Advertisement

Regional Environmental Change

, Volume 14, Issue 3, pp 997–1008 | Cite as

Observed climate-induced changes in plant phenology in the Netherlands

  • Arnold J. H. van Vliet
  • Wichertje A. Bron
  • Sara Mulder
  • Wout van der Slikke
  • Baudewijn Odé
Original Article

Abstract

We determined whether climate change in the Netherlands has caused phenological changes since 1868. We analysed over 150,000 plant phenological observations of 320 plant species, obtained by four volunteer networks and one series collected by Mr. Braaksma. With the network data, we compared the timing of life cycle events in three different periods: 1894–1932 (Period 1), 1940–1968 (Period 2) and 2001–2010 (Period 3). For the Braaksma series, we compared the periods 1953–1968 (Period A) with 1969–1992 (Period B). We conclude that until the beginning of the 1990s, there have been no significant changes in the timing of life cycle events. The timing of life cycle events in Period 3 showed an average advance of flowering, leaf unfolding and fruit ripening of 14 days compared with Period 1 and 13 days compared with Period 2. Some species have advanced up to over 35 days. Autumn events occurred up to an average of 7 days later in Period 3 compared to earlier periods. This study shows that, based on network data, changes in climate explain on average 66 % of the variation in timing of phenological events from year to year. For the Braaksma data, this is 38 %. The expected future changes in climate will undoubtedly result in a further lengthening of the growing season. We believe that phenological networks, supported by thousands of volunteers, are needed to quantify, analyse, predict and communicate these phenological changes so various sectors in society can adapt to these changes and prevent significant socio-economic impacts.

Keywords

Phenology Plants Climate change Netherlands Citizen science 

Notes

Acknowledgments

We would like to thank all the organisations that financially supported the ‘Natuurkalender’ network since 2001: Prins Bernhard Cultuur Fonds; Stichting Weten; VSB-Fonds; Ministry of Agriculture, Nature and Food Quality; BSIK Climate changes Spatial Planning; Siemens Diagnostics; BSIK Space for Geo-Information; European Commission; the Nationale Postcode Loterij and numerous volunteers who donated money. Furthermore, without the help of all the partner organisations of Nature’s Calendar and the thousands of observers and hundreds of school children in the context of the GLOBE programme that participated and submitted observations, this research would not have been possible.

Supplementary material

10113_2013_493_MOESM1_ESM.docx (72 kb)
Supplementary material 1 (DOCX 71 kb)

References

  1. Ahas R (1999) Long-term phyto-, ornitho- and ichthyophenological time-series analyses in Estonia. Int J Biometeorol 42(3):119–123CrossRefGoogle Scholar
  2. Bos H (1931) Acta Phaenologica. Nijhoff, GravenhageGoogle Scholar
  3. Both C, Visser ME (2001) Adjustment to climate change is constrained by arrival date in a long-distance migrant bird. Nature 14:296–298CrossRefGoogle Scholar
  4. Bruns E, van Vliet AJH (2003) Standardisation of phenological monitoring in Europe. Wageningen University, WageningenGoogle Scholar
  5. Chmielewski FM, Rötzer T (2001) Response of tree phenology to climate change across Europe. Agricult For Meteorol 108:101–112CrossRefGoogle Scholar
  6. Crick HQP, Sparks TH (1999) Climate change related to egg-laying trends. Nature 399(6735):423–424CrossRefGoogle Scholar
  7. Ellis WN, Donner JH, Kuchlein JH (1997) Recent shifts in phenology of Microlepidoptera, related to climatic change (Lepidoptera). Entomologische Berichten 57(4):66–72Google Scholar
  8. Fitter AH, Fitter RSR (2002) Rapid changes in flowering time in British plants. Science 296:1689–1691CrossRefGoogle Scholar
  9. Jochner S, Sparks T, Estrella N, Menzel A (2012) The influence of altitude and urbanisation on trends and mean dates in phenology (1980–2009). Int J Biometeorol 56(2):387–394. doi: 10.1007/s00484-011-0444-3 CrossRefGoogle Scholar
  10. Ketelaar R (2003) Libellen vliegen vroeger en noordelijker: een gevolg van klimaatsverandering? De Levende Natuur 104(3):83–85Google Scholar
  11. KNMI (1866) Meteorologisch jaarboek. 1ste gedeelte, Waarnemingen in Nederland. Koninklijk Nederlands Meteorologisch Instituut, De BiltGoogle Scholar
  12. KNMI (1882) Nederlandsch meteorlogisch jaarboek voor 1ste deel, Waarnemingen in Nederland. Kemink, UtrechtGoogle Scholar
  13. KNMI (1893) Nederlandsch meteorlogisch jaarboek voor 1ste deel, Waarnemingen in Nederland. Van Boekhoven, UtrechtGoogle Scholar
  14. KNMI (2013) Monthly, seasonal, and annual means of the air temperature in tenths of centigrade in De Bilt, The Netherlands. Royal Dutch Meteorological Organisation. http://www.knmi.nl/klimatologie/daggegevens/antieke_wrn/. Accessed 20-12-2012 2013
  15. Meier U (2003) Phenological growth stages; Mono- and dicotyledonous plants. In: Schwartz MD (ed) Phenology: an integrative environmental science. Tasks for vegetation science, 39th edn. Kluwer Academic Publishers, Dordrecht, pp 269–283CrossRefGoogle Scholar
  16. Menzel A (2003) Plant phenological anomalies in Germany and their relation to air temperature and NAO. Climatic Change 57:243–263CrossRefGoogle Scholar
  17. Menzel A, Fabian P (1999) Growing season extended in Europe. Nature 397:659CrossRefGoogle Scholar
  18. Menzel A, Sparks TH, Estrella N, Koch E, Aasa A, Ahas R, Alm-Kubler K, Bissolli P, Braslavska OG, Briede A, Chmielewski FM, Crepinsek Z, Curnel Y, Dahl A, Defila C, Donnelly A, Filella Y, Jatczak K, Mage F, Mestre A, Nordli O, Penuelas J, Pirinen P, Remisova V, Scheifinger H, Striz M, Susnik A, van Vliet AJH, Wielgolaski F-E, Zach S, Zust ANA (2006) European phenological response to climate change matches the warming pattern. Glob Change Biol 12(10):1969–1976. doi: 10.1111/j.1365-2486.2006.01193.x CrossRefGoogle Scholar
  19. Mostert K (2004) Libellen: voordeel van een warmer klimaat. In: Roos R, Woudenberg S (eds) Opgewarmd Nederland. Stichting NatuurMedia, uitgeverij Jan van Arkel, Stichting Natuur en Milieu, Utrecht, pp 48–53Google Scholar
  20. Neil K, Wu J (2006) Effects of urbanization on plant flowering phenology: a review. Urb Ecosyst 9(3):243–257. doi: 10.1007/s11252-006-9354-2 CrossRefGoogle Scholar
  21. Parry ML, Canziani OF, Palutikof JP, Hanson CE, Van der Linden PJ (2007) Climate change, 2007. Impacts, adaptation and vulnerability. Contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  22. Polgar CA, Primack RB (2011) Leaf-out phenology of temperate woody plants: from trees to ecosystems. New Phytol 191(4):926–941CrossRefGoogle Scholar
  23. Roy DB, Sparks TH (2000) Phenology of British butterflies and climate change. Glob Change Biol 6(4):407–416CrossRefGoogle Scholar
  24. Schenk MF, van Vliet AJH, Smulders MJM, Gilissen LJWJ (2006) Strategies for prevention and mitigation of hay fever. In: Gilissen LJWJ, Wichers HJ, Savelkoul HFJ, Bogers RJ (eds) Allergy Matters; New approaches to allergy prevention and management, vol 10., Wageningen UR Frontis SeriesSpringer, Dordrecht, pp 131–142Google Scholar
  25. Schwartz MD (2003) Phenology, an integrative environmental science, vol 39., Tasks for vegetation scienceKluwer Academic Publishers, DordrechtCrossRefGoogle Scholar
  26. Thackeray SJ, Sparks TH, Frederiksen M, Burthe S, Bacon PJ, Bell JR, Botham MS, Brereton TM, Bright PW, Carvalho L, Clutton-Brock T, Dawson A, Edwards M, Elliott JM, Harrington R, Johns D, Jones ID, Jones JT, Leech DI, Roy DB, Scott WA, Smith MD, Smithers RJ, Winfield IJ, Wanless S (2010) Trophic level asynchrony in rates of phenological change for marine, freshwater and terrestrial environments. Glob Change Biol 16(12):3304–3313CrossRefGoogle Scholar
  27. van den Hurk B, Tank AK, Lenderink G, van Ulden A, van Oldenborgh GJ, Katsman C, van den Brink H, Keller F, Bessembinder J, Burgers G, Komen G, Hazeleger W, Drijfhout S (2006) KNMI climate change scenarios 2006 for the Netherlands. KNMI, De BiltGoogle Scholar
  28. van Engelen A, Nellestijn JW (1996) Monthly, seasonal and annual means of air temperature in tenths of centigrades in De Bilt, Netherlands, 1706–1995. KNMI report from the Climatological Services BranchGoogle Scholar
  29. Van Vliet AJH (2008) Monitoring, analysing, forecasting and communicating phenological changes. Wageningen University, WageningenGoogle Scholar
  30. van Vliet AJH (2010) Societal adaptation options to changes in phenology. In: Hudson IL, Keatley (eds) Phenological research. Springer, Netherlands, pp 75–98. doi: 10.1007/978-90-481-3335-2_4 CrossRefGoogle Scholar
  31. van Vliet AJH, de Groot RS, Overeem A, Jacobs AFG, Spieksma FTM (2002) The influence of temperature and climate change on the timing of pollen release in the Netherlands. Int J Climatol 22:1757–1767CrossRefGoogle Scholar
  32. van Vliet AJH, de Groot RS, Bellens Y, Braun P, Bruegger R, Bruns E, Clevers J, Estreguil C, Flechsig M, Jeanneret F, Maggi M, Martens P, Menne B, Menzel A, Sparks T (2003) The European phenology network. Int J Biometeorol 47(4):202–212CrossRefGoogle Scholar
  33. Verbeek K (2003) De toestand van het klimaat in Nederland 2003. KNMI, De BiltGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Arnold J. H. van Vliet
    • 1
    • 2
  • Wichertje A. Bron
    • 1
    • 2
  • Sara Mulder
    • 2
  • Wout van der Slikke
    • 3
  • Baudewijn Odé
    • 3
  1. 1.Environmental Systems Analysis GroupWageningen UniversityWageningenThe Netherlands
  2. 2.Foundation for Sustainable DevelopmentWageningenThe Netherlands
  3. 3.FLORONNijmegenThe Netherlands

Personalised recommendations