, Meijer R, Verstrael TJ (1994) Analysis of monitoring data with many missing values: which method? In: Hagemeijer W, Verstrael T (eds) Bird numbers 1992. Distribution, monitoring and ecological aspects. Proceedings of the 12th international conference of the international bird census committee and European ornithological atlas committee. SOVON, Beek-Ubbergen, pp 663–673Google Scholar
  29. Thomas L (1996) Monitoring long-term population change: why are there so many analysis methods? Ecology 77:49–58CrossRefGoogle Scholar
  30. Van den Hurk B, Tank AK, Lenderink G, Van Ulden A, Van Oldenborgh GJ, Katsman C, Van den Brink H, Keller F, Bessembinder J, Burgers G, Komen G, Hazeleger W, Drijfhout S (2007) New climate change scenarios for the Netherlands. Water Sci Technol 56:27–33CrossRefGoogle Scholar
  31. Van der Hut RMG (2001) Terreinkeus van de roerdomp in Nederlandse moerasgebieden. Bureau Waardenburg, Culemborg (in Dutch)Google Scholar
  32. Van Dijk AJ (2004) Handleiding Broedvogel monitoring project. SOVON Vogelonderzoek Nederland, Beek-UbbergenGoogle Scholar
  33. Van Dijk AJ, Hustings F, Van der Weide M (2004) Handleiding Landelijk Soortonderzoek Broedvogels. SOVON Vogelonderzoek Nederland, Beek-UbbergenGoogle Scholar
  34. Van Oldenborgh GJ, Van Ulden A (2003) On the relationship between global warming, local warming in the Netherlands and changes in circulation in the 20th century. Int J Climatol 23:1711–1724CrossRefGoogle Scholar
  35. Van Turnhout CAM, Hagemeijer EJM, Foppen RPB (2010) Long-term population developments in typical marshland birds in The Netherlands. Ardea 98:283–299Google Scholar
  36. Verboom J, Schippers P, Cormont A, Sterk M, Vos CC, Opdam PFM (2010) Population dynamics under increasing environmental variability: implications of climate change for ecological network design criteria. Landsc Ecol 25:1289–1298CrossRefGoogle Scholar
  37. Vermeersch G, Anselin A, Devos K, Herremans M, Stevens J, Gabriëls J, Van der Krieken B (2004) Atlas van de Vlaamse broedvogels 2000–2002. Instituut voor Natuurbehoud & Natuurpunt, Brussel (in Dutch)Google Scholar
  38. Vos CC, Verboom J, Opdam PFM, Ter Braak CJF (2001) Toward ecologically scaled landscape indices. Am Nat 157:24–41CrossRefGoogle Scholar
  39. VSN International (2009) GenStat for Windows, 12th edn. VSN International; GenStat.co.uk, Hemel HempsteadGoogle Scholar
  40. Wink M, Dietzen C, Gießing B (2005) Die Vögel des Rheinlandes. Atlas zur Brut- und Wintervogelverbreitung 1990–2000. Romneya Verlag and Verlag NIBUK, Germany (in German)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Anouk Cormont
    • 1
    • 2
  • Claire C. Vos
    • 1
  • Jana Verboom
    • 1
  • Chris A. M. van Turnhout
    • 3
  • Ruud P. B. Foppen
    • 3
  • Paul W. Goedhart
    • 4
  1. 1.AlterraWageningen University and Research CentreWageningenThe Netherlands
  2. 2.Land Use Planning GroupWageningen UniversityWageningenThe Netherlands
  3. 3.SOVONDutch Centre for Field OrnithologyNijmegenThe Netherlands
  4. 4.Biometris, Department of Mathematical and Statistical MethodsWageningen University and Research CentreWageningenThe Netherlands

Personalised recommendations