Advertisement

Regional Environmental Change

, Volume 14, Issue 1, pp 119–132 | Cite as

Hydro-economic modeling of water scarcity under global change: an application to the Gállego river basin (Spain)

  • Nina Graveline
  • Bruno Majone
  • Rianne Van Duinen
  • Erik Ansink
Original Article

Abstract

Integrated approaches are needed to assess the effects of global changes on the future state of water resources at regional scales. We develop a hydro-economic model of the Gállego catchment, Spain, to assess how global change and policy options affect the catchment’s water scarcity and the economic implications to the agricultural sector. The model couples physical processes (hydrology) and regulatory and economic processes (agricultural water demand, reservoir operation). Five scenarios, covering currently ongoing changes in climatic conditions, agriculture and hydrological planning, are evaluated. Our results suggest that the scenarios’ impacts on water resources and regional agricultural income are significant. Policy responses such as investments in modernization of irrigation technology would mitigate the negative impacts of climatic change on the agricultural sector, but the implementation costs outweigh the extra regional agricultural income. Also, a planned reservoir extension project appears ineffective, even considering effects of climatic change. Although our results are site-specific, our methodology is relevant to other areas that face comparable problems of water scarcity.

Keywords

Hydro-economic modeling Irrigated agriculture Hydrology Climatic change Spain 

Notes

Acknowledgments

We acknowledge financial support by the European Union FP6 Integrated Project Aquaterra (project No. GOCE 505428). We would like to thank two anonymous referees and the associate editor for their comments. We express special thanks to José Albiac and Jesus Causapé from CITA in Zaragoza for their support in the field as well as for interesting discussions. We also thank the Confederación Hidrográfica del Ebro and in particular Miguel Angel Garcia Vera, and the Comunidad de regantes del Alto Aragon for data provision. We thank the Integrator subproject partners and particularly Benoit Grandmougin and Pierre Strosser from ACTeon and Emmanuelle Petelet from BRGM. We thank Stephen Blenkinsop, Isabella Bovolo and Hayley Fowler from the University of Newcastle for their precious comments on the climatic change simulations.

References

  1. Acs S, Hanley N, Dallimer M, Gaston KJ, Robertson P, Wilson P, Armsworth PR (2010) The effect of decoupling on marginal agricultural systems: implications for farm incomes, land use and upland ecology. Land Use Policy 27(2):550–563CrossRefGoogle Scholar
  2. Albiac J, Playan E, Martinez Y (2007) Instruments for water quantity and quality management in the agriculture of Aragon. Int J Water Resour Dev 23(1):147–164CrossRefGoogle Scholar
  3. Arrojo P (2011) Valoracion del Nuevo Proyecto de Embalse de Biscarrués, complementaria al informe “Alternativas a Biscarrués” prensentado en su dia ante la Comision del Agua. Unpublished available at http://www.slideshare.net/NuevaCulturadelAgua/valoracin-econmica-biscarrus
  4. Barrera-Escoda A, Cunillera J (2011) Climate change projections for Catalonia (NE Iberian Peninsula). Part I: regional climate modelling. Tethys 8:75–87. doi: 10.3369/tethys.2011.8.08 Google Scholar
  5. Barros R, Isidoro D, Aragüés R (2011) Long-term water balances in La Violada Irrigation District (Spain): II. Analysis of irrigation performance. Agric Water Manag 98(10):1569–1576CrossRefGoogle Scholar
  6. Bazzani GM, Di Pasquale S, Gallerani V, Viaggi D (2004) Irrigated agriculture in Italy and water regulation under the European Union water framework directive. Water Resour Res 40:W07S04Google Scholar
  7. Brouwer R, Hofkes M (2008) Integrated hydro-economic modelling: approaches, key issues and future research directions. Ecol Econ 66:16–22CrossRefGoogle Scholar
  8. Buysse J, Van Huylenbroeck G, Lauwers L (2007) Normative, positive and econometric mathematical programming as tools for incorporation of multifunctionality in agricultural policy modelling. Agric Ecosyst Environ 120(1):70–81CrossRefGoogle Scholar
  9. Cai XM, Wang DB (2006) Calibrating holistic water resources-economic models. J Water Resour Plan Manag 132(6):414–423CrossRefGoogle Scholar
  10. Cai XM, McKinney DC, Lasdon LS (2003) Integrated hydrologic-agronomic-economic model for river basin management. J Water Resour Plan Manag 129(1):4–17CrossRefGoogle Scholar
  11. Causapé J, Auqué L, Gimeno MJ, Mandado J, Quílez D, Aragüés R (2004a) Irrigation effects on the salinity of the Arba and Riguel Rivers (Spain): present diagnosis and expected evolution using geochemical models. Environ Geol 45:703–715CrossRefGoogle Scholar
  12. Causapé J, Quílez D, Aragüés R (2004b) Assessment of irrigation and environmental quality at the hydrological basin level: II. Salt and nitrate loads in irrigation return flows. Agric Water Manag 70:211–228Google Scholar
  13. Causapé J, Quílez D, Aragüés R (2006) Groundwater quality in CR-V irrigation district (Bardenas I, Spain): alternative scenarios to reduce off-site salt and nitrate contamination. Agric Water Manag 84:281–289CrossRefGoogle Scholar
  14. CHE (2007) Plan Hidrologico del Rio Gállego (http://www.chebro.es)
  15. Chen X, Önal H (2012) Modeling agricultural supply response using mathematical programming and crop mixes. Am J Agr Econ 94(3):674–686CrossRefGoogle Scholar
  16. Christensen JH, Carter TR, Rummukainen CM, Amanatidis G (2007) Evaluating the performance and utility of regional climate models: the PRUDENCE project. Clim Change 81:1–6. doi: 10.1007/s10584-006-9211-6 CrossRefGoogle Scholar
  17. Draper AJ, Jenkins MW, Kirby KW, Lund JR, Howitt RE (2003) Economic-engineering optimization for California water management. J Water Resour Plann Manag 129(3):155–164CrossRefGoogle Scholar
  18. Esteban E, Albiac J (2007) Instruments for salinity pollution control in irrigated agriculture. Paper presented at the 15th annual conference of the European Association of environmental and resource economists, 27–30 June, Thessaloniki, GreeceGoogle Scholar
  19. European Commission (2000) Directive 2000/60/EC of the European Parliament and of the council of 23 October 2000 establishing a framework for community action in the field of water policy. Official Journal of the European Communities L 327, 22.12.2000, 1–72Google Scholar
  20. Fowler HJ, Ekström M, Blenkinsop S, Smith AP (2007) Estimating change in extreme European precipitation using a multimodel ensemble. J Geophys Res 112:D18104CrossRefGoogle Scholar
  21. Graveline N et al (2007) Integrating economic with groundwater modelling for developing long term nitrate concentration scenarios in a large aquifer. In: Chery L, de Marsilly G (eds) Aquifer systems management: Darcy’s legacy in a world of impending water shortage. AA. Balkema Publisher, AmsterdamGoogle Scholar
  22. Graveline N, Rinaudo JD, Loubier S, Segger V (2009) Scénarios d’évolution à long terme de la pollution des eaux souterraines par les nitrates: une approche par couplage de modèles dans le bassin du Rhin supérieur. Economie Rurale, 310Google Scholar
  23. Graveline N, Loubier S, Gleyses G, Rinaudo JD (2012) Impact of farming on water resources: assessing uncertainty with Monte Carlo simulations in a global change context. Agric Syst 108:29–41CrossRefGoogle Scholar
  24. Hargreaves GH, Samani ZA (1982) Estimating potential evapotranspiration. J Irrigat Drain Eng 108(3):225–230Google Scholar
  25. Harou JJ, Pulido-Velazquez M, Rosenberg DE, Medellín-Azuara J, Lund JR, Howitt RE (2009) Hydro-economic models: concepts, design, applications, and future prospects. J Hydrol 375(3–4):627–643CrossRefGoogle Scholar
  26. Hazell PBR, Norton RD (1986) Mathematical programming for economic analysis in agriculture. Macmillan, New YorkGoogle Scholar
  27. Heinz I, Pulido-Velazquez M, Lund JR, Andreu J (2007) Hydro-economic modelling in river basin management: implications and applications for the European Water Framework Directive. Water Resour Manag 21:1103–1125CrossRefGoogle Scholar
  28. Henseler M, Wirsig A, Herrmann S, Krimly T, Dabbert S (2009) Modeling the impact of global change on regional agricultural land use through an activity-based non-linear programming approach. Agric Syst 100:31–42CrossRefGoogle Scholar
  29. Howitt RE (1995) Positive mathematical programming. Am J Agric Econ 77(2):329–342CrossRefGoogle Scholar
  30. Iglesias E, Blanco M (2008) New directions in water resources management: the role of water pricing policies. Water Resour Res 44:W06417Google Scholar
  31. IPCC (2007) Climate change 2007: impacts, adaptation, and vulnerability, contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) Cambridge University Press, Cambridge, pp 976Google Scholar
  32. Jenkins MW, Lund JR, Howitt RE, Draper AJ, Msangi SM, Tanaka SK, Ritzema RS, Marques GF (2004) Optimization of California’s water supply system: results and insights. J Water Resour Plan Manag 130(4):271–280CrossRefGoogle Scholar
  33. Jones CG, Willén U, Ullerstig A, Hansson U (2004) The Rossby Centre regional atmospheric climate model part I: model climatology and performance for the present climate over Europe. Ambio 33(4):199–210Google Scholar
  34. Lecina S, Isidoro D, Playán E, Aragüés R (2010) Irrigation modernization and water conservation in Spain: the case of Riegos del Alto Aragón. Agric Water Manag 97:1663–1675CrossRefGoogle Scholar
  35. Lefkoff LJ, Gorelick SM (1990) Benefits of an irrigation water rental market in a saline stream-aquifer system. Water Resour Res 26(7):1371–1381CrossRefGoogle Scholar
  36. López-Moreno JI, Vicente-Serrano SM, Moran-Tejeda E, Zabalza J, Lorenzo-Lacruz J, Garcia-Ruiz JM (2011) Impact of climate evolution and land use changes on water yield in the Ebro basin. Hydrol Earth Syst Sci 15:311–322. doi: 10.5194/hess-15-311-2011 CrossRefGoogle Scholar
  37. Majone B, Bertagnoli A, Bellin A (2005) Structure of the modelling system with detailed description of the models. AquaTerra Deliverable C3.2. http://www.eu-aquaterra.de/51.0.html
  38. Majone B, Bertagnoli A, Bellin A (2010) A non-linear runoff generation model in small Alpine catchments. J Hydrol 385:300–312. doi: 10.1016/j.jhydrol.2010.02.033 CrossRefGoogle Scholar
  39. Majone B, Bovolo CI, Bellin A, Blenkinsop S, Fowler HJ (2012) Modeling the impacts of future climate change on water resources for the Gállego river basin (Spain). Water Resour Res 48:W01512. doi: 10.1029/2011WR010985 Google Scholar
  40. Maneta MP, Torres M, Wallender WW, Vosti S, Howitt R, Rodrigues L, Bassoi L, Panday S (2009) A spatially distributed hydro-economic model to assess the economic impact of water policies on rural poverty. Water Resour Res 45:W11412. doi: 10.1029/2008WR007534 Google Scholar
  41. McCarl BA (1982) Cropping activities in agricultural sector models: a methodological proposal. Am J Agric Econ 64(4):768–772CrossRefGoogle Scholar
  42. McKinney DC, Cai X, Rosegrant MW, Ringler C, Scott CA (1999) Modelling water resources management at the basin level: review and future directions. IWMI, SWIM Paper 6Google Scholar
  43. Mema M (2006) Las politicas de control de la contaminacion difusa en el valle medio del Ebro. Thesis—Universidad de Zaragoza, SpainGoogle Scholar
  44. Mérel P, Simon LK, Yi F (2011) A fully calibrated generalized constant-elasticity-of-substitution programming model of agricultural supply. Am J Agric Econ 93:936–948CrossRefGoogle Scholar
  45. Meybeck M (1979) Concentration des eaux fluviales en éléments majeurs et apports aux océans. Revue de Géologie Dynamique et géologie physique, pp 215–246Google Scholar
  46. Michel C, Andréassian V, Perrin C (2005) Soil conservation service curve number method: how to mend a wrong soil moisture accounting procedure? Water Resour Res 41:W02011Google Scholar
  47. Molden D, Oweis T, Steduto P, Bindraban P, Hanjra MA, Kijne J (2010) Improving agricultural water productivity: between optimism and caution. Agric Water Manag 97:528–535CrossRefGoogle Scholar
  48. Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models 1. A discussion of principles. J Hydrol 10:282–290CrossRefGoogle Scholar
  49. Perry C, Steduto P, Allen RG, Burt CM (2009) Increasing productivity in irrigated agriculture: agronomic constraints and hydrological realities. Agric Water Manag 96:1517–1524CrossRefGoogle Scholar
  50. Pulido-Velazquez M, Jenkins MW, Lund JR (2004) Economic values for conjunctive use and water banking in southern California. Water Resour Res 40(3):W03401Google Scholar
  51. Pulido-Velázquez M, Andreu J, Sahuquillo A, Pulido-Velazquez D (2008) Hydro-economic river basin modelling: the application of a holistic surface-groundwater model to assess opportunity costs of water use in Spain. Ecol Econ 66(1):51–65CrossRefGoogle Scholar
  52. Rodríguez-Iturbe I, Porporato A (2004) Ecohydrology of water-controlled ecosystems. Soil moisture and plant dynamics. Cambridge University Press, Cambridge, p 442Google Scholar
  53. Roeckner E, Arpe K, Bengtsson L, Christoph M, Claussen M, Dümenil L, Esch M, Giorgetta M, Schlese U, Schulzweida U (1996) The atmospheric general circulation model ECHAM-4: model description and simulation of present-day climate. Max-Planck Institute for Meteorology, Report No. 218, Hamburg, Germany, 90 ppGoogle Scholar
  54. Rosegrant MW, Ringler C, McKinney DC, Cai X, Keller A, Donoso G (2000) Integrated economic–hydrologic water modelling at the basin scale: the Maipo river basin. Agr Econ 24(1):33–46Google Scholar
  55. Van der Linden P, Mitchell JFB (eds) (2009) ENSEMBLES: climate change and its impacts: summary of research and results from the ENSEMBLES project. 160 pp., Met Off. Hadley Cent., UKGoogle Scholar
  56. Van Duinen R (2008). A scenario analysis of irrigation induced salinisation in the Gallego catchment. Msc Thesis Environmental Economics and Natural Resource Management, Wageningen UniversityGoogle Scholar
  57. Vorosmarty CJ, Green P, Salisbury J, Lammers RB (2000) Global water resources: vulnerability from climate change and population growth. Science 289:284CrossRefGoogle Scholar
  58. Ward FA, Pulido-Velazquez M (2008) Water conservation in irrigation can increase water use. Proc Natl Acad Sci USA 105:18215–18220CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Nina Graveline
    • 1
  • Bruno Majone
    • 2
  • Rianne Van Duinen
    • 3
  • Erik Ansink
    • 4
  1. 1.BRGM (French Geological Survey)MontpellierFrance
  2. 2.Department of Civil, Environmental and Mechanical EngineeringUniversity of TrentoTrentoItaly
  3. 3.DeltaresUtrechtThe Netherlands
  4. 4.Institute for Environmental Studies (IVM)VU University AmsterdamAmsterdamThe Netherlands

Personalised recommendations