Regional Environmental Change

, Volume 14, Issue 1, pp 167–184

Adaptation options under climate change for multifunctional agriculture: a simulation study for western Switzerland

  • Tommy Klein
  • Annelie Holzkämper
  • Pierluigi Calanca
  • Jürg Fuhrer
Original Article

Abstract

Besides its primary role in producing food and fiber, agriculture also has relevant effects on several other functions, such as management of renewable natural resources. Climate change (CC) may lead to new trade-offs between agricultural functions or aggravate existing ones, but suitable agricultural management may maintain or even improve the ability of agroecosystems to supply these functions. Hence, it is necessary to identify relevant drivers (e.g., cropping practices, local conditions) and their interactions, and how they affect agricultural functions in a changing climate. The goal of this study was to use a modeling framework to analyze the sensitivity of indicators of three important agricultural functions, namely crop yield (food and fiber production function), soil erosion (soil conservation function), and nutrient leaching (clean water provision function), to a wide range of agricultural practices for current and future climate conditions. In a two-step approach, cropping practices that explain high proportions of variance of the different indicators were first identified by an analysis of variance-based sensitivity analysis. Then, most suitable combinations of practices to achieve best performance with respect to each indicator were extracted, and trade-offs were analyzed. The procedure was applied to a region in western Switzerland, considering two different soil types to test the importance of local environmental constraints. Results show that the sensitivity of crop yield and soil erosion due to management is high, while nutrient leaching mostly depends on soil type. We found that the influence of most agricultural practices does not change significantly with CC; only irrigation becomes more relevant as a consequence of decreasing summer rainfall. Trade-offs were identified when focusing on best performances of each indicator separately, and these were amplified under CC. For adaptation to CC in the selected study region, conservation soil management and the use of cropped grasslands appear to be the most suitable options to avoid trade-offs.

Keywords

Multifunctional agriculture Climate change adaptation CropSyst Trade-offs 

References

  1. Ammann C, Spirig C, Leifeld J, Neftel A (2009) Assessment of the nitrogen and carbon budget of two managed temperate grassland fields. Agric Ecosyst Environ 133(3–4):150–162CrossRefGoogle Scholar
  2. Arnold J, Williams J (1989) Stochastic generation of internal storm structure at a point. Trans ASAE 32(1):161–166CrossRefGoogle Scholar
  3. Askegaard M, Olesen J, Rasmussen I, Kristensen K (2011) Nitrate leaching from organic arable crop rotations is mostly determined by autumn field management. Agric Ecosyst Environ 142(3–4):149–160CrossRefGoogle Scholar
  4. Bachinger J, Zander P (2007) ROTOR, a tool for generating and evaluating crop rotations for organic farming systems. Eur J Agron 26(2):130–143CrossRefGoogle Scholar
  5. Bartsch KP, Miegroet HV, Boettinger J, Dobrowolski JP (2002) Using empirical erosion models and GIS to determine erosion risk at Camp Williams, Utah. J Soil Water Conserv 57(1):29–37Google Scholar
  6. BFS (2004) Arealstatistik der Schweiz, Bundesamt für Statistik. SwiBFS, NeuchatelGoogle Scholar
  7. BFS (2012) Soil suitability map of switzerland. GEOSTAT, CH-2010 Neuchatel, SwitzerlandGoogle Scholar
  8. Bindi M, Olesen J (2010) The responses of agriculture in Europe to climate change. Reg Environ Chang 11(S1):151–158CrossRefGoogle Scholar
  9. BUWAL (2003) Nationales Bodenbeobachtungsnetz: Messresultate 1985–1991 (National soil observation network: results 1985–1991). Schriftenreihe Umwelt Nr. 200. Bundesamt für Umwelt, Wald und Landschaft (Hrsg.), CH-3003 Bern. 134 S., Anhnge 175 SGoogle Scholar
  10. Calanca P (2007) Climate change and drought occurrence in the Alpine region: how severe are becoming the extremes? Glob Planet Chang 57(1–2):151–160Google Scholar
  11. CH2011 (2011) Swiss climate change scenarios CH2011. C2SM, MeteoSwiss, Zurich, p 88Google Scholar
  12. Challinor A, Wheeler T, Garforth C, Craufurd P, Kassam A (2007) Assessing the vulnerability of food crop systems in Africa to climate change. Clim Chang 83(3):381–399CrossRefGoogle Scholar
  13. Confalonieri R (2010) Monte Carlo based sensitivity analysis of two crop simulators and considerations on model balance. Eur J Agron 33(2):89–93CrossRefGoogle Scholar
  14. Constantin J, Beaudoin N, Launay M, Duval J, Mary B (2012) Long-term nitrogen dynamics in various catch crop scenarios: test and simulations with STICS model in a temperate climate. Agric Ecosyst Environ 147:36–46CrossRefGoogle Scholar
  15. Corwin D, Waggoner B, Rhoades J (1991) A functional model of solute transport that accounts for bypass. J Environ Qual 20:647–658CrossRefGoogle Scholar
  16. Dogliotti S, Rossing W, van Ittersum M (2003) Rotat, a tool for systematically generating crop rotations. Eur J Agron 19(2):239–250CrossRefGoogle Scholar
  17. Doltra J, Laegdsmand M, Olesen J (2011) Cereal yield and quality as affected by nitrogen availability in organic and conventional arable crop rotations: a combined modeling and experimental approach. Eur J Agron 34(2):83–95CrossRefGoogle Scholar
  18. Dueri S, Calanca P, Fuhrer J (2007) Climate change affects farm nitrogen loss—a Swiss case study with a dynamic farm model. Agric Syst 93(1–3):191–214CrossRefGoogle Scholar
  19. Duvick DN (2005) The contribution of breeding to yield advances in maize (Zea mays L.), vol 86. Academic Press, San Diego, pp 83–145Google Scholar
  20. Evans R (2002) An alternative way to assess water erosion of cultivated land field-based measurements: and analysis of some results. Appl Geogr 22(2):187–207CrossRefGoogle Scholar
  21. Flisch R, Sinaj S, Charles R, Richner W (2009) GRUDAF 2009. Principles for fertilisation in arable and fodder production. Agrarforschung 16(2):1–100 (in German)Google Scholar
  22. FOEN (2012) Adaptation to climate change in Switzerland. Goals, challenges and fields of action. First part of the Federal Councils strategy. Technical report, adopted on 2 Mar 2012. Edited by the Federal Office for the EnvironmentGoogle Scholar
  23. Fuhrer J, Jasper K (2012) Demand and supply of water for agriculture: influence of topography and climate in pre-alpine, meso-scale catchments. Nat Resour 3:145–155Google Scholar
  24. Fuhrer J, Beniston M, Fischlin A, Frei C, Goyette S, Jasper K, Pfister C (2006) Climate risks and their impact on agriculture and forests in Switzerland. Clim Chang 79(1–2):79–102CrossRefGoogle Scholar
  25. Ginot V, Gaba S, Beaudouin R, Aries F, Monod H (2006) Combined use of local and ANOVA-based global sensitivity analyses for the investigation of a stochastic dynamic model: application to the case study of an individual-based model of a fish population. Ecol Model 193(3–4):479–491CrossRefGoogle Scholar
  26. Gobin A, Jones R, Kirkby M, Campling P, Govers G, Kosmas C, Gentile A (2004) Indicators for pan-European assessment and monitoring of soil erosion by water. Environ Sci Policy 7(1):25–38CrossRefGoogle Scholar
  27. Groot J, Rossing W, Jellema A, Stobbelaar D, Renting H, Van Ittersum M (2007) Exploring multi-scale trade-offs between nature conservation, agricultural profits and landscape quality—a methodology to support discussions on land-use perspectives. Agric Ecosyst Environ 120(1):58–69CrossRefGoogle Scholar
  28. Henke J, Böttcher U, Neukam D, Sieling K, Kage H (2008) Evaluation of different agronomic strategies to reduce nitrate leaching after winter oilseed rape (Brassica napus L.) using a simulation model. Nutr Cycl Agroecosyst 82(3):299–314CrossRefGoogle Scholar
  29. Horie T (1994) Crop ontogeny and development. In: Boote K, Bennett J, Sinclair T, Paulson G (eds) Physiology and determination of crop yield. ASA, Madison, pp 153–180Google Scholar
  30. IPCC (2007) IPCC 2007: climate change 2007: impacts, adaptation and vulnerability. In: Parry ML, Canziani O, Palutikof J, van der Linden P, Hanson C (eds) Contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, UKGoogle Scholar
  31. Janssen S, Oomen R, Hengsdijk H, Van Ittersum M (2009) Agricultural management module of FSSIM, production enterprice generator, production technique generator, simple management translator and technical coefficient generator. SEAMLESS Report No.44, SEAMLESS integrated project. In: EU 6th framework programme, con. tech. rep.Google Scholar
  32. Jones R, Bissonnais Y, Diaz J, Düwel O, Oygarden L, Bazzoffi P, Prasuhn V, Yordanov Y, Strauss P, Rydell B, Uveges J, Loj G, Vandekerckhove M (2003) Work package 2: nature and extend of soil erosion in Europe-interim report 3.31. EU soil thematic strategy. Technical Working Group on Erosion—European Commission—GD Environment, BrusselsGoogle Scholar
  33. Klein T, Calanca P, Holzkämper A, Lehmann N, Roesch A, Fuhrer J (2012) Using farm accountancy data to calibrate a crop model for climate impact studies. Agric Syst 111:23–33CrossRefGoogle Scholar
  34. Ko J, Ahuja L, Saseendran S, Green T, Ma L, Nielsen D, Walthall C (2011) Climate change impacts on dryland cropping systems in the Central Great Plains, USA. Clim Chang 111(2):445–472CrossRefGoogle Scholar
  35. Körner C, Morgan J, Norby R (2007) CO2 fertilization: when, where, how much? In: Canadell JG, Pataki DE, Pitelka LF (eds) Terrestrial ecosystems in a changing world. Springer, Berlin, pp 9–21CrossRefGoogle Scholar
  36. Lal R, Delgado J, Groffman P, Millar N, Dell C, Rotz A (2011) Management to mitigate and adapt to climate change. J Soil Water Conserv 66(4):276–285CrossRefGoogle Scholar
  37. Lamboni M, Makowski D, Lehuger S, Gabrielle B, Monod H (2009) Multivariate global sensitivity analysis for dynamic crop models. Field Crops Res 113(3):312–320CrossRefGoogle Scholar
  38. Lehmann N, Finger R, Klein T, Calanca P, Walter A (2013) Adapting crop management practices to climate change: modeling optimal solutions at the field scale. Agric Syst 117:55–65CrossRefGoogle Scholar
  39. Leifeld J, Bassin S, Fuhrer J (2003) Carbon stocks and carbon sequestration potentials in agricultural soils in Switzerland. Schriftenreihe der FAL 44Google Scholar
  40. Long S, Ainsworth E, Leakey A, Nösberger J, Ort D (2006) Food for thought: lower-than-expected crop yield stimulation with rising CO2 concentrations. Science 312(5782):1918–1921CrossRefGoogle Scholar
  41. Marshall K, Blackstock KL, Dunglinson J (2010) A contextual framework for understanding good practice in integrated catchment management. J Environ Plan Manag 53(1):63–89CrossRefGoogle Scholar
  42. Michael A, Schmidt J, Enke W, Deutschländer T, Malitz G (2005) Impact of expected increase in precipitation intensities on soil loss—results of comparative model simulations. CATENA 61(2–3):155–164CrossRefGoogle Scholar
  43. Monod H, Naud C, Makowski D (2006) Uncertainty and sensitivity analysis for crop models. In: Wallach D, Makowski D, Jones J (eds) Working with dynamic crop models, pp 55–100Google Scholar
  44. Moriondo M, Bindi M, Kundzewicz Z, Szwed M, Chorynski A, Matczak P, Radziejewski M, McEvoy D, Wreford A (2010) Impact and adaptation opportunities for European agriculture in response to climatic change and variability. Mitig Adapt Strateg Glob Chang15(7):657–679CrossRefGoogle Scholar
  45. Nearing M, Pruski F, O’Neal M (2004) Expected climate change impacts on soil erosion rates: a review. J Soil Water Conserv 59(1):43–50Google Scholar
  46. Nearing M, Jetten V, Baffaut C, Cerdan O, Couturier A, Hernandez M, Le Bissonnais Y, Nichols M, Nunes J, Renschler C, Souchère V, van Oost K (2005) Modeling response of soil erosion and runoff to changes in precipitation and cover. CATENA 61(2–3):131–154CrossRefGoogle Scholar
  47. Nelson E, Mendoza G, Regetz J, Polasky S, Tallis H, Cameron D, Chan K, Daily G, Goldstein J, Kareiva P, Lonsdorf E, Naidoo R, Ricketts T, Shaw M (2009) Modeling multiple ecosystem services, biodiversity conservation, commodity production, and tradeoffs at landscape scales. Front Ecol Environ7(1):4–11CrossRefGoogle Scholar
  48. Nievergelt J (2002) Nitrat und Fruchtfolgen 20 Jahre lang beobachtet. Agrarforschung 9:28–33Google Scholar
  49. Olesen J, Bindi M (2002) Consequences of climate change for European agricultural productivity, land use and policy. Eur J Agron 16(4):239–262CrossRefGoogle Scholar
  50. Olesen J, Trnka M, Kersebaum K, Skjelvå g A, Seguin B, Peltonen-Sainio P, Rossi F, Kozyra J, Micale F (2011) Impacts and adaptation of European crop production systems to climate change. Eur J Agron 34(2):96–112CrossRefGoogle Scholar
  51. Parry M, Rosenzweig C, Iglesias A, Livermore M, Fischer G (2004) Effects of climate change on global food production under SRES emissions and socio-economic scenarios. Global Environ Chang 14(1):53–67CrossRefGoogle Scholar
  52. Power A (2010) Ecosystem services and agriculture: tradeoffs and synergies. Philos Trans R Soc B 365(1554):2959–2971CrossRefGoogle Scholar
  53. Prasuhn V (2012) On-farm effects of tillage and crops on soil erosion measured over 10 years in Switzerland. Soil Tillage Res 120:137–146CrossRefGoogle Scholar
  54. Prasuhn V, Liniger HP, Hurni H, Friedli S (2007) Carte du risque d’érosion du sol en Suisse. Rev Suisse Agric 39(2):53–59Google Scholar
  55. Prasuhn V, Liniger H, Gisler S, Herweg K, Candinas A, Clément JP (2013) A high-resolution soil erosion risk map of Switzerland as strategic policy support system. Land Use Policy 32:281–291CrossRefGoogle Scholar
  56. Renard K, Foster G, Weesies G, McCool D, Yoder D (1997) Predicting soil erosion by water: a guide to conservation planning with the revised universal soil loss equation (RUSLE). US Department of Agriculture, Agriculture Research Service. Agriculture handbook no. 703, p 384Google Scholar
  57. Renting H, Rossing W, Groot J, Vander Ploeg J, Laurent C, Perraud D, Stobbelaar D, Van Ittersum M (2009) Exploring multifunctional agriculture. A review of conceptual approaches and prospects for an integrative transitional framework. J Environ Manag 90:112–123CrossRefGoogle Scholar
  58. Rossing W, Zander P, Josien E, Groot J, Meyer B, Knierim A (2007) Integrative modelling approaches for analysis of impact of multifunctional agriculture: a review for France, Germany and The Netherlands. Agric Ecosyst Environ 120:41–57CrossRefGoogle Scholar
  59. Rötter R, Carter T, Olesen J, Porter J (2011) Crop-climate models need an overhaul. Nat Clim Chang 1(4):175–177CrossRefGoogle Scholar
  60. Ruane A, Cecil LD, Horton R, Gordón R, McCollum R, Brown D, Killough B, Goldberg R, Greeley A, Rosenzweig C (2013) Climate change impact uncertainties for maize in Panama: farm information, climate projections, and yield sensitivities. Agric For Meteorol 170:132–145CrossRefGoogle Scholar
  61. Sacks W, Kucharik C (2011) Crop management and phenology trends in the US corn belt: impacts on yields, evapotranspiration and energy balance. Agric For Meteorol 151(7):882–894CrossRefGoogle Scholar
  62. Saltelli A, Ratto M, Andres T, Campolongo F, Cariboni J, Gatelli D, Saisana M, Tarantola S (2007) Global sensitivity analysis. The primer. Wiley, Ltd, ChichesterCrossRefGoogle Scholar
  63. Scholz G, Quinton J, Strauss P (2008) Soil erosion from sugar beet in Central Europe in response to climate change induced seasonal precipitation variations. CATENA 72(1):91–105CrossRefGoogle Scholar
  64. Schönhart M, Schmid E, Schneider U (2011) CropRota—a crop rotation model to support integrated land use assessments. Eur J Agron 34(4):263–277CrossRefGoogle Scholar
  65. Schröter D, Cramer W, Leemans R, Prentice I, Araújo M, Arnell N, Bondeau A, Bugmann H, Carter T, Gracia C, de la Vega-Leinert A, Erhard M, Ewert F, Glendining M, House J, Kankaanpää S, Klein R, Lavorel S, Lindner M, Metzger M, Meyer J, Mitchell T, Reginster I, Rounsevell M, Sabaté S, Sitch S, Smith B, Smith J, Smith P, Sykes M, Thonicke K, Thuiller W, Tuck G, Zaehle S, Zierl B (2005) Ecosystem service supply and vulnerability to global change in Europe. Science 310(5752):1333–1337CrossRefGoogle Scholar
  66. Semenov M, Barrow E (1997) Use of a stochastic weather generator in the development of climate change scenarios. Clim Chang 35(4):397–414CrossRefGoogle Scholar
  67. Soussana JF, Graux AI, Tubiello F (2010) Improving the use of modelling for projections of climate change impacts on crops and pastures. J Exp Bot 61(8):2217–28CrossRefGoogle Scholar
  68. Stöckle C, Campbell GS (1989) Simulation of crop response to water and nitrogen: an example using spring wheat. Trans ASAE 32(1):66–74CrossRefGoogle Scholar
  69. Stöckle C, Martin S, Campbell G (1994) CropSyst, a cropping systems simulation model: water/nitrogen budgets and crop yield. Agric Syst 46(3):335–359CrossRefGoogle Scholar
  70. Supit I, Van Diepen C, de Wit A, Wolf J, Kabat P, Baruth B, Ludwig F (2012) Assessing climate change effects on European crop yields using the crop growth monitoring system and a weather generator. Agric For Meteorol 164:96–111CrossRefGoogle Scholar
  71. Torriani D, Calanca P, Schmid S, Beniston M, Fuhrer J (2007) Potential effects of changes in mean climate and climate variability on the yield of winter and spring crops in Switzerland. Clim Res 34(1):59–69CrossRefGoogle Scholar
  72. Trnka M, Olesen J, Kersebaum K, Skjelvå g A, Eitzinger J, Seguin B, Peltonen-Sainio P, Rötter R, Iglesias A, Orlandini S, Dubrovský M, Hlavinka P, Balek J, Eckersten H, Cloppet E, Calanca P, Gobin A, Vučetić V, Nejedlik P, Kumar S, Lalic B, Mestre A, Rossi F, Kozyra J, Alexandrov V, Semerádová D, Žalud Z (2011) Agroclimatic conditions in Europe under climate change. Glob Chang Biol 17(7):2298–2318CrossRefGoogle Scholar
  73. UNCED (1992) United Nations conference on environment and development. Agenda 21d an action plan for the next century.Technical report. In: United Nations conference on environment and development, New YorkGoogle Scholar
  74. van der Linden P, Mitchell J (eds) (2009) ENSEMBLES: climate change and its impacts: summary of research and results from the ENSEMBLES project. Met Office Hadley Centre, Exeter, p 160Google Scholar
  75. Van Ittersum M, Howden S, Asseng S (2003) Sensitivity of productivity and deep drainage of wheat cropping systems in a Mediterranean environment to changes in CO2, temperature and precipitation. Agric Ecosyst Environ 97(1–3):255–273CrossRefGoogle Scholar
  76. Vullioud P (2005) Assolement et rotation des grandes cultures. Rev Suisse Agric 37(4):1–1Google Scholar
  77. Weisskopf P, Zihlmann U, Walther U (2001) Einfluss der Bewirtschaftung auf die Stickstoffdynamik im Bodenwasser. Agrarforschung 9:348–353Google Scholar
  78. White J, Hoogenboom G, Kimball BA, Wall GW (2011) Methodologies for simulating impacts of climate change on crop production. Field Crops Res 124(3):357–368CrossRefGoogle Scholar
  79. Yang D, Kanae S, Oki T, Koike T, Musiake K (2003) Global potential soil erosion with reference to land use and climate changes. Hydrol Process 17(14):2913–2928CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Tommy Klein
    • 1
    • 2
  • Annelie Holzkämper
    • 1
    • 2
  • Pierluigi Calanca
    • 1
    • 2
  • Jürg Fuhrer
    • 1
    • 2
  1. 1.Air Pollution/Climate GroupAgroscope Research Station ARTZurichSwitzerland
  2. 2.Oeschger Center for Climate Change ResearchUniversity of BernBernSwitzerland

Personalised recommendations