Regional Environmental Change

, Volume 15, Issue 6, pp 961–971 | Cite as

Quantifying biodiversity impacts of climate change and bioenergy: the role of integrated global scenarios

  • Laura MellerEmail author
  • Detlef P. van Vuuren
  • Mar Cabeza
Review Article


The role of bioenergy in climate change mitigation is a topic of heated debate, as the demand for land may result in social and ecological conflicts. Biodiversity impacts are a key controversy, given that biodiversity conservation is a globally agreed goal under pressure due to both climate change and land use. Impact assessment of bioenergy in various socio-economic and policy scenarios is a crucial basis for planning sound climate mitigation policy. Empirical studies have identified positive and negative local impacts of different bioenergy types on biodiversity, but ignored indirect impacts caused by displacement of other human activities. Integrated assessment models (IAMs) provide land-use scenarios based on socio-economic and policy storylines. Global scenarios capture both direct and indirect land-use change, and are therefore an appealing tool for assessing the impacts of bioenergy on biodiversity. However, IAMs have been originally designed to address questions of a different nature. Here, we illustrate the properties of IAMs from the biodiversity conservation perspective and discuss the set of questions they could answer. We find IAMs are a useful starting point for more detailed regional planning and assessment. However, they have important limitations that should not be overlooked. Global scenarios may not capture all impacts, such as changes in forest habitat quality or small-scale landscape structure, identified as key factors in empirical studies. We recommend increasing spatial accuracy of IAMs through region-specific, complementary modelling, including climate change into predictive assessments, and considering future biodiversity conservation needs in assessments of impacts and sustainable potentials of bioenergy.


Adaptation Biodiversity Bioenergy Conservation Impact assessment Mitigation 



We wish to thank Andries Hof for insights and comments on the manuscript as well as Mikael Hildén, Hannu Pietiäinen and Hanna Tuomisto for discussions which provided inspiration for this manuscript. The feedback from two anonymous reviewers has been useful for developing the manuscript. LM acknowledges LUOVA Graduate School for funding. MC, DvV and LM acknowledge funding from European Union Framework Programme 7 project RESPONSES (Grant Agreement No. 244092).


  1. Alkemade R, van Oorschot M, Miles L et al (2009) GLOBIO3: a framework to investigate options for reducing global terrestrial biodiversity loss. Ecosystems 12:374–390. doi: 10.1007/s10021-009-9229-5 CrossRefGoogle Scholar
  2. Araújo MB, Alagador D, Cabeza M et al (2011) Climate change threatens European conservation areas. Ecol Lett 14:484–492. doi: 10.1111/j.1461-0248.2011.01610.x CrossRefGoogle Scholar
  3. Åström M, Dynesius M, Hylander K, Nilsson C (2005) Effects of slash harvest on bryophytes and vascular plants in southern boreal forest clear-cuts. J Appl Ecol 42:1194–1202. doi: 10.1111/j.1365-2664.2005.01087.x CrossRefGoogle Scholar
  4. Austin M (2002) Spatial prediction of species distribution: an interface between ecological theory and statistical modelling. Ecol Model 157:101–118. doi: 10.1016/S0304-3800(02)00205-3 CrossRefGoogle Scholar
  5. Barbet-Massin M, Thuiller W, Jiguet F (2012) The fate of European breeding birds under climate, land-use and dispersal scenarios. Glob Change Biol 18:881–890. doi: 10.1111/j.1365-2486.2011.02552.x CrossRefGoogle Scholar
  6. Barry S, Elith J (2006) Error and uncertainty in habitat models. J Appl Ecol 43:413–423. doi: 10.1111/j.1365-2664.2006.01136.x CrossRefGoogle Scholar
  7. Baum S, Bolte A, Weih M (2012) Short rotation coppice (SRC) plantations provide additional habitats for vascular plant species in agricultural mosaic landscapes. Bioenergy Res 5:573–583. doi: 10.1007/s12155-012-9195-1 CrossRefGoogle Scholar
  8. Bellard C, Bertelsmeier C, Leadley P et al (2012) Impacts of climate change on the future of biodiversity. Ecol Lett 15:365–377. doi: 10.1111/j.1461-0248.2011.01736.x CrossRefGoogle Scholar
  9. Bertrand R, Lenoir J, Piedallu C et al (2011) Changes in plant community composition lag behind climate warming in lowland forests. Nature 479:517–520. doi: 10.1038/nature10548 CrossRefGoogle Scholar
  10. Brin A, Bouget C, Valladares L, Brustel H (2012) Are stumps important for the conservation of saproxylic beetles in managed forests?—insights from a comparison of assemblages on logs and stumps in oak-dominated forests and pine plantations. Insect Conservation and Diversity (article in press). doi: 10.1111/j.1752-4598.2012.00209.x
  11. Brooks TM, Mittermeier RA, Da Fonseca GAB et al (2006) Global biodiversity conservation priorities. Science 313:58–61. doi: 10.1126/science.1127609 CrossRefGoogle Scholar
  12. Buisson L, Thuiller W, Casajus N et al (2010) Uncertainty in ensemble forecasting of species distribution. Glob Change Biol 16:1145–1157. doi: 10.1111/j.1365-2486.2009.02000.x CrossRefGoogle Scholar
  13. Butchart SHM, Walpole M, Collen B, et al. (2010) Global biodiversity: indicators of recent declines. Science (New York, NY) 328:1164–1168. doi: 10.1126/science.1187512
  14. Cabeza M, Moilanen A (2006) Replacement cost: a practical measure of site value for cost-effective reserve planning. Biol Conserv 132:336–342. doi: 10.1016/j.biocon.2006.04.025 CrossRefGoogle Scholar
  15. CBD (2010) Global Biodiversity Outlook 3. Secr Conv Biol Divers Montr. doi: 10.1093/aje/kwq338
  16. Chazal J, Rounsevell MDA (2009) Land-use and climate change within assessments of biodiversity change: a review. Glob Environ Change 19:306–315. doi: 10.1016/j.gloenvcha.2008.09.007 CrossRefGoogle Scholar
  17. Chen I-C, Hill JK, Ohlemüller R, et al. (2011) Rapid range shifts of species associated with high levels of climate warming. Science (New York, NY) 333:1024–1026. doi: 10.1126/science.1206432
  18. Creutzig F, Popp A, Plevin R et al (2012) Reconciling top-down and bottom-up modelling on future bioenergy deployment. Nat Clim Change 2:320–327. doi: 10.1038/nclimate1416 CrossRefGoogle Scholar
  19. Dahlberg A, Thor G, Allmer J et al (2011) Modelled impact of Norway spruce logging residue extraction on biodiversity in Sweden. Can J For Res-Rev Canadienne De Recherche Forestiere 41:1220–1232. doi: 10.1139/x11-034 CrossRefGoogle Scholar
  20. Danielsen F, Beukema H, Burgess ND, Parish F, Brühl CA, Donald PF, Murdiyarso D, Phalan B, Reijnders L, Struebig M, Fitzherbert EB (2009) Biofuel plantations on forested lands: double jeopardy for biodiversity and climate. Conserv Biol 24:348–358. doi: 10.1111/j.1523-1739.2008.01096.x CrossRefGoogle Scholar
  21. Davis SC, House JI, Diaz-Chavez RA et al (2011) How can land-use modelling tools inform bioenergy policies? Interface Focus 1:212–223. doi: 10.1098/rsfs.2010.0023 CrossRefGoogle Scholar
  22. Dawson TP, Jackson ST, House JI et al (2011) Beyond predictions: biodiversity conservation in a changing climate. Science 332:53–58. doi: 10.1126/science.1200303 CrossRefGoogle Scholar
  23. Devictor V, van Swaay C, Brereton T et al (2012) Differences in the climatic debts of birds and butterflies at a continental scale. Nat Clim Change 2:121–124. doi: 10.1038/nclimate1347 CrossRefGoogle Scholar
  24. Dhondt AA, Wrege PH, Sydenstricker KV, Cerretani J (2004) Clone preference by nesting birds in short-rotation coppice plantations in central and western New York. Biomass Bioenergy 27:429–435. doi: 10.1016/j.biombioe.2004.05.001 CrossRefGoogle Scholar
  25. Dornburg V, van Vuuren DP, van de Ven G et al (2010) Bioenergy revisited: key factors in global potentials of bioenergy. Energy Environ Sci 3:258–267. doi: 10.1039/c003390c CrossRefGoogle Scholar
  26. Dornburg V, Faaij APC, Verweij P, et al. (2012) Assessment of global biomass potentials and their links to food, water, biodiversity, energy demand and economy. Climate change scientific assessment and policy analysis. Biomass Assessment Main report. Policy 1–108Google Scholar
  27. Dullinger S, Gattringer A, Thuiller W et al (2012) Extinction debt of high-mountain plants under twenty-first-century climate change. Nat Clim Change 2:1–4. doi: 10.1038/nclimate1514 CrossRefGoogle Scholar
  28. Eggers J, Troltzsch K, Falcucci A et al (2009) Is biofuel policy harming biodiversity in Europe? Global Change Biol Bioenergy 1:18–34. doi: 10.1111/j.1757-1707.2009.01002.x CrossRefGoogle Scholar
  29. Eickhout B, van den Bron GJ, Notenboom J, et al (2008) Local and global consequences of the EU renewable directive for biofuels. Assessment 1–70Google Scholar
  30. Engel J, Huth A, Frank K (2012) Bioenergy production and Skylark (Alauda arvensis) population abundance - a modelling approach for the analysis of land-use change impacts and conservation options. Global Change Biol Bioenergy 4:713–727. doi: 10.1111/j.1757-1707.2012.01170.x CrossRefGoogle Scholar
  31. European Parliament (2009) Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/ECGoogle Scholar
  32. Fargione J, Hill J, Tilman D, et al (2008) Land clearing and the biofuel carbon debt. Science (New York, NY) 319:1235–1238. doi: 10.1126/science.1152747
  33. Felten D, Emmerling C (2011) Effects of bioenergy crop cultivation on earthworm communities-A comparative study of perennial (Miscanthus) and annual crops with consideration of graded land-use intensity. Appl Soil Ecol 49:167–177. doi: 10.1016/j.apsoil.2011.06.001 CrossRefGoogle Scholar
  34. Franklin J (2009) Mapping species distributions: spatial inference and prediction. Cambridge University Press, New YorkGoogle Scholar
  35. Fry DA, Slater FM (2011) Early rotation short rotation willow coppice as a winter food resource for birds. Biomass Bioenergy 35:2545–2553. doi: 10.1016/j.biombioe.2011.02.016 CrossRefGoogle Scholar
  36. Garcia RA, Burgess ND, Cabeza M et al (2011) Exploring consensus in 21st century projections of climatically suitable areas for African vertebrates. Global Change Biol 18:1253–1269. doi: 10.1111/j.1365-2486.2011.02605.x CrossRefGoogle Scholar
  37. Gaucherel C, Griffon S, Misson L, Houet T (2009) Combining process-based models for future biomass assessment at landscape scale. Landsc Ecol 25:201–215. doi: 10.1007/s10980-009-9400-6 CrossRefGoogle Scholar
  38. Hannah L, Midgley GF, Lovejoy T et al (2002) Conservation of biodiversity in a changing climate. Conserv Biol 16:264–268. doi: 10.1046/j.1523-1739.2002.00465.x CrossRefGoogle Scholar
  39. Hannah L, Midgley G, Andelman S et al (2007) Protected area needs in a changing climate. Frontiers Ecol Environ 5:131–138. doi: 10.1016/j.biombioe.2011.02.016 CrossRefGoogle Scholar
  40. Hanski I, Ovaskainen O (2003) Metapopulation theory for fragmented landscapes. Theor Popul Biol 64:119–127. doi: 10.1016/S0040-5809(03)00022-4 CrossRefGoogle Scholar
  41. Harrison T, Berenbaum MR (2012) Moth diversity in three biofuel crops and native prairie in Illinois. Insect Science (article in press). doi: 10.1111/j.1744-7917.2012.01530.x
  42. Haughton AJ, Bond AJ, Lovett AA, Dockerty T, Sunnenberg G, Clark SJ, Bohan DA, Sage RB, Mallott MD, Mallott VE, Cunningham MD, Riche AB, Shield IF, Finch JW, Turner MM, Karp A (2009) A novel, integrated approach to assessing social, economic and environmental implications of changing rural land-use: a case study of perennial biomass crops. J Appl Ecol 46:315–322. doi: 10.1111/j.1365-2664.2009.01623.x CrossRefGoogle Scholar
  43. Heller NE, Zavaleta ES (2009) Biodiversity management in the face of climate change: a review of 22 years of recommendations. Biol Conserv 142:14–32. doi: 10.1016/j.biocon.2008.10.006 CrossRefGoogle Scholar
  44. Hellmann F, Verburg PH (2010) Impact assessment of the European biofuel directive on land use and biodiversity. J Environ Manag 91:1389–1396. doi: 10.1016/j.jenvman.2010.02.022 CrossRefGoogle Scholar
  45. Hellmann F, Verburg PH (2011) Spatially explicit modelling of biofuel crops in Europe. Biomass Bioenergy 35:2411–2424. doi: 10.1016/j.biombioe.2008.09.003 CrossRefGoogle Scholar
  46. Hodgson JA, Thomas CD, Wintle BA, Moilanen A (2009) Climate change, connectivity and conservation decision making: back to basics. J Appl Ecol 46:964–969. doi: 10.1111/j.1365-2664.2009.01695.x CrossRefGoogle Scholar
  47. Hoogwijk MM (2004) On the global and regional potential of renewable energy sources. Dissertation, University of UtrechtGoogle Scholar
  48. Hurtt GC, Chini LP, Frolking S, Betts RA, Feddema J, Fischer G, Fisk JP, Hibbard K, Houghton RA, Janetos A, Jones CD, Kindermann G, Kinoshita T, Klein Goldewijk K, Riahi K, Shevliakova E, Smith S, Stehfest E, Thomson A, Thornton P, van Vuuren DP, Wang YP (2011) Harmonization of land-use scenarios for the period 1500–2100: 600 years of global gridded annual land-use transitions, wood harvest, and resulting secondary lands. Clim Change 109:117–161. doi: 10.1007/s10584-011-0153-2 CrossRefGoogle Scholar
  49. IPCC (2000) Special report on emission scenarios. In: Nakicenovic N, Swart R (eds) Cambridge University Press, Cambridge, pp 570.
  50. IPCC (2011) IPCC special report on renewable energy sources and climate change mitigation. In: Edenhofer O, Pichs-Madruga R, Sokona Y, Seyboth K, Matschoss P, Kadner S, Zwickel T, Eickemeier P, Hansen G, Schlömer S, von Stechow C (eds) Prepared by Working Group III of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, New York, pp 1075.
  51. Jackson RB, Jobbágy EG, Avissar R, et al (2005) Trading water for carbon with biological carbon sequestration. Science (New York, NY) 310:1944–1947. doi: 10.1126/science.1119282
  52. Jonsell M, Hansson J (2011) Logs and stumps in clearcuts support similar saproxylic beetle diversity: implications for bioenergy harvest. Silva Fennica 45:1053–1064CrossRefGoogle Scholar
  53. Jonsell M, Hansson J, Wedmo L (2007) Diversity of saproxylic beetle species in logging residues in Sweden—comparisons between tree species and diameters. Biol Conserv 138:89–99. doi: 10.1016/j.biocon.2007.04.003 CrossRefGoogle Scholar
  54. Langeveld H, Quist-Wessel F, Dimitriou I, Aronsson P, Baum C, Schulz U, Bolte A, Baum S, Koehn J, Weih M, Gruss H, Leinweber P, Lamersdorf N, Schmidt-Walter P, Berndes G (2012) Assessing environmental impacts of short rotation coppice (SRC) expansion: model definition and preliminary results. Bioenergy Res 5:621–635. doi: 10.1007/s12155-012-9235-x CrossRefGoogle Scholar
  55. Lassauce A, Lieutier F, Bouget C (2012) Woodfuel harvesting and biodiversity conservation in temperate forests: effects of logging residue characteristics on saproxylic beetle assemblages. Biol Conserv 147:204–212. doi: 10.1016/j.biocon.2012.01.001 CrossRefGoogle Scholar
  56. Londo M, Dekker J, Terkeurs W (2005) Willow short-rotation coppice for energy and breeding birds: an exploration of potentials in relation to management. Biomass Bioenergy 28:281–293. doi: 10.1016/j.biombioe.2004.06.007 CrossRefGoogle Scholar
  57. Louette G, Maes D, Alkemade JRM et al (2010) BioScore–Cost-effective assessment of policy impact on biodiversity using species sensitivity scores. J Nat Conserv 18:142–148. doi: 10.1016/j.jnc.2009.08.002 CrossRefGoogle Scholar
  58. Margules CR, Pressey RL (2000) Systematic conservation planning. Nature 405:243–253. doi: 10.1038/35012251 CrossRefGoogle Scholar
  59. Meehan TD, Hurlbert AH, Gratton C (2010) Bird communities in future bioenergy landscapes of the upper Midwest. Proceed Nat Acad Sci USA 107:18533–18538. doi: 10.1073/pnas.1008475107 CrossRefGoogle Scholar
  60. Millennium Ecosystem Assessment (2005) Ecosystems and human well-being: biodiversity synthesis. World Resources Institute, Washington DCGoogle Scholar
  61. MNP (2006) Integrated modelling of global environmental change—an overview of IMAGE 2.4. In: Bouwman AF, Kram T, Klein Goldewijk K (eds) Netherlands Environmental Assessment Agency (MNP), BilthovenGoogle Scholar
  62. Moilanen A, Arponen A, Stokland J, Cabeza M (2009) Assessing replacement cost of conservation areas: how does habitat loss influence priorities? Biol Conserv 142:575–585. doi: 10.1016/j.biocon.2008.11.011 CrossRefGoogle Scholar
  63. Moss RH, Edmonds JA, Hibbard KA et al (2010) The next generation of scenarios for climate change research and assessment. Nature 463:747–756. doi: 10.1038/nature08823 CrossRefGoogle Scholar
  64. Myers MC, Hoksch BJ, Mason JT (2012) Butterfly response to floral resources during early establishment at a heterogeneous prairie biomass production site in Iowa, USA. J Insect Conserv 16:457–472. doi: 10.1007/s10841-011-9433-4 CrossRefGoogle Scholar
  65. Nilsson C, Berggren K (2000) Alterations of riparian ecosystems caused by river regulation. Bioscience 50:783. doi:10.1641/0006-3568(2000)050[0783:AORECB]2.0.CO;2Google Scholar
  66. Northrup JM, Wittemyer G, Regan H (2012) Characterising the impacts of emerging energy development on wildlife, with an eye towards mitigation. Ecol Lett 16:112–125. doi: 10.1111/ele.12009 CrossRefGoogle Scholar
  67. Noss RF (2001) Beyond Kyoto? forest management in a time of rapid climate change. Conserv Biol 15:578–590. doi: 10.1046/j.1523-1739.2001.015003578.x CrossRefGoogle Scholar
  68. Noss RF, Dobson AP, Baldwin R et al (2012) Bolder thinking for conservation. Conserv Biol 26:1–4. doi: 10.1111/j.1523-1739.2011.01738.x CrossRefGoogle Scholar
  69. OECD (2012) OECD environmental outlook to 2050. OECD PublishingGoogle Scholar
  70. Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Ann Rev Ecol Evol Syst 37:637–669. doi: 10.1146/annurev.ecolsys.37.091305.110100 CrossRefGoogle Scholar
  71. Parson EA, Fisher-Vanden K (1997) Integrated assessment models of global climate change. Ann Rev Energy Environ 22:589–628. doi: 10.1146/ CrossRefGoogle Scholar
  72. Paterson JS, Araújo MB, Berry PM et al (2008) Mitigation, adaptation, and the threat to biodiversity. Conserv Biol 22:1352–1355. doi: 10.1111/j.1523-1739.2008.01042.x CrossRefGoogle Scholar
  73. Pearson RG, Dawson TP (2003) Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Glob Ecol Biogeogr 12:361–371. doi: 10.1046/j.1466-822X.2003.00042.x CrossRefGoogle Scholar
  74. Pereira HM, Leadley PW, Proença V, Alkemade R, Scharlemann JPW, Fernandez-Manjarrés JF, Araújo MB, Balvanera P, Biggs R, Cheung WWL, Chini L, David Cooper H, Gilman EL, Guénette S, Hurtt GC, Huntington HP, Mace GM, Oberdorff T, Revenga C, Rodrigues P, Scholes RJ, Sumaila UR, Walpole M (2010) Scenarios for global biodiversity in the 21st century. Science 330:1496–1501. doi: 10.1126/science.1196624 CrossRefGoogle Scholar
  75. Pilkey-Jarvis L, Pilkey OH (2008) Useless arithmetic: ten points to ponder when using mathematical models in environmental decision making. Public Adm Rev 470–479Google Scholar
  76. Plevin RJ, O’Hare M, Jones AD et al (2010) Greenhouse gas emissions from biofuels’ indirect land use change are uncertain but may be much greater than previously estimated. Environ Sci Technol 44:8015–8021. doi: 10.1021/es101946t CrossRefGoogle Scholar
  77. Questad EJ, Foster BL, Jog S, Kindscher K, Loring H (2011) Evaluating patterns of biodiversity in managed grasslands using spatial turnover metrics. Biol Conserv 144:1050–1058. doi: 10.1016/j.biocon.2010.12.024 CrossRefGoogle Scholar
  78. Righelato R, Spracklen DV (2007) Carbon mitigation by biofuels or by saving and restoring forests? Science (New York, NY) 317:902. doi: 10.1126/science.1141361
  79. Robertson BA, Doran PJ, Loomis LR, Robertson JR, Schemske DW (2011a) Perennial biomass feedstocks enhance avian diversity. Glob Change Biol Bioenergy 3:235–246. doi: 10.1111/j.1757-1707.2010.01080.x CrossRefGoogle Scholar
  80. Robertson BA, Doran PJ, Loomis ER, Robertson JR, Schemske DW (2011b) Avian use of perennial biomass feedstocks as post-breeding and migratory stopover habitat. PLoS ONE 6: e16941. doi: 10.1371/journal.pone.0016941
  81. Robertson BA, Porter C, Landis DA, Schemske DW (2012) Agroenergy crops influence the diversity, biomass, and guild structure of terrestrial arthropod communities. Bioenergy Res 5:179–188. doi: 10.1111/j.1757-1707.2010.01080.x CrossRefGoogle Scholar
  82. Robertson BA, Landis DA, Sillett TS, Loomis ER, Rice RA (2013) Perennial agroenergy feedstocks as en route habitat for spring migratory birds. Bioenergy Res 6:210–311. doi: 10.1007/s12155-012-9258-3 CrossRefGoogle Scholar
  83. Rose SK, Ahammad H, Eickhout B, Fisher B, Kurosawa A, Rao S, Riahi K, van Vuuren DP (2012) Land-based mitigation in climate stabilization. Energy Econom 34:365–380. doi: 10.1016/j.eneco.2011.06.004 CrossRefGoogle Scholar
  84. Rowe RL, Hanley ME, Goulson D et al (2011) Potential benefits of commercial willow Short Rotation Coppice (SRC) for farm-scale plant and invertebrate communities in the agri-environment. Biomass Bioenergy 35:325–336. doi: 10.1016/j.biombioe.2010.08.046 CrossRefGoogle Scholar
  85. Sacchelli S, Meo I, Paletto A (2013) Bioenergy production and forest multifunctionality? A trade-off analysis using multiscale GIS model in a case study in Italy. Appl Energy 104:10–20. doi: 10.1016/j.apenergy.2012.11.038 CrossRefGoogle Scholar
  86. Searchinger TD, Hamburg SP, Melillo J et al (2009) Fixing a critical climate accounting error. Science 326:527–528. doi: 10.1126/science.1178797 CrossRefGoogle Scholar
  87. Stoms DM, Davis FW, Jenner MW et al (2012) Modeling wildlife and other trade-offs with biofuel crop production. Glob Change Biol Bioenergy 4:330–341. doi: 10.1111/j.1757-1707.2011.01130.x CrossRefGoogle Scholar
  88. Sullivan TP, Sullivan DS, Lindgren PMF et al (2011) Bioenergy or biodiversity? Woody debris structures and maintenance of red-backed voles on clearcuts. Biomass Bioenergy 35:4390–4398. doi: 10.1016/j.biombioe.2011.08.013 CrossRefGoogle Scholar
  89. Thomson AM, Calvin KV, Smith SJ, Kyle GP, Volke A, Patel P, Delgado-Arias S, Bond-Lamberty B, Wise MA, Clarke LE, Edmonds JA (2011) RCP4.5: a pathway for stabilization of radiative forcing by 2100. Clim Change 109:77–94. doi: 10.1007/s10584-011-0151-4 CrossRefGoogle Scholar
  90. Thuiller W (2004) Patterns and uncertainties of species’ range shifts under climate change. Glob Change Biol 10:2020–2027. doi: 10.1111/j.1365-2486.2004.00859.x CrossRefGoogle Scholar
  91. UNFCCC (2010) The Cancun agreements: outcome of the work of the ad hoc working group on long-term cooperative action under the convention. Decision 1/CP.16Google Scholar
  92. van Vuuren DP, Eickhout B, Lucas PL, den Elzen MGJ (2006a) Long-term multi-gas scenarios to stabilise radiative forcing—exploring costs and benefits within an integrated assessment framework. Energy J 201–234Google Scholar
  93. van Vuuren DP, Sala OE, Pereira HM (2006b) The future of vascular plant diversity under four global scenarios. Ecol Soc 11:25Google Scholar
  94. van Vuuren DP, van Vliet J, Stehfest E (2009) Future bio-energy potential under various natural constraints. Energy Policy 37:4220–4230. doi: 10.1016/j.enpol.2009.05.029 CrossRefGoogle Scholar
  95. van Vuuren DP, Bellevrat E, Kitous A, Isaac M (2010) Bio-energy use and low stabilization scenarios. Energy J 31:193–222Google Scholar
  96. van Vuuren DP, Stehfest E, den Elzen MGJ et al (2011) RCP2.6: exploring the possibility to keep global mean temperature increase below 2°C. Clim Change 109:95–116. doi: 10.1007/s10584-011-0152-3 CrossRefGoogle Scholar
  97. Victorsson J, Jonsell M (2012) Ecological traps and habitat loss, stump extraction and its effects on saproxylic beetles. Forest Ecol Manag 290:22–29. doi: 10.1016/j.foreco.2012.06.057 CrossRefGoogle Scholar
  98. Visconti P, Pressey RL, Giorgini D et al (2011) Future hotspots of terrestrial mammal loss. Philos Trans R Soc Lond Ser B Biol Sci 366:2693–2702. doi: 10.1098/rstb.2011.0105 CrossRefGoogle Scholar
  99. Werling BP, Meehan TD, Gratton C, Landis DA (2011) Influence of habitat and landscape perenniality on insect natural enemies in three candidate biofuel crops. Biol Control 59:304–312. doi: 10.1016/j.biocontrol.2011.06.014 CrossRefGoogle Scholar
  100. Wilhere GF (2008) The how-much-is-enough myth. Conserv Biol 22:514–517. doi: 10.1111/j.1523-1739.2008.00926.x CrossRefGoogle Scholar
  101. Wilson E, Piper J (2008) Spatial planning for biodiversity in Europe’s changing climate. Eur Environ 18:135–151. doi: 10.1002/eet CrossRefGoogle Scholar
  102. Wise M, Calvin K, Thomson A, Clarke L, Bond-Lamberty B, Sands R, Smith SJ, Janetos A, Edmonds J (2009) Implications of limiting CO2 concentrations for land use and energy. Science 324:1183–1186. doi: 10.1126/science.1168475 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Laura Meller
    • 1
    Email author
  • Detlef P. van Vuuren
    • 2
    • 3
  • Mar Cabeza
    • 1
  1. 1.Metapopulation Research GroupDepartment of BiosciencesUniversity of HelsinkiFinland
  2. 2.PBL Netherlands Environmental Assessment AgencyBilthovenThe Netherlands
  3. 3.Department of GeosciencesUtrecht UniversityUtrechtThe Netherlands

Personalised recommendations